Genetics of Abca4-Associated Diseases and Retinitis Pigmentosa

Total Page:16

File Type:pdf, Size:1020Kb

Genetics of Abca4-Associated Diseases and Retinitis Pigmentosa GENETICS OF ABCA4-ASSOCIATED DISEASES AND RETINITIS PIGMENTOSA Yajing (Angela) Xie Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Yajing (Angela) Xie All rights reserved ABSTRACT Genetics of ABCA4-Associated Diseases and Retinitis Pigmentosa Yajing (Angela) Xie Inherited retinal dystrophies encompass a broad group of genetic disorders affecting visual functions in as high as 1 in 3,000 individuals around the world. Common symptoms include loss of central, periphery, or night visions, and in severe cases progression to complete blindness. Syndromic forms also exist involving abnormalities in other parts of the body. Currently, more than 250 genes representing a wide variety of functional roles have been shown to be responsible for the disease phenotypes. Moreover, mutations in the same gene sometimes cause different phenotypes while mutations in multiple genes can give rise to the same clinical subtype, further demonstrating the level of complexity in these disorders. Such genetic heterogeneity has substantially complicated the process of pinpointing precise genetic causes underlying these conditions. The goal of my thesis research is to clarify the genetic causes underlying retinal dystrophies, with a primary focus on phenotypes resembling ABCA4-associated diseases and retinitis pigmentosa in both syndromic and non-syndromic forms. Recent advances in the next-generation sequencing (NGS), the high-throughput, ‘deep’ sequencing technology, have enabled several novel genes to be identified, or found new mutations in known genes. Nevertheless, a substantial fraction of unsolved cases still remain. The primary work in this thesis involves utilizing NGS, particularly whole- exome sequencing, to identify disease-causal mutations in families where at least one parent and affected or unaffected siblings are available. Determining all genetic variation underlying retinal diseases is necessary for precise molecular genetic diagnosis and improved prognosis of these conditions. The first part of my thesis highlights the complexity in genetic inheritance of diseases caused by mutations in the ABCA4 gene. In a substantial fraction of Stargardt Disease cases with only one mutation in the ABCA4 coding region, deep sequencing of the entire locus identified the second mutation in the intronic region of the gene in 10% of cases. The genetic heterogeneity of ABCA4 was further demonstrated by the identification of 4 different pathogenic ABCA4 mutations and 4 phenotypes in a single family. These findings epitomized the extremely complex mutational spectrum underlying the ABCA4-associated diseases and suggested thorough sequencing of variations in the entire genomic locus, including copy number variant analysis. In the second part of my thesis, exome-sequencing has led to findings of phenotypic expansions in known disease gene, and in one case the precise molecular diagnosis resulted in an immediate treatment. A family with 2 affected siblings presented novel phenotype of a macular dystrophy caused by mutations in CRB1. In another family where 9 members were affected with late-onset BEM, a mutation was found in CRX given incomplete penetrance. In one family with an affected adult, two well-documented mutations in MMACHC - a gene causal for a potentially debilitating disorder of cobalamin deficiency, were found to segregate with bull’s eye maculopathy (BEM) and minimal systemic features in the proband. Early diagnosis in this patient resulted in hydroxycobalamin treatment for her condition, and possibly an improvement of her systemic prognosis. Together, these findings revealed that clinical phenotype can be very divergent from those described, and only genetic testing can unequivocally determine the cause of a disease. The third part of my thesis work highlights first-time discovery, and co-discovery of new genes associated with retinal diseases. A new form of syndromic RP was investigated in a family presenting a previously undescribed constellation of phenotypic features. Exome sequencing analysis of 3 affected siblings and their unaffected parents revealed deleterious mutations in the RDH11 gene. In another family where 2 affected siblings presented with a remarkably similar phenotype, no mutations in RDH11 were detected. However, analysis of absence of heterozygosity revealed causal mutations in the CWC27 gene. In the search for novel genes in cone-rod dystrophy cases negative of ABCA4 mutations, WES identified new rare, deleterious mutations in RAB28 in two families of Spanish descent. These findings revealed novel genetic causes underlying hereditary retinal diseases, and demonstrated the effectiveness of WES analysis in rare disease gene discovery. In summary, this work represents a comprehensive mutational analysis of inherited retinal dystrophies with complex genotype and phenotype correlations, utilizing next-generation DNA sequencing in large study cohorts. The power of whole-exome sequencing for gene discovery was well demonstrated by unequivocally solving close to 50% of all patients examined in this study. Establishing precise correlations between genotype and clinical phenotype is important for facilitating patient care, counseling, and therapeutic intervention for inherited diseases. TABLE OF CONTENTS LIST OF FIGURES AND TABLES ................................................................................ iii LIST OF APPENDICES ................................................................................................ vii LIST OF ABBREVIATIONS ......................................................................................... viii ACKNOWLEDGEMENTS ............................................................................................... x DEDICATION ............................................................................................................... xiii CHAPTER I. GENETICS OF HEREDITARY RETINAL DISEASES ............................... 1 1. Overview of Inherited retinal dystrophies (IRDs) ...................................................... 2 2. Heterogeneity of ABCA4-associated diseases ......................................................... 8 3. Heterogeneity of Retinitis pigmentosa ................................................................... 12 4. Genomics approach to gene discovery in IRDs ..................................................... 14 5. Work described in this dissertation ....................................................................... 16 CHAPTER II. DESCRIPTION OF STUDY COHORTS AND GENETIC METHODS .... 18 1. Recruitment of study subjects and clinical evaluation ............................................ 19 2. Whole-Exome Sequencing..................................................................................... 21 3. Variant analysis ...................................................................................................... 23 4. Homozygosity mapping .......................................................................................... 29 CHAPTER III. COMPLICATIONS IN GENETIC INHERITANCE OF ABCA4- ASSOCIATED DISEASES ............................................................................................ 32 1. Preface ................................................................................................................ 33 2. Analysis of the ABCA4 genomic locus in Stargardt disease ................................ 35 3. Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes ................................................................................................... 58 4. Discussion ........................................................................................................... 70 i CHAPTER IV. EXPANSION OF THE PHENOTYPIC SPECTRUM IN KNOWN DISEASE GENES ......................................................................................................... 73 1. Preface ................................................................................................................ 74 2. Whole-exome sequencing identifies defect in an unusual maculopathy phenotype ............................................................................................................................ 77 3. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases ........................................................................................................ 91 4. Whole exome sequencing identifies an adult-onset case of methylmalonic aciduria and homocystinuria type C (cbIC) with non-syndromic bull’s eye maculopathy ............................................................................................................. 118 5. Discussion ......................................................................................................... 125 CHAPTER V. DISCOVERY OF NOVEL GENES FOR NON-SYNDROMIC AND SYNDROMIC RETINAL DISORDERS ........................................................................ 130 1. Preface .............................................................................................................. 131 2. New mutations in the RAB28 gene in 2 Spanish families with cone-rod dystrophy ................................................................................................................. 134 3. New syndrome with retinitis pigmentosa is caused by nonsense mutations
Recommended publications
  • Transcriptional Profile Analysis of RPGRORF15 Frameshift Mutation Identifies Novel Genes Associated with Retinal Degeneration
    Retinal Cell Biology Transcriptional Profile Analysis of RPGRORF15 Frameshift Mutation Identifies Novel Genes Associated with Retinal Degeneration Sem Genini,1 Barbara Zangerl,1 Julianna Slavik,1 Gregory M. Acland,2 William A. Beltran,1 and Gustavo D. Aguirre1 PURPOSE. To identify genes and molecular mechanisms associ- he term retinitis pigmentosa (RP) refers to a group of many ated with photoreceptor degeneration in a canine model of Tdifferent inherited retinal diseases characterized by pro- XLRP caused by an RPGR exon ORF15 microdeletion. gressive rod or rod–cone photoreceptor degeneration that causes subsequent visual impairment and blindness. Some of METHODS. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microar- the causative genes have clear, well-identified roles (e.g., in- volvement in phototransduction, in maintaining photoreceptor rays. qRT-PCR, Western blot analysis, and immunohistochem- structure, or in RPE retinoid metabolism; RetNet: http://www. istry (IHC) were applied to selected genes, to confirm and sph.uth.tmc.edu/RetNet/ provided in the public domain by the expand the microarray results. University of Texas Houston Health Science Center, Houston, RESULTS. At 7 and 16 weeks, respectively, 56 and 18 tran- TX). However, there remain a large number of diseases caused scripts were downregulated in the mutant retinas, but none by genes with poorly understood functions and for which the were differentially expressed (DE) at both ages, suggesting mechanism linking the genes and/or mutations with photore- the involvement of temporally distinct pathways. Down- ceptor disease and degeneration is unknown. regulated genes included the known retina-relevant genes Among these is the RP3 form of X-linked RP (XLRP), a PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at uniformly severe, early-onset retinal disease in humans that is 16 weeks.
