1 1 2 3 Genome-Wide Association Study of Body Fat Distribution

Total Page:16

File Type:pdf, Size:1020Kb

1 1 2 3 Genome-Wide Association Study of Body Fat Distribution bioRxiv preprint doi: https://doi.org/10.1101/207498; this version posted July 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Genome-Wide Association Study of Body Fat Distribution identifies Novel 5 Adiposity Loci and Sex-Specific Genetic Effects 6 7 Mathias Rask-Andersen*1, Torgny Karlsson1, Weronica E Ek1, Åsa Johansson*1 8 9 10 1Department of Immunology, Genetics and Pathology, Science for Life Laboratory, 11 Uppsala University. Box 256, 751 05, Uppsala, Sweden. 12 *Corresponding authors: [email protected] and 13 [email protected] 14 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/207498; this version posted July 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Body mass and body fat composition are of clinical interest due to their links to 20 cardiovascular- and metabolic diseases. Fat stored in the trunk has been 21 suggested as more pathogenic compared to fat stored in other compartments of 22 the body. In this study, we performed genome-wide association studies (GWAS) 23 for the proportion of body fat distributed to the arms, legs and trunk estimated 24 from segmental bio-electrical impedance analysis (sBIA) for 362,499 individuals 25 from the UK Biobank. A total of 97 loci, were identified to be associated with 26 body fat distribution, 40 of which have not previously been associated with an 27 anthropometric trait. A high degree of sex-heterogeneity was observed and 28 associations were primarily observed in females, particularly for distribution of 29 fat to the legs or trunk. Our findings also implicate that body fat distribution in 30 females involves mesenchyme derived tissues and cell types, female endocrine 31 tissues a well as several enzymatically active members of the ADAMTS family of 32 metalloproteinases, which are involved in extracellular matrix maintenance and 33 remodeling. 34 35 Overweight (body mass index [BMI] >25) and obesity (BMI>30) have reached 36 epidemic proportions globally1. Almost 40% of the world’s population are now 37 overweight2 and 10.8% are obese3. Obesity is set to become the world’s leading 38 preventable risk factor for disease and early death due to the increased risks of 39 developing type 2 diabetes, cardiovascular disease, and cancer4. 40 41 The distribution of adipose tissue to discrete compartments within the human body is 42 associated with differential risk for development of cardiovascular and metabolic 43 disease5. Body fat distribution of fat is also well known to differ between sexes. After 44 puberty, women accumulate fat in the trunk and limbs to a proportionally greater 45 extent compared to other parts of the body, while men accumulate a greater extent of 46 fat in the trunk6. Accumulation of adipose tissue around the viscera, the internal 47 organs of the body, has been shown to be associated with increased risk of disease in 2 bioRxiv preprint doi: https://doi.org/10.1101/207498; this version posted July 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 48 both men and women7. In contrast, the preferential accumulation of adipose tissue in 49 the lower extremities, i.e. the hips and legs, has been suggested as a factor 50 contributing to the lower incidence of myocardial infarction and coronary death 51 observed in women during middle age8. The differential distribution of body fat 52 between sexes has been attributed to downstream effects of sex hormone secretion5. 53 However, the biological mechanisms that underlie body fat distribution have not been 54 fully elucidated. 55 56 BMI is commonly used as a proxy measurement of body adiposity in epidemiological 57 studies and in clinical practice. However, BMI is unable to discriminate between 58 adipose and lean mass, and between fat stored in different compartments of the body. 59 Other proxies that better represent distribution of body fat have also been utilized, 60 such as the waist-to-hip ratio (WHR), waist circumference (WC), and hip 61 circumference (HC). Through genome-wide association studies (GWAS), researchers 62 have identified hundreds of loci to be associated with proximal measurements of body 63 mass and body fat distribution such as BMI9, WHR10,11 and hip-, and waist 64 circumference11. Sex-stratified analyses have revealed sexual dimorphic effects at 65 twenty WHR-associated loci and 19 of these loci displayed stronger effects in 66 women12. Body fat mass has also been studied in GWAS by