Space Science Acronyms

Total Page:16

File Type:pdf, Size:1020Kb

Space Science Acronyms Space Science Acronyms AA Auroral radio Absorption AACGM Altitude Adjusted Corrected GeoMagnetic ABI Auroral Boundary Index ACCENT Atmospheric Chemistry of Combustion Emissions Near the Tropopause ACE Advanced Composition Explorer ACF Auto Correlation Functions ACR Anomalous Cosmic Rays ADCS Attitude Determination and Control Subsystem ADEOS ADvanced Earth Observation Satellite (Japan) ADEP ARTIST Data Editing and Printing ADMS Atmospheric Density Mass Spectrometer AE Atmosphere Explorer AE Auroral Electrojet index AEPI Atmospheric Emissions Photometric Imager AES Auger Electron Spectroscopy AEU Antenna Element Unit AFB Air Force Base AFGL Air Force Geophysical Laboratory AFIT Air Force Institute of Technology AFOSR Air Force Office of Scientific Research AFRL Air Force Research Lab AFSCN Air Force Satellite Control Network AFSPC Air Force SPace Command AFWA Air Force Weather Agency AGILE Astrorivelatore Gamma a Immagini Leggero AGU American Geophysical Union AGW Atmospheric Gravity Waves AI Asymmetry Index AIDA Arecibo Initiative in Dynamics of the Atmosphere AIM Aeronomy of Ices in the Mesosphere AKR Auroral Kilometric Radiation AL Auroral Electrojet Lower Limit Index ALF Absorption Limiting Frequency ALIS Airglow Limb Imaging System ALOMAR Arctic Lidar Observatory for Middle Atmospheric Research ALOS Advanced Land Observing Satellite ALSP Apollo Lunar Surface Probe ALTAIR ARPA Long-Range Tracking and Identification Radar AMBER African Meridian B-field Educational Research Array AMCSR Advanced Modular Coherent Scatter Radar AMI Aeronomic Models of the Ionosphere AMIE Assimilative Mapping of Ionospheric Electrodynamics AMISR Advanced Modular Incoherent Scatter Radar AMOS Air Force Maui Optical Station AMPERE Active Magnetospheric and Planetary Electrodynamics Response Experiment AMPTE Active Magnetospheric Particle Tracer Explorer AMS American Meteorological Society ANDE Atmospheric Neutral Density Experiment ANL Argonne National Laboratory AO Arecibo Observatory AO Announcement of Opportunity AO Annual Oscillation APL Applied Physics Laboratory ARCLITE ARCtic LIdar TEchnology ARCS Atmospheric Responses to a Changing Sun ARCUS Arctic Research Consortium of the US ARGOS Advanced Research and Global Observation Satellite ARIA Atmospheric Response in Aurora ARPA Advanced Research Project Agency ARTEMIS Advanced Relay and TEchnology MIssion Satellite (ESA) ASC All-Sky Camera ASDI All-Sky Doppler Interferometer ASI All-Sky Imager ASIP All-Sky Imaging Photometer ASPERA-4 Analyzer of Space Plasmas and Energetic Atoms ASPOC Active Space Craft POtential Control ASTER Advanced Space borne Thermal Emission and Reflection Radiometer ASTRA Atmospheric & Space Technology Research Associates ATM ATMospheric Sciences Division (NSF) ATS Advanced Technology Satellite ATST Advanced Technology Solar Telescope ATV All-sky TeleVision camera AU Auroral Electrojet Upper Limit Index AUSAC Arecibo Users and Scientific Advisory Committee AVHRR Advanced Very High Resolution Radiometer AVPST Analysis of Variability of Precipitation and Surface Temperatures AWG American Wire Gauge AZIS AriZona Imaging Spectrograph BAG Bishop's Acronym Guide BAS British Antarctic Survey BATSE