Inverse Kinematics Problems with Exact Hessian Matrices Kenny Erleben Sheldon Andrews University of Copenhagen École de technologie supérieure
[email protected] [email protected] ABSTRACT Popular techniques for solving IK problems typically discount Inverse kinematics (IK) is a central component of systems for mo- the use of exact Hessians, and prefer to rely on approximations of tion capture, character animation, motion planning, and robotics second-order derivatives. However, robotics work has shown that control. The eld of computer graphics has developed fast station- exact Hessians in 2D Lie algebra-based dynamical computations ary point solvers methods, such as the Jacobian transpose method outperforms approximate methods [Lee et al. 2005]. Encouraged by and cyclic coordinate descent. Much work with Newton methods these results, we examine the viability of exact Hessians for inverse focus on avoiding directly computing the Hessian, and instead ap- kinematics of 3D characters. To our knowledge, no previous work in proximations are sought, such as in the BFGS class of solvers. This computer graphics has addressed the signicance of using a closed paper presents a numerical method for computing the exact Hes- form solution for the exact Hessian, which is surprising since IK is sian of an IK system with spherical joints. It is applicable to human pertinent for many computer animation applications and there is a skeletons in computer animation applications and some, but not large body of work on the topic. all, robots. Our results show that using exact Hessians can give This paper presents the closed form solution in a simple and easy performance advantages and higher accuracy compared to standard to evaluate geometric form using two world space cross-products.