using bio-electrical 67 impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA)13,14. BIA 68 measures the electrical impedance through the human body, which can be used to 69 calculate an estimate of the total amount of adipose tissue. The ‘gold standard’ 70 method for measurements of body fat distribution is computed tomography (CT) or 71 magnetic resonance imaging (MRI). However, these methods are costly. A GWAS 72 has been performed for subcutaneous- and visceral adiposity, measured with 3 bioRxiv preprint doi: https://doi.org/10.1101/207498; this version posted July 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 73 computed tomography scans, albeit in a relatively limited number of individuals 74 (N=10,577)15. 75 76 Developments in BIA technology has now allowed for cost-efficient segmental body 77 composition scans that estimate of the fat content of the trunk, arms and legs16 (Figure 78 1a). In this study, we used segmental BIA data on 362,499 participants of the UK 79 Biobank to study the genetic determinants of body fat distribution to the trunk, arms 80 and legs. For this purpose, we performed GWAS on the proportion of body fat 81 distributed to these compartments. We also performed sex-stratified analyses to 82 determine sex-specific effects and performed gene-sex interaction analyses to identify 83 effects that differ between men and women. 84 85 Results 86 The proportions of body fat distributed to the arms – arm fat ratio (AFR), the legs – 87 leg fat ratio (LFR) and the trunk – trunk fat ratio (TFR) were calculated by dividing 88 the fat mass per compartment with the total body fat mass for each participant (Figure 89 1a). We conducted a two-stage GWAS using data from the interim release of 90 genotype data in UK Biobank as a discovery cohort. Another set of participants, for 91 which genotype data were made available as part of the second release, was used for 92 replication. After removing non-Caucasians, genetic outliers and related individuals, 93 116,138 and 246,360 participants remained in the discovery and replication cohorts, 94 respectively. Basic characteristics of the discovery and replication cohorts are 95 presented in supplementary Table 1. Women were found to have higher total sBIA- 96 estimated fat mass compared to men in both the discovery and replication cohort, as 97 well as higher amount of fat in the arms and legs. Males had higher average 4 bioRxiv preprint doi: https://doi.org/10.1101/207498; this version posted July 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 98 proportion of body fat located in the trunk compared to females (62.2% vs. 50.3%) 99 and women had a larger proportion of body fat located in the legs (39.7% vs. 28.1%). 100 While the total amount of adipose tissue in the arms was estimated to be higher in 101 women compared to men, the fraction of adipose tissue distributed to the arms were 102 similar. Several smaller differences between the discovery and replication cohorts 103 were present (supplementary Table 1), such as some slight differences in height and 104 age between men and women in the discovery and replication cohorts. These 105 differences most likely represent the 50,000 participants for the UK Biobank Lung 106 Exome Variant Evaluation (UK BiLEVE) project that were included in the first 107 release of genotyping data for ~150,000 participants, which were used as a discovery 108 cohort in this study. Selection for UK BiLEVE was conducted with specific 109 consideration to lung function which may reflect the differences in baseline 110 characteristics for this subset of the cohort. However, these differences are unlikely to 111 affect the results from our analyses. 112 113 Genome wide association study for body fat ratio 114 GWAS was performed for each of the three phenotypes (AFR, LFR and TFR) in the 115 whole discovery cohort (sex-combined) and when stratifying by sex (males and 116 females), adjusting for covariates as described in the method section. A total of 117 25,472,837 imputed SNPs, with MAF of at least 0.0001, were analyzed in the 118 discovery GWAS. LD score regression intercepts17 ranged from 1.00 to 1.03 119 (supplementary Figure 1, supplementary Table 2), and were used to adjust for 120 genomic inflation. We used the -clump function in PLINK18, in combination with 121 conditioning on the most significant SNP, to identify associations that were 122 independent within each GWAS as well as between GWAS for the three body fat 5 bioRxiv preprint doi: https://doi.org/10.1101/207498; this version posted July 13, 2018.