    [Show full text]
  • Rule Mining on Microrna Expression Profiles For
    Faculty of Engineering and Information Technology University of Technology, Sydney Rule Mining on MicroRNA Expression Profiles for Human Disease Understanding A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Renhua Song July 2016 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Candidate i Acknowledgments First, and foremost, I would like to express my gratitude to my chief supervisor, Assoc. Prof. Jinyan Li, and to my co-supervisors Assoc. Prof. Paul Kennedy and Assoc. Prof. Daniel Catchpoole. I am extremely grateful for all the advice and guidance so unselfishly given to me over the last three and half years by these three distinguished academics. This research would not have been possible without their high order supervision, support, assistance and leadership. The wonderful support and assistance provided by many people during this research is very much appreciated by me and my family. I am very grateful for the help that I received from all of these people but there are some special individuals that I must thank by name. A very sincere thank you is definitely owed to my loving husband Jing Liu, not only for his tremendous support during the last three and half years, but also his unfailing and often sorely tested patience.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Multistep Bioinformatic Approach Detects Putative Regulatory
    BMC Bioinformatics BioMed Central Research article Open Access A multistep bioinformatic approach detects putative regulatory elements in gene promoters Stefania Bortoluzzi1, Alessandro Coppe1, Andrea Bisognin1, Cinzia Pizzi2 and Gian Antonio Danieli*1 Address: 1Department of Biology, University of Padova – Via Bassi 58/B, 35131, Padova, Italy and 2Department of Information Engineering, University of Padova – Via Gradenigo 6/B, 35131, Padova, Italy Email: Stefania Bortoluzzi - [email protected]; Alessandro Coppe - [email protected]; Andrea Bisognin - [email protected]; Cinzia Pizzi - [email protected]; Gian Antonio Danieli* - [email protected] * Corresponding author Published: 18 May 2005 Received: 12 November 2004 Accepted: 18 May 2005 BMC Bioinformatics 2005, 6:121 doi:10.1186/1471-2105-6-121 This article is available from: http://www.biomedcentral.com/1471-2105/6/121 © 2005 Bortoluzzi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Searching for approximate patterns in large promoter sequences frequently produces an exceedingly high numbers of results. Our aim was to exploit biological knowledge for definition of a sheltered search space and of appropriate search parameters, in order to develop a method for identification of a tractable number of sequence motifs. Results: Novel software (COOP) was developed for extraction of sequence motifs, based on clustering of exact or approximate patterns according to the frequency of their overlapping occurrences.
    [Show full text]
  • ABCG1 (ABC8), the Human Homolog of the Drosophila White Gene, Is a Regulator of Macrophage Cholesterol and Phospholipid Transport
    ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport Jochen Klucken*, Christa Bu¨ chler*, Evelyn Orso´ *, Wolfgang E. Kaminski*, Mustafa Porsch-Ozcu¨ ¨ ru¨ mez*, Gerhard Liebisch*, Michael Kapinsky*, Wendy Diederich*, Wolfgang Drobnik*, Michael Dean†, Rando Allikmets‡, and Gerd Schmitz*§ *Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, 93042 Regensburg, Germany; †National Cancer Institute, Laboratory of Genomic Diversity, Frederick, MD 21702-1201; and ‡Departments of Ophthalmology and Pathology, Columbia University, Eye Research Addition, New York, NY 10032 Edited by Jan L. Breslow, The Rockefeller University, New York, NY, and approved November 3, 1999 (received for review June 14, 1999) Excessive uptake of atherogenic lipoproteins such as modified low- lesterol transport. Although several effector molecules have been density lipoprotein complexes by vascular macrophages leads to proposed to participate in macrophage cholesterol efflux (6, 9), foam cell formation, a critical step in atherogenesis. Cholesterol efflux including endogenous apolipoprotein E (10) and the cholesteryl mediated by high-density lipoproteins (HDL) constitutes a protective ester transfer protein (11), the detailed molecular mechanisms mechanism against macrophage lipid overloading. The molecular underlying cholesterol export in these cells have not yet been mechanisms underlying this reverse cholesterol transport process are characterized. currently not fully understood. To identify effector proteins that are Recently, mutations of the ATP-binding cassette (ABC) trans- involved in macrophage lipid uptake and release, we searched for porter ABCA1 gene have been causatively linked to familial HDL genes that are regulated during lipid influx and efflux in human deficiency and Tangier disease (12–14).