Burst And Transient Source Experiment BATS-R-US Block-Adaptive-Tree-Solarwind-Roe- Upwind-Scheme BBELF BroadBand Extremely Low Frequency BBE BroadBand Electrons BBF Bursty Bulk Flows BER Bit Error Rate BIMS Bennett Ion Mass Spectrometer BL Boundary Layer BLO Bear Lake Observatory BLPCOC Boundary Layer Physics by COordinated CLUSTER Observations BNSC British National Space Agency BPS Boundary Plasma Sheet C/A Coarse Acquisition C&DH Command and Data Handling CADITS Coupling And Dynamics of the Ionosphere-Thermosphere System CAM Community Atmospheric Model CAMI Civil Aerospace Medical Institute CAMMICE Charge And Mass Magnetospheric Ion Composition Experiment CANOPUS Canadian Auroral Network for the OPEN Program Unified Study CAPE Convective Available Potential Energy CAPE Chronograph Aerosol Photogrammetic Experiment CAPER Cleft Accelerated Plasma Experimental Rocket CAPS CAssini Plasma Spectrometer CASES Connected Autonomous Space Environment Sensors CASI Canadian Aeronautics and Space Institute CASPER Center for Astrophysics, Space Physics and Engineering Research CAT Coordinated Analysis of the Thermosphere CAWSES Climate And Weather of the Sun- Earth-System CBPLL Common Bandwith Phase Lock Loop CCCO Committee on Climatic Changes and the Ocean CCD Charge Coupled Devices CCE Charge Composition Explorer CCF Cross-Correlation Function CCM Community Climate Model CCMC Community Coordinated Modeling Center CD Current Disruption model CDAAC Cosmic Data Analysis and Archive Centers (at UCAR) CDAW Coordinated Data Analysis Workshop CDC Cusp Diamagnetic Cavity CDD Current Disruption/Dipolarization CDF Common Data Format CDPS Cold Dense Plasma Sheet CDR Critical Design Review CD-ROM Compact Disc-Read Only Memory CEDAR Coupling, Energetics, and Dynamics of Atmospheric Regions CEJ CounterElectroJet CEM Channel Electron Multiplier CEOS Committee on Earth Observation Satellites CEP Cusp Energetic Particles CEPPAD Comprehensive Energetic Particle and Pitch Angle Distribution experiment CERES Clouds and the Earth's Radiant Energy System CERTO Coherent Electromagnetic Radio TOmography CGD Climate and Global Dynamics CGLAT Corrected Geomagnetic LATitude CGRO Compton Gamma Ray Observatory CGS Center for GeoSpace studies CGSM Canadian GeoSpace Monitoring CHAMP CHAllenging Mini-Satellite Payload CHARS Coronal-Hole-Active Region-Current Sheet CHIMES Compact Hyperspectral Imaging Module for Earth Science CIDR Coherent Ionospheric Doppler Receiver CINDI Coupled Ion-Neutral Dynamics Investigation CIR Corotating Interaction Regions CIRA Cooperative Institute for Research in the Atmosphere CIRA COSPAR International Reference Atmosphere CIRES Cooperative Institute for Research in Environmental Sciences CIS Cluster Ion Spectrometry CIS Convective Ionospheric Storms CISL Computational and Information Systems Laboratory CISM Center for Integrated Space Weather Modeling CIT Computerized Ionospheric Tomography CIV Critical Ionization Velocity experiment CL Critical Layer CLAES Cryogenic Limb Array Etalon Spectrometer CMAT Coupled Middle Atmosphere and Thermosphere model CME Coronal Mass Ejection CMI Cyclotron Maser Instability CMIS Conical-scanning Microwave Imager/Sounder CNA Cosmic radio Noise Absorption C/NOFS Communication/Navigation Outage Forecast System COADS U.S.