Recommended publications
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • Novel Protein RGPR-P117
    a ular nd G ec en l e o t i M c f M o l e Journal of Molecular and Genetic d a i Yamaguchi, J Mol Genet Med 2013, 7:3 n c r i n u e o J Medicine DOI: 10.4172/1747-0862.1000072 ISSN: 1747-0862 MiniResearch Review Article OpenOpen Access Access Novel Protein RGPR-p117: New Aspects in Cell Regulation Masayoshi Yamaguchi* Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, USA Abstract RGPR-p117 was initially discovered as novel protein which binds to the nuclear factor I (NF1)-like motif TTGGC(N)6CC in the regucalcin gene promoter region (RGPR). RGPR-p117 is localized to the nucleus with stimulation of protein kinase C-related signaling process. Overexpression of RGPR-p117 has been shown to enhance regucalcin mRNA expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells in vitro. This process is mediated through phosphorylated RGPR-p117. Overexpression of RGPR-p117 was found to suppress apoptotic cell death induced after stimulation with various signaling factors in NRK52E cells, while it did not have an effect on cell proliferation. Moreover, RGPR-p117 was found to localize in the plasma membranes, mitochondria and microsomes, suggesting an involvement in the regulation of function of these organelles. After that, RGPR-p117 was renamed as Sec16B that is involved in the endoplasmic reticulum export. However, this is not suitable name with many findings of the role of RGPR-p117 in cell regulation. RGPR-p117 may play an essential role as transcription factor, and the elucidation of other roles in cell regulation will be expected.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • 1 INVITED REVIEW Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death Shouya Feng,* Daniel Fox,* Si M
    INVITED REVIEW Mechanisms of Gasdermin family members in inflammasome signaling and cell death Shouya Feng,* Daniel Fox,* Si Ming Man Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia. * S.F. and D.F. equally contributed to this work Correspondence to Si Ming Man: Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, 2601, Australia. [email protected] 1 Abstract The Gasdermin (GSDM) family consists of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME) and Pejvakin (PJVK). GSDMD is activated by inflammasome-associated inflammatory caspases. Cleavage of GSDMD by human or mouse caspase-1, human caspase-4, human caspase-5, and mouse caspase-11, liberates the N-terminal effector domain from the C-terminal inhibitory domain. The N-terminal domain oligomerizes in the cell membrane and forms a pore of 10-16 nm in diameter, through which substrates of a smaller diameter, such as interleukin (IL)-1β and IL- 18, are secreted. The increasing abundance of membrane pores ultimately leads to membrane rupture and pyroptosis, releasing the entire cellular content. Other than GSDMD, the N-terminal domain of all GSDMs, with the exception of PJVK, have the ability to form pores. There is evidence to suggest that GSDMB and GSDME are cleaved by apoptotic caspases. Here, we review the mechanistic functions of GSDM proteins with respect to their expression and signaling profile in the cell, with more focused discussions on inflammasome activation and cell death.
    [Show full text]
  • Sec16 As an Integrator of Signaling to the Endoplasmic Reticulum
    Sec16 as an integrator of signaling to the endoplasmic reticulum Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) Presented by Kerstin Tillmann at the Faculty of Sciences Department of Biology University of Konstanz Date of the oral examination: September 11th, 2015 First referee: Prof. Dr. Daniel Legler Second referee: PD Dr. Hesso Farhan Third referee: Prof. Dr. Sebastian Springer Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-305723 Table of Contents Summary ........................................................................................ 1 Zusammenfassung ........................................................................ 2 Introduction .................................................................................... 3 The Secretory Pathway ........................................................................................... 4 1 Structure of the Secretory Pathway ..............................................................................4 2 Endoplasmic reticulum ...................................................................................................9 2.1 Protein translocation into the ER ...............................................................................9 2.2 Protein maturation in the ER lumen ....................................................................... 10 2.3 Quality control and ERAD ...................................................................................... 11 3 ER exit sites .................................................................................................................
    [Show full text]
  • 1 the TRAPP Complex Mediates Secretion Arrest Induced by Stress Granule Assembly Francesca Zappa1, Cathal Wilson1, Giusepp
    bioRxiv preprint doi: https://doi.org/10.1101/528380; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The TRAPP complex mediates secretion arrest induced by stress granule assembly Francesca Zappa1, Cathal Wilson1, Giuseppe Di Tullio1, Michele Santoro1, Piero Pucci2, Maria Monti2, Davide D’Amico1, Sandra Pisonero Vaquero1, Rossella De Cegli1, Alessia Romano1, Moin A. Saleem3, Elena Polishchuk1, Mario Failli1, Laura Giaquinto1, Maria Antonietta De Matteis1, 2 1 Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy 2 Federico II University, Naples, Italy 3 Bristol Renal, Bristol Medical School, University of Bristol, UK Correspondence to: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/528380; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The TRAnsport-Protein-Particle (TRAPP) complex controls multiple membrane trafficking steps and is thus strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified TRAPP as a key component of a branch of the integrated stress response that impinges on the early secretory pathway. TRAPP associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and an arrest of ER export.
    [Show full text]
  • The Metabolite α-KG Induces GSDMC-Dependent Pyroptosis Through Death Receptor 6-Activated Caspase-8
    www.nature.com/cr www.cell-research.com ARTICLE OPEN The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8 Jia-yuan Zhang1, Bo Zhou1, Ru-yue Sun1, Yuan-li Ai1, Kang Cheng1, Fu-nan Li2, Bao-rui Wang2, Fan-jian Liu1, Zhi-hong Jiang1, Wei-jia Wang1, Dawang Zhou 1, Hang-zi Chen 1 and Qiao Wu 1 Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8- mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.
    [Show full text]
  • ADHD) Gene Networks in Children of Both African American and European American Ancestry
    G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA.
