The Effect of the Size and Shape of Chestnuts on the Identification of Horses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Inbreeding in Slovenian Haflinger Population
COMMUNICATION Analysis of inbreeding in Slovenian Haflinger population Klemen Potočnik1, Vesna Gantner2, Miran Štepec1, Jurij Krsnik1, Janez Rus3, Gregor Gorjanc1 1Zootechnical department. University of Ljubljana, Slovenia 2Zootechnical Department. University J.J. Strossmayer. Osijek, Croatia 3Institut for Ungulate Diseases. University of Ljubljana, Slovenia Corresponding author: Dr. Klemen Potočnik. Zootechnical Department, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia. - Tel. +386 17217872 - Fax: +386 17241005 - Email: klemen.potocnik@ bfro.uni-lj.si ABSTRACT - The pedigree information of 3613 animals registered in the Slovenian Haflin- ger stud book from birth year 1905 to 2008 were analysed using PROC INBREED in SAS/ STAT with the purpose of analysis of inbreeding level in Slovenian Haflinger population. Relationship (R) analysis was restricted to possible mating partners that had offspring born between 2004 and 2008 (i.e., 323 mares and 58 stallions). An increasing trend of inbreeding coefficients (F) was observed in recent years, although a generally low F was detected. Mean values of R between possible mating partners were mostly around zero, while maximum values ranged up to 0.63. The development of application that would ease the calculations of F and R could help breeders to prevent related mating in the future. Key words: Horses, Inbreeding, Relationship, Slovenian Haflinger. Introduction - The inbreeding coefficient (F) of an animal is the probability that two alleles at any given locus are identical by descent (Falconer and MacKay, 1996), and results from mating individuals related by common ancestors. Inbreeding has been used in the past to increase occurrence of traits of interest. However, inbreeding can also induce an inbreeding depression, which results both from the expression of partially recessive delete- rious alleles and from the loss of heterozygosity (Norberg and Sorensen, 2007). -
HPA DQP Training Test
DQP Name: ______________________________ HIO Name: ______________________________ DQP Training Assessment Please review each question carefully and circle the answer that corresponds to the best answer. 1. The definition of “Horse Show” is: A public display of any horses, in competition, except events where speed is the prime factor, rodeo events, parades, or trail rides. True False 2. All beads, bangles, rollers, and similar devices, with the exception of rollers made of lignum vitae (hard-wood), aluminum, or stainless steel, with individual rollers of uniform size, weight, and configuration, provided each device may not weigh more than 8 ounces, including the weight of the fastener is allowed. True False 3. Any horse found noncompliant with the Scar Rule is considered to be “sore”. True False 4. Each horse owner, exhibitor, trainer or other person having custody of, or responsibility for, any horse at any horse show, horse exhibition, or horse sale or auction, shall allow any APHIS representative to reasonably inspect such horse at all reasonable times and places the APHIS representative may designate. Such inspections may be required of any horse which is stabled, loaded on a trailer, being prepared for show, exhibition, or sale or auction, being exercised or otherwise on the ground of, or present at, any horse show, horse exhibition, or horse sale or auction, whether or not such horse has or has not been shown, exhibited, or sold or auctioned, or has or has not been entered for the purpose of being shown or exhibited or offered for sale or auction at any such horse show, horse exhibition, or horse sale or auction. -
2014 Podiatry Program Proceedings
2014 Podiatry Program Proceedings 1 Mission Statement The mission of the NEAEP is to improve the health and welfare of horses by providing state- of-the-art professional education and supporting the economic security of the equine industry by complementing established local associations and giving equine veterinarians, farriers, technicians, veterinary students and horse owners a unified voice at the state and regional levels. The American Association of Veterinary State Board, RACE Committee, has reviewed and approved the program referenced as meeting the Standards adopted by the AAVSB. Additionally, the Podiatry Program has been approved for 24 American & Canadian Association of Professional Farriers (AAPF/CAPF) Continuing Education Credits. 2 Table of Contents Shoeing for Soundness: Sport Horse Lameness and Biomechanics of the Distal Limb ...... 4 Shoeing for Soundness: Coffin Joint Function, Pathology, and Treatment ........................... 9 Applied Anatomy of the Equine Foot ........................................................................................ 16 Biomechanics of the Stance ...................................................................................................... 21 Trimming Fundamentals and Foot Pathology .......................................................................... 22 Physiologic vs. Pathologic I – Functional Implications for the Farrier .................................. 24 Physiologic vs. Pathlogic II – Adaptive Shoeing Concepts ................................................... -