Recommended publications
  • THE PROPER TREATMENT of CORONAL MASS EJECTION BRIGHTNESS: a NEW METHODOLOGY and IMPLICATIONS for OBSERVATIONS Angelos Vourlidas and Russell A
    The Astrophysical Journal, 642:1216–1221, 2006 May 10 A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE PROPER TREATMENT OF CORONAL MASS EJECTION BRIGHTNESS: A NEW METHODOLOGY AND IMPLICATIONS FOR OBSERVATIONS Angelos Vourlidas and Russell A. Howard Code 7663, Naval Research Laboratory, Washington, DC 20375; [email protected] Received 2005 November 10; accepted 2005 December 30 ABSTRACT With the complement of coronagraphs and imagers in the SECCHI suite, we will follow a coronal mass ejection (CME) continuously from the Sun to Earth for the first time. The comparison, however, of the CME emission among the various instruments is not as easy as one might think. This is because the telescopes record the Thomson-scattered emission from the CME plasma, which has a rather sensitive dependence on the geometry between the observer and the scattering material. Here we describe the proper treatment of the Thomson-scattered emission, compare the CME brightness over a large range of elongation angles, and discuss the implications for existing and future white-light coronagraph observations. Subject headinggs: scattering — Sun: corona — Sun: coronal mass ejections (CMEs) Online material: color figures 1. INTRODUCTION some important implications resulting from dropping this as- It is long been established that white-light emission of the co- sumption. We conclude in x 4. rona originates by Thomson scattering of the photospheric light by coronal electrons (e.g., Minnaert 1930). Coronal mass ejec- 2. THOMSON SCATTERING GEOMETRY tions (CMEs) comprise a spectacular example of this process and The theory behind Thomson scattering is well understood are regularly recorded by ground-based and space-based corona- (Jackson 1997).
    [Show full text]
  • On the Autonomous Detection of Coronal Mass Ejections in Heliospheric Imager Data S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, A05103, doi:10.1029/2011JA017439, 2012 On the autonomous detection of coronal mass ejections in heliospheric imager data S. J. Tappin,1 T. A. Howard,2 M. M. Hampson,1,3 R. N. Thompson,2,4 and C. E. Burns2,5 Received 7 December 2011; revised 3 April 2012; accepted 9 April 2012; published 24 May 2012. [1] We report on the development of an Automatic Coronal Mass Ejection (CME) Detection tool (AICMED) for the Solar Mass Ejection Imager (SMEI). CMEs observed with heliospheric imagers are much more difficult to detect than those observed by coronagraphs as they have a lower contrast compared with the background light, have a larger range of intensity variation and are easily confused with other transient activity. CMEs appear in SMEI images as very faint often-fragmented arcs amongst a much brighter and often variable background. AICMED operates along the same lines as Computer Aided CME Tracking (CACTus), using the Hough Transform on elongation-time J-maps to extract straight lines from the data set. We compare AICMED results with manually measured CMEs on almost three years of data from early in SMEI operations. AICMED identified 83 verifiable events. Of these 46 could be matched with manually identified events, the majority of the non-detections can be explained. The remaining 37 AICMED events were newly discovered CMEs. The proportion of false identification was high, at 71% of the autonomously detected events. We find that AICMED is very effective as a region of interest highlighter, and is a promising first step in autonomous heliospheric imager CME detection, but the SMEI data are too noisy for the tool to be completely automated.
    [Show full text]
  • Road Map of HEAPA-Related Future Missions HEAPA 4Th Future Plan Review Committee 2020/10-2022/9 Lead: Kazuhiro Nakazawa (Nagoya-U/KMI)
    20th HEAPA WS 2021/3/8-10 Road map of HEAPA-related future missions HEAPA 4th Future Plan Review Committee 2020/10-2022/9 Lead: Kazuhiro Nakazawa (Nagoya-U/KMI) JAXA Summary of the 3rd committee outcome Vision Preface Astronomical X-ray and Gamma-ray observations are directly related with understanding the how matter and energy exits within the Universe, not only celestial objects, but also the volume itself. They are also key enablers to dig into the extreme physics. In the two broadest aims of astrophysical research, understand the Universe as of now, and understand how it came to be as such, high-energy astrophysics plays an essential role. Summary of the 3rd committee outcome Vision: three big goals Understand our Universe; matter, energy and spacetime, and its origin Dark matter : LSS/clusters to see where DM are, and search for DM direct signal Missing baryon : how the baryon and metals are distributed in the Universe Origins of the large diversity in Universe and celestial objects Galaxy and SMBH co-evolution and their impact on re-ionization Metal synthesis in the Universe Relativistic high-energy phenomena in the Universe Verifying fundamental physics in extreme condition Extreme gravitation : stellar-mass BH, SMBH Extreme high-density matter EoS : Neutron star, quark star Extreme magnetism : Magnetar Diffusive shock : wide variety of yet to be known interactions therein Dark Matter (Re): search for its direct signal Summary of the 3rd committee outcome Mission Categories by JAXA class How to launch Definition and budget Strategic H-IIA, H-III Top science. Flagship mission of Large class each community.