    [Show full text]
  • A Guide to Obesity and the Metabolic Syndrome
    A GUIDE TO OBESITY AND THE METABOLIC SYNDROME ORIGINS AND TREAT MENT GEORG E A. BRA Y Louisiana State University, Baton Rouge, USA Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2011 by Taylor and Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-1457-4 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • A High Throughput, Functional Screen of Human Body Mass Index GWAS Loci Using Tissue-Specific Rnai Drosophila Melanogaster Crosses Thomas J
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. Baranski Washington University School of Medicine in St. Louis Aldi T. Kraja Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Mary Feitosa Washington University School of Medicine in St. Louis Petra A. Lenzini Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Baranski, Thomas J.; Kraja, Aldi T.; Fink, Jill L.; Feitosa, Mary; Lenzini, Petra A.; Borecki, Ingrid B.; Liu, Ching-Ti; Cupples, L. Adrienne; North, Kari E.; and Province, Michael A., ,"A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses." PLoS Genetics.14,4. e1007222. (2018). https://digitalcommons.wustl.edu/open_access_pubs/6820 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Thomas J. Baranski, Aldi T. Kraja, Jill L. Fink, Mary Feitosa, Petra A. Lenzini, Ingrid B. Borecki, Ching-Ti Liu, L. Adrienne Cupples, Kari E. North, and Michael A. Province This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6820 RESEARCH ARTICLE A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J.
    [Show full text]
  • 2014-Platform-Abstracts.Pdf
    American Society of Human Genetics 64th Annual Meeting October 18–22, 2014 San Diego, CA PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Saturday 41 Statistical Methods for Population 5:30pm–6:50pm: Session 2: Plenary Abstracts Based Studies Room 20A #198–#205 Featured Presentation I (4 abstracts) Hall B1 #1–#4 42 Genome Variation and its Impact on Autism and Brain Development Room 20BC #206–#213 Sunday 43 ELSI Issues in Genetics Room 20D #214–#221 1:30pm–3:30pm: Concurrent Platform Session A (12–21): 44 Prenatal, Perinatal, and Reproductive 12 Patterns and Determinants of Genetic Genetics Room 28 #222–#229 Variation: Recombination, Mutation, 45 Advances in Defining the Molecular and Selection Hall B1 Mechanisms of Mendelian Disorders Room 29 #230–#237 #5-#12 13 Genomic Studies of Autism Room 6AB #13–#20 46 Epigenomics of Normal Populations 14 Statistical Methods for Pedigree- and Disease States Room 30 #238–#245 Based Studies Room 6CF #21–#28 15 Prostate Cancer: Expression Tuesday Informing Risk Room 6DE #29–#36 8:00pm–8:25am: 16 Variant Calling: What Makes the 47 Plenary Abstracts Featured Difference? Room 20A #37–#44 Presentation III Hall BI #246 17 New Genes, Incidental Findings and 10:30am–12:30pm:Concurrent Platform Session D (49 – 58): Unexpected Observations Revealed 49 Detailing the Parts List Using by Exome Sequencing Room 20BC #45–#52 Genomic Studies Hall B1 #247–#254 18 Type 2 Diabetes Genetics Room 20D #53–#60 50 Statistical Methods for Multigene, 19 Genomic Methods in Clinical Practice Room 28 #61–#68 Gene Interaction
    [Show full text]
  • S.I. Genetic Pathways to Neurodegeneration Advances in the Discovery of Genetic Risk Factors for Complex Forms of Neurodegenerat
    S.I. Genetic pathways to Neurodegeneration Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders - contemporary approaches, success, challenges and prospects Sumeet Kumar1*, Navneesh Yadav1*, Sanjay Pandey2, B.K. Thelma1@ 1 Department of Genetics, University of Delhi South Campus, New Delhi, India 2 Department of Neurology, Govind Ballabh Pant Institute of Postgraduate medical education and research, New Delhi, India * Equal contribution @ Corresponding author Email addresses: Sumeet Kumar [email protected] Navneesh Yadav [email protected] Sanjay Pandey [email protected] B K Thelma [email protected] Running Title: Genetics of complex neurodegenerative disorders Key words: Neurodegenerative disorders; Alzheimer's disease; Parkinson's disease; Amyotrophic lateral sclerosis; Huntington disease; Genome-wide association studies 1 ABSTRACT Neurodegenerative diseases constitute a large proportion of disorders of the elderly, majority being sporadic in occurrence with ~5-10% familial. A strong genetic component underlies the Mendelian forms but non-genetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms despite large genome- wide association studies and more recently whole exome and whole genome sequencing have been limited. This review provides a concise account of the genetics that we know, the pathways that they implicate, the challenges that are faced and the prospects that are envisaged for the sporadic, complex forms of neurodegenerative diseases, taking four most common conditions namely Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington disease as examples.
    [Show full text]