    [Show full text]
  • A Comprehensive Mapping of the Structure and Gene Organisation in the Sheep MHC Class I Region N
    Siva Subramaniam et al. BMC Genomics (2015) 16:810 DOI 10.1186/s12864-015-1992-4 RESEARCH ARTICLE Open Access A comprehensive mapping of the structure and gene organisation in the sheep MHC class I region N. Siva Subramaniam1, EF Morgan1, JD Wetherall1, MJ Stear2,3* and DM Groth1 Abstract Background: The major histocompatibility complex (MHC) is a chromosomal region that regulates immune responsiveness in vertebrates. This region is one of the most important for disease resistance because it has been associated with resistance or susceptibility to a wide variety of diseases and because the MHC often accounts for more of the variance than other loci. Selective breeding for disease resistance is becoming increasingly common in livestock industries, and it is important to determine how this will influence MHC polymorphism and resistance to diseases that are not targeted for selection. However, in sheep the order and sequence of the protein coding genes is controversial. Yet this information is needed to determine precisely how the MHC influences resistance and susceptibility to disease. Methods: CHORI bacterial artificial chromosomes (BACs) known to contain sequences from the sheep MHC class I region were sub-cloned, and the clones partially sequenced. The resulting sequences were analysed and re-assembled to identify gene content and organisation within each BAC. The low resolution MHC class I physical map was then compared to the cattle reference genome, the Chinese Merino sheep MHC map published by Gao, et al. (2010) and the recently available sheep reference genome. Results: Immune related class I genes are clustered into 3 blocks; beta, kappa and a novel block not previously identified in other organisms.
    [Show full text]
  • The Relevance of Clinical, Genetic and Serological Markers
    AUTREV-01901; No of Pages 18 Autoimmunity Reviews xxx (2016) xxx–xxx Contents lists available at ScienceDirect Autoimmunity Reviews journal homepage: www.elsevier.com/locate/autrev Review Cardiovascular risk assessment in patients with rheumatoid arthritis: The relevance of clinical, genetic and serological markers Raquel López-Mejías a, Santos Castañeda b, Carlos González-Juanatey c,AlfonsoCorralesa, Iván Ferraz-Amaro d, Fernanda Genre a, Sara Remuzgo-Martínez a, Luis Rodriguez-Rodriguez e, Ricardo Blanco a,JavierLlorcaf, Javier Martín g, Miguel A. González-Gay a,h,i,⁎ a Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain b Division of Rheumatology, Hospital Universitario la Princesa, IIS-IPrincesa, Madrid, Spain c Division of Cardiology, Hospital Lucus Augusti, Lugo, Spain d Rheumatology Division, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain e Division of Rheumatology, Hospital Clínico San Carlos, Madrid, Spain f Division of Epidemiology and Computational Biology, School of Medicine, University of Cantabria, and CIBER Epidemiología y Salud Pública (CIBERESP), IDIVAL, Santander, Spain g Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain h School of Medicine, University of Cantabria, Santander, Spain i Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa article info abstract Article history: Cardiovascular disease (CV) is the most common cause of premature mortality in patients with rheumatoid ar- Received 7 July 2016 thritis (RA). This is the result of an accelerated atherosclerotic process. Adequate CV risk stratification has special Accepted 9 July 2016 relevance in RA to identify patients at risk of CV disease.