    [Show full text]
  • Arcus: the X-Ray Grating Spectrometer Explorer R
    Arcus: The X-ray Grating Spectrometer Explorer R. K. Smith*a, M. Abrahamb, R. Allureda, M. Bautzc, J. Bookbinderd, J. Bregmane, L. Brennemana, N. S. Brickhousea, D. Burrowsf, V. Burwitzg, P. N. Cheimetsa, E. Costantinih, S. Dawsonc, C. DeRooa, A. Falconef, A. R. Fostera, L. Galloi, C. E. Grantc, H. M. Güntherc, R. K. Heilmannc, E. Hertza, B. Hined, D. Huenemoerderc, J. S. Kaastrah, I. Kreykenbohmj, K. K. Madsenk, R. McEntafferf, E. Millerc, J. Millere, E. Morsel, R. Mushotzkym, K. Nandrag, M. Nowakc, F. Paerelsn, R. Petreo, K. Poppenhaegerp, A. Ptako, P. Reida, J. Sandersg, M. Schattenburgc, N. Schulzc, A. Smaleo, P. Temid, L. Valencicq, S. Walkerd, R. Willingaler, J. Wilmsj, S. J. Wolka aSmithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA, US; bThe Aerospace Corp, Pasadena, CA, US, cMassachusetts Institute of Technology, Cambridge, MA, US; dNASA Ames Research Center, Moffet Field, CA US; eUniversity of Michigan, Ann Arbor, MI, US; fThe Pennsylvania State University, University Park, PA, US; gMax-Planck-Institut für extraterrestrische Physik, Garching, DE; hS- RON Netherlands Institute for Space Research, Utrecht, NL; iSaint Mary’s University, Halifax, Canada; jFrie- drich-Alexander-Universitaet, Erlangen-Nürnberg, DE; kCalifornia Institute of Technology, Pasadena, CA, US; lOrbital ATK, Dulles, VA, US; mUniversity of Maryland, College Park, MD, US; nColumbia University, New York, NY, US; oNASA Goddard Space Flight Center, Greenbelt, MD, US, pQueen’s University, Belfast, UK; qJohns Hopkins University, Baltimore, MD, US; rUniversity of Leicester, Leicester, UK 1. ABSTRACT Arcus, a Medium Explorer (MIDEX) mission, was selected by NASA for a Phase A study in August 2017. The observatory provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedent- ed sensitivity: effective areas of >450 cm2 and spectral resolution >2500.
    [Show full text]
  • GSFC Heliophysics Science Division 2009 Science Highlights
    NASA/TM–2010–215854 GSFC Heliophysics Science Division 2009 Science Highlights Holly R. Gilbert, Keith T. Strong, Julia L.R. Saba, and Yvonne M. Strong, Editors December 2009 Front Cover Caption: Heliophysics image highlights from 2009. For details of these images, see the key on Page v. The NASA STI Program Offi ce … in Profi le Since its founding, NASA has been ded i cated to the • CONFERENCE PUBLICATION. Collected ad vancement of aeronautics and space science. The pa pers from scientifi c and technical conferences, NASA Sci en tifi c and Technical Information (STI) symposia, sem i nars, or other meetings spon sored Pro gram Offi ce plays a key part in helping NASA or co spon sored by NASA. maintain this impor tant role. • SPECIAL PUBLICATION. Scientifi c, techni cal, The NASA STI Program Offi ce is operated by or historical information from NASA pro grams, Langley Research Center, the lead center for projects, and mission, often concerned with sub- NASAʼs scientifi c and technical infor ma tion. The jects having substan tial public interest. NASA STI Program Offi ce pro vides ac cess to the NASA STI Database, the largest collec tion of • TECHNICAL TRANSLATION. En glish-language aero nau ti cal and space science STI in the world. trans la tions of foreign scien tifi c and techni cal ma- The Pro gram Offi ce is also NASAʼs in sti tu tion al terial pertinent to NASAʼs mis sion. mecha nism for dis sem i nat ing the results of its research and devel op ment activ i ties.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • The New Heliophysics Division Template
    NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO.