List of Horse Breeds 1 List of Horse Breeds
List of horse breeds 1 List of horse breeds This page is a list of horse and pony breeds, and also includes terms used to describe types of horse that are not breeds but are commonly mistaken for breeds. While there is no scientifically accepted definition of the term "breed,"[1] a breed is defined generally as having distinct true-breeding characteristics over a number of generations; its members may be called "purebred". In most cases, bloodlines of horse breeds are recorded with a breed registry. However, in horses, the concept is somewhat flexible, as open stud books are created for developing horse breeds that are not yet fully true-breeding. Registries also are considered the authority as to whether a given breed is listed as Light or saddle horse breeds a "horse" or a "pony". There are also a number of "color breed", sport horse, and gaited horse registries for horses with various phenotypes or other traits, which admit any animal fitting a given set of physical characteristics, even if there is little or no evidence of the trait being a true-breeding characteristic. Other recording entities or specialty organizations may recognize horses from multiple breeds, thus, for the purposes of this article, such animals are classified as a "type" rather than a "breed". The breeds and types listed here are those that already have a Wikipedia article. For a more extensive list, see the List of all horse breeds in DAD-IS. Heavy or draft horse breeds For additional information, see horse breed, horse breeding and the individual articles listed below. -
Special Issue Horse Genetics DIRECTOR’S Message
CENTER FOR EQUINE HEALTH SCHOOL OF VETERINARY MEDICINE • UNIVERSITY OF CALIFORNIA, DAVIS SUMMER 2020 Special Issue Horse Genetics DIRECTOR’S Message s an equine genetics researcher, I am particularly excited to share A this special issue of the Horse Report with you. Inside, you will find a roadmap to many of the currently available equine genetic tests, including the AQHA “five-panel” test, and more. The equine genome sequence was published in 2009, the result of a years- long collaborative effort by the international equine research community. This resource drastically changed how researchers approach equine genetics and accelerated the rate of discovery. Increased availability and affordability allowed the application of advanced molecular tools to equine diseases and traits. As a result, genetic tests are available in a variety of breeds. Most available tests are for simple, Mendelian diseases and traits – those caused by a single gene or locus. Complex diseases and traits likely involve more than one gene and may be influenced by environmental effects. The 2018 release of a new equine genome sequence assembly, coupled with cost reductions that make whole-genome sequencing possible for large numbers of horses, are enabling research in these areas. As an equine geneticist and veterinarian, I am especially interested in applying whole genome sequencing and advanced diagnostic tools to equine precision medicine. This highly individualized approach will focus on early detection and prevention of disease, taking into account both genetic information and environmental factors. The idea is to target individuals based on their clinical condition as well as their unique body chemistry and genetics. -
Electronic Supplementary Material - Appendices