    [Show full text]
  • ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Chemicals and Drugs Commons, and the Medical Sciences Commons Recommended Citation Fukuda, Yu , "ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters" (2008). Theses and Dissertations (ETD). Paper 345. http://dx.doi.org/10.21007/etd.cghs.2008.0100. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Interdisciplinary Program Research Advisor John D. Schuetz, Ph.D. Committee Linda Hendershot, Ph.D. James I. Morgan, Ph.D. Anjaparavanda P. Naren, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0100 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/345 ABCB6 IS A PORPHYRIN TRANSPORTER WITH A NOVEL TRAFFICKING SIGNAL THAT
    [Show full text]
  • Large Meta-Analysis of Genome-Wide Association Studies
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.01.20200659; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Large meta-analysis of genome-wide association studies expands knowledge of the genetic etiology of Alzheimer’s disease and highlights potential translational opportunities Céline Bellenguez1,*,#, Fahri Küçükali2,3,4*, Iris Jansen5,6*, Victor Andrade7,8*, Sonia Morenau- Grau9,10,*, Najaf Amin11,12, Benjamin Grenier-Boley1, Anne Boland13, Luca Kleineidam7,8, Peter Holmans14, Pablo Garcia9,10, Rafael Campos Martin7, Adam Naj15,16, Yang Qiong17, Joshua C. Bis18, Vincent Damotte1, Sven Van der Lee5,6,19, Marcos Costa1, Julien Chapuis1, Vilmentas Giedraitis20, María Jesús Bullido10,21, Adolfo López de Munáin10,22, Jordi Pérez- Tur10,23, Pascual Sánchez-Juan10,24, Raquel Sánchez-Valle25, Victoria Álvarez26, Pau Pastor27, Miguel Medina10,28, Jasper Van Dongen2,3,4, Christine Van Broeckhoven2,3,4, Rik Vandenberghe29,30, Sebastiaan Engelborghs31,32, Gael Nicolas33, Florence Pasquier34, Olivier Hanon35, Carole Dufouil36, Claudine Berr37, Stéphanie Debette36, Jean-François Dartigues36, Gianfranco Spalletta38, Benedetta Nacmias39,40, Vincenzo Solfrezzi41, Barbara Borroni42, Lucio Tremolizzo43, Davide Seripa44, Paolo Caffarra45, Antonio Daniele46,47, Daniela Galimberti48,49, Innocenzo Rainero50, Luisa Benussi51, Alesio Squassina52, Patrizia Mecoci53, Lucilla Parnetti54, Carlo Masullo55, Beatrice Arosio56, John Hardy57, Simon Mead58, Kevin Morgan59, Clive Holmes60, Patrick Kehoe61, Bob Woods62, EADB, Charge, ADGC, Jin Sha15,16, Yi Zhao15,63, Chien-Yueh Lee15,63, Pavel P.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Novel Protein RGPR-P117
    a ular nd G ec en l e o t i M c f M o l e Journal of Molecular and Genetic d a i Yamaguchi, J Mol Genet Med 2013, 7:3 n c r i n u e o J Medicine DOI: 10.4172/1747-0862.1000072 ISSN: 1747-0862 MiniResearch Review Article OpenOpen Access Access Novel Protein RGPR-p117: New Aspects in Cell Regulation Masayoshi Yamaguchi* Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, USA Abstract RGPR-p117 was initially discovered as novel protein which binds to the nuclear factor I (NF1)-like motif TTGGC(N)6CC in the regucalcin gene promoter region (RGPR). RGPR-p117 is localized to the nucleus with stimulation of protein kinase C-related signaling process. Overexpression of RGPR-p117 has been shown to enhance regucalcin mRNA expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells in vitro. This process is mediated through phosphorylated RGPR-p117. Overexpression of RGPR-p117 was found to suppress apoptotic cell death induced after stimulation with various signaling factors in NRK52E cells, while it did not have an effect on cell proliferation. Moreover, RGPR-p117 was found to localize in the plasma membranes, mitochondria and microsomes, suggesting an involvement in the regulation of function of these organelles. After that, RGPR-p117 was renamed as Sec16B that is involved in the endoplasmic reticulum export. However, this is not suitable name with many findings of the role of RGPR-p117 in cell regulation. RGPR-p117 may play an essential role as transcription factor, and the elucidation of other roles in cell regulation will be expected.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]