    [Show full text]
  • The Future of X-Rayastronomy
    The Future of X-rayAstronomy Keith Arnaud [email protected] High Energy Astrophysics Science Archive Research Center University of Maryland College Park and NASA’s Goddard Space Flight Center Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry How do we get a new X-ray astronomy experiment? A group of scientists and engineers makes a proposal to a national (or international) space agency. This will include a science case and a description of the technology to be used (which should generally be in a mature state). In principal you can make an unsolicited proposal but in practice space agencies have proposal rounds in the same way that individual missions have observing proposal rounds. NASA : Small Explorer (SMEX) and Medium Explorer (MIDEX): every ~2 years alternating Small and Medium, three selected for study for one year from which one is selected for launch. RXTE, GALEX, NuSTAR, Swift, IXPE Arcus, a high resolution X-ray spectroscopy mission was a finalist in the latest MIDEX round but was not selected. Missions of Opportunity (MO): every ~2 years includes balloon programs, ISS instruments and contributions to foreign missions. Suzaku, Hitomi, NICER, XRISM Large missions such as HST, Chandra, JWST are not selected by such proposals but are decided as national priorities through the Astronomy Decadal process. Every ten years a survey is run by the National Academy of Sciences to decide on priorities for both land-based and space-based astronomy. 1960: HST; 1970: VLA; 1980: VLBA; 1990: Chandra and SIRTF; 2000: JWST and ALMA; 2010 WFIRST and LSST.
    [Show full text]
  • Astronomy and Astrophysics Advisory Committee for 2017
    Director’s Office 933 North Cherry Avenue Steward Observatory P.O. Box 210065 URL: www.as.arizona.edu Tucson, AZ 85721-0065 Telephone: (520) 621-6524 [email protected] March 15, 2018 Dr. France A. Córdova, Director National Science Foundation 2415 Eisenhower Avenue, Suite 19000 Alexandria, VA 22314 Mr. Robert M. Lightfoot, Jr., Acting Administrator Office of the Administrator NASA Headquarters Washington, DC 20546-0001 Mr. Richard Perry, Secretary of Energy U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 The Honorable John Thune, Chairman Committee on Commerce, Science and Transportation United States Senate Washington, DC 20510 The Honorable Lisa Murkowski, Chairwoman Committee on Energy & Natural Resources United States Senate Washington, DC 20510 The Honorable Lamar Smith, Chairman Committee on Science, Space and Technology United States House of Representatives Washington, DC 20515 Dear Dr. Córdova, Mr. Lightfoot, Secretary Perry, Chairman Thune, Chairwoman Murkowski, and Chairman Smith: I am pleased to transmit to you the annual report of the Astronomy and Astrophysics Advisory Committee for 2017. The Astronomy and Astrophysics Advisory Committee was established under the National Science Foundation Authorization Act of 2002 Public Law 107-368 to: (1) assess, and make recommendations regarding, the coordination of astronomy and astrophysics programs of the Foundation and the National Aeronautics and Space Administration, and the Department of Energy; Arizona’s First University – Since 1885 Dr.