1 Electronic Supplementary Material - Appendices 2 Appendix 1. Full breed list, listed alphabetically. Breeds searched (* denotes those identified with inherited disorders) # Breed # Breed # Breed # Breed 1 Ab Abyssinian 31 BF Black Forest 61 Dul Dülmen Pony 91 HP Highland Pony* 2 Ak Akhal Teke 32 Boe Boer 62 DD Dutch Draft 92 Hok Hokkaido 3 Al Albanian 33 Bre Breton* 63 DW Dutch Warmblood 93 Hol Holsteiner* 4 Alt Altai 34 Buc Buckskin 64 EB East Bulgarian 94 Huc Hucul 5 ACD American Cream Draft 35 Bud Budyonny 65 Egy Egyptian 95 HW Hungarian Warmblood 6 ACW American Creme and White 36 By Byelorussian Harness 66 EP Eriskay Pony 96 Ice Icelandic* 7 AWP American Walking Pony 37 Cam Camargue* 67 EN Estonian Native 97 Io Iomud 8 And Andalusian* 38 Camp Campolina 68 ExP Exmoor Pony 98 ID Irish Draught 9 Anv Andravida 39 Can Canadian 69 Fae Faeroes Pony 99 Jin Jinzhou 10 A-K Anglo-Kabarda 40 Car Carthusian 70 Fa Falabella* 100 Jut Jutland 11 Ap Appaloosa* 41 Cas Caspian 71 FP Fell Pony* 101 Kab Kabarda 12 Arp Araappaloosa 42 Cay Cayuse 72 Fin Finnhorse* 102 Kar Karabair 13 A Arabian / Arab* 43 Ch Cheju 73 Fl Fleuve 103 Kara Karabakh 14 Ard Ardennes 44 CC Chilean Corralero 74 Fo Fouta 104 Kaz Kazakh 15 AC Argentine Criollo 45 CP Chincoteague Pony 75 Fr Frederiksborg 105 KPB Kerry Bog Pony 16 Ast Asturian 46 CB Cleveland Bay 76 Fb Freiberger* 106 KM Kiger Mustang 17 AB Australian Brumby 47 Cly Clydesdale* 77 FS French Saddlebred 107 KP Kirdi Pony 18 ASH Australian Stock Horse 48 CN Cob Normand* 78 FT French Trotter 108 KF Kisber Felver 19 Az Azteca -
Horse-Breeding – Being the General Principles of Heredity
<i-. ^u^' Oi -dj^^^ LIBRARYW^OF CONGRESS. Shelf.i.S.g^. UNITED STATES OF AMERICA. HORSE-BREEDING BKING THE GENERAL PRINCIPLES OE HEREDITY APPLIED TO The Business oe Breeding Horses, IXSTEUCTIOJS'S FOR THE ^IaNAGE^HKNT Stallions, Brood Mares and Young' Foals, SELECTION OF BREEDING STOCK. r y-/' J. H. SANDERS, rdiinrof 'Tlie Bleeder's Gazette," '-Breeders' Trotting Stuil Book," '•ri'r<lu Honorary member of the Chicago Eclectic Medical SoeieU>'flfti'r.> ^' Illinois Veterinary Medical Association, ^rl^.^^Ci'^'' ~*^- CHICAGO: ' ^^ J. H. SANDERS & CO. ]8S5. r w) <^ Entered, according to Act of Congress, in the year 1885, BY J. H. SANDERS, In the office of the Librarian of Congress, at Washington, D. C. ^ la TABLE OF CONTENTS. Preface 5 CHAPTER I. General Principles of Breeding.—General Laws of Heredity- Causes of Variation from Original Typos — Modifications from Changed Conditions of Life—Accidental Variations or " Sports "— Extent of Hereditary Inflaence—The Formation of Breeds—In-Breeding and Crossing—Value of Pedigree- Relative Size of Sire and Dam—Influenee of First Impregna- tion—Effect of Imagination on Color of Progeny—Effect of Change of Climate on the Generative Organs—Controlling the Sex 9 CHAPTER II. Breeds of Horses.— Thoroughbreds — Trotters and Roadsters — Orloffs or Russian Trotters—Cleveland Bays—Shire or Cart Horses—Clydesdales—Percherons-Otber Breeds (58 CHAPTER III. Stallions, Brood Mares and Foals.— Selection of Breeding- Stock—General Management of the StaUion—Controlling the Stallion When in Use—When Mares Should be Tried—The -
The Caspian Horse of Iran
THE CASPIAN HORSE OF IRAN by Louise Firouz PREFACE Several years ago word spread that a new breed of horse, like a miniature Arabian. had been found on the shores of the Caspian in Iran. In 1965 five Caspian ponies were brought to Louise Firouz in Tehran for riding by her children. Louise Firouz was born in Washington, graduated at Cornell where she studied animal husbandry. classics, and English. In ) '157 she married Narcy Firouz and moved to Tehran where she is occupied in farming and raising horses. Following the arrival of the five Caspians, a three-year survey was begun to search for more of these horses. She covered part of an area from Astara to Pahlevi-Dej located east of the Caspian. About :0 ponies are estimated to live between Babol and Amol (Map 1). Six mares and five stallions were brought to the breeding farm at Norouzabad near Tehran. In 1966 a stud book was established to encourage purity 'Of the strain. Dr. Hosseinion, Tehran Veterinary College, regularly inspects foals and adults. The similarity between the Caspian and the horses pulling the chariot of Darius and the ponies on a bas-relief at Persepolis is significant. The above has been summarized from the illustrated article by Louise Firouz in Animals, June, 1970 (see Bibliography). My interest in horses ancient and modem stems from the Equidtze excavated at Kish, eight miles east of Babylon, by the Field Museum-Oxford University Joint Expedition to Iraq, 1923-34. In 1928 I was one of the Staff members of this Expedition under Field Director Louis Charles Watelin. -
Draft Horse Handbook