    [Show full text]
  • Design of the Heliospheric Imager for the STEREO Mission
    Design of the Heliospheric Imager for the STEREO mission Jean-Marc Defisea∗, Jean-Philippe Halaina, Emmanuel Mazya, Russel A. Howardb, Clarence M. Korendykeb, Pierre Rochusa, George M. Simnettc, Dennis G. Sockerb*, David F. Webbd aCentre Spatial de Liège, 4031 Angleur, Belgium bNaval Research Laboratory, Washington, DC 20375 cUniversity of Birmingham, Birmingham B15217, United Kingdom dBoston College, Chestnut Hill, MA 02467 ABSTRACT The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts. The two HI instruments will provide stereographic image pairs of solar coronal plasma and address the observational problem of very faint coronal mass ejections (CME) over a wide field of view (~90°) ranging from 12 to 250 R-0. The key element of the instrument design is to reject the solar disk light, with stray-light attenuation of the order of 10-12 to 10-15 in the camera systems. This attenuation is accomplished by a specific design of stray-light baffling system, and two separate observing cameras with complimentary FOV’s cover the wide field of view. A multi-vane diffractive system has been theoretically optimized to achieve the lower requirement (10-13 for HI-1) and is combined with a secondary baffling system to reach the 10-15 rejection performance in the second camera system (HI-2). This paper presents the design concept of the HI, and the preparation of verification tests that will demonstrate the instrument performances. The baffle design has been optimized according to accommodation constrains on the spacecraft, and the optics were studied to provide adequate light gathering power.
    [Show full text]
  • NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017
    NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017 NASA ADVISORY COUNCIL ASTROPHYSICS ADVISORY COUNCIL October 18-19, 2017 Teleconference MEETING MINUTES This image cannot currently be displayed. 1/14/2018 _____________________________________________________________ B. Scott Gaudi, Chair 1/14/2018 _____________________________________________________________ Hashima Hasan, Executive Secretary 1 NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017 Table of Contents Introductions and Announcements 3 Astrophysics Division Update 3 Summary of Hubble/Chandra Senior Reviews 7 Webb Telescope Update 8 Spitzer Update 10 ExoPAG/PhysPAG/COPAG Updates 10 Community Comment Period 12 Discussion 12 R&A Update 13 Internal Scientist Funding Model 14 Discussion 15 SMD Cubesats Program Update 16 HEO Future Exploration Plans 17 Technology Gap Update 18 NASA Airborne Astronomy Ambassadors Program 19 Public Comment Period 19 Discussion, Recommendations, Actions 19 Adjourn 21 Appendix A- Attendees Appendix B-Membership roster Appendix C-Presentations Appendix D-Agenda Prepared by Elizabeth Sheley Ingenicomm 2 NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017 Wednesday, October 18, 2017 Introduction and Announcements Dr. Hashima Hasan, Executive Secretary of the Astrophysics Advisory Committee (APAC), opened the meeting by welcoming the Committee members. Dr. Hasan then reviewed the Federal Advisory Committee Act (FACA) rules. She noted that a few APAC members had conflicts of interest with specific topics on the agenda. Known conflicts of interest included Dr. Jason Kalirai (STScI) on the James Webb Space Telescope and Hubble Space Telescope; Drs. Mark Bautz (MIT) and Patricia Boyd (NASA GSFC) for the Transiting Exoplanet Survey Satellite (TESS); Dr. Bautz for the Chandra X-ray Observatory; Drs.
    [Show full text]
  • Cfa Strategic Plan, 2019-2024
    STRATEGIC PLAN 2019 – 2024 From the Director Charles Alcock joined the Center for Astrophysics | Harvard & Smithsonian (the “CfA”) as its third director in 2004. Before coming to the CfA, Dr. Alcock had been a professor of astron- omy at the University of Pennsylvania. With a single director, the CfA has maintained the unified vision and strategic priori- ties that brought it to world leadership in the decades following its first phase of dramatic growth in the 1960s to early 1970s. The Center for Astrophysics | Harvard & Smithsonian is the union of two distinct entities, the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO). Founded in 1839, HCO installed the 15-inch telescope known as “The Great Refractor” in 1847. SAO was founded in 1890 and grew to prominence first with Secretary Langley’s study of the Sun. In 1955, SAO relocated to Cambridge, MA, to explore collaborations with HCO. The Harvard-Smithsonian Center for Astrophysics was established in 1972. There have been many exciting developments in the time since, and today the CfA conducts observational research across the electromagnetic spectrum, investigating the Universe at scales ranging from our own star, the Sun, to the cosmic background radiation. Theoretical and compu- tational investigations provide explanations that force us to ask us new compelling — and difficult — questions. The CfA substantially influenced modern astronomy and astrophysics, bringing astronomy and the laboratory disciplines ever closer together. The relationship between
    [Show full text]