EB1135E Draft Horse Handbook WASHINGTON STATE UNIVERSITY EXTENSION CONTENTS Breeds of Draft Horses ................................................................................................. 1 Belgian ...................................................................................................................... 1 Percheron .................................................................................................................. 1 Clydesdale ................................................................................................................. 2 Shire .......................................................................................................................... 3 Suffolk ....................................................................................................................... 3 Mule .......................................................................................................................... 4 Draft Horse Judging ..................................................................................................... 4 Showing Draft Horses at Halter .................................................................................. 7 The Handler ............................................................................................................... 7 The Horse .................................................................................................................. 7 In the Ring ................................................................................................................ -
Slaughtering Age Effect on Carcass Traits and Meat Quality of Italian Heavy Draught Horse Foals
1637 Asian Australas. J. Anim. Sci. Vol. 26, No. 11 : 1637-1643 November 2013 http://dx.doi.org/10.5713/ajas.2013.13174 www.ajas.info pISSN 1011-2367 eISSN 1976-5517 Slaughtering Age Effect on Carcass Traits and Meat Quality of Italian Heavy Draught Horse Foals P. De Palo*, A. Maggiolino, P. Centoducati, and A. Tateo Department of Veterinary Medicine, S.P. per Casamassima, km 3, 70010 Valenzano (BA), Italy ABSTRACT: The present work describes the effect of slaughtering age on horse carcass traits and on meat quality. Eighteen male Italian heavy draught horse (IHDH) breed foals were employed in the study. Soon after foaling they were randomly subdivided in 3 groups according to 3 age at slaughtering classes: 6 months old, 11 months old and 18 months old. Live weight, hot carcass weight and dressing percentage of each animal were recorded. After slaughtering, meat samples were collected from Longissimus Dorsi muscle between 13th and 18th thoracic vertebra of each animal and then analyzed. The right half carcass of each animal was then divided in cuts. Each one was subdivided into lean, fat and bones. Then, the classification of the lean meat in first and second quality cuts was performed according to the butchers’ customs. Older animals were characterized by a lower incidence of first quality cuts (p<0.01) on carcass. Younger animals showed greater content in protein (p<0.01). Fatty acid profile showed an increasing trend of PUFA connected to the increasing of slaughtering age (p<0.05). The unsaturation index of intramuscular fatty acids was not affected by slaughtering age, confirming that horse meat, if compared to beef, is more suitable from a nutritional point of view. -
Tail Docking in Horses: a Review of the Issues
Animal (2007), 1:8, pp 1167–1178 & The Animal Consortium 2007 animal doi: 10.1017/S1751731107000420 Tail docking in horses: a review of the issues - D. Lefebvre1 , D. Lips2,F.O.O¨ dberg4 and J. M. Giffroy3 1Animal Welfare Counci-Ministry of Social Affair, Food Chain Security and Environment-DG4 (CITES and Animal Welfare), 40 Place Victor Horta, 1060 Bruxelles, Belgium; 2Centre for Science, Technology and Ethics-Kasteelpark Arenberg 30, 3001 Leuven, Belgium; 3Department of Anatomy and Ethology of Domestic Animals, Faculties of Namur, 6 rue Muzet, 5000 Namur, Belgium; 4Department of Animal Nutrition, Genetics and Ethology, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium (Received 30 November 2006; Accepted 24 May 2007) Routinely performed painful procedures are of increasing interest and, in 2001 (Royal Order, May 17), Belgium prohibited docking in several vertebrates including horses. In 2004, opponents to this decision submitted a Bill (Doc51 0969/001) to Parliament, intending to obtain derogation for Belgian draught horses, which were traditionally docked. The Animal Welfare Council of Belgium, an official body advising the Minister of Public Health, was asked to evaluate this complex question, including biological, ethical and socio-economic aspects, on the basis of the available peer-reviewed studies. In this context, this study reviews legal aspects (overview of the European legislation), zootechnic aspects (uses of the Belgian draught horse) and biological aspects (pain potentially related to docking; horses’ welfare linked to insect harassment and hygiene, communication and reproduction) of tail docking in draught horses. We conclude that (1) there is no benefit for horses in tail docking, including Belgian draught horses, (2) potential advantages of docking are essentially in favour of humans and these advantages could be scrupulously re-evaluated, taking into account practices of other countries. -
Original Article a Technique for Computed Tomography (CT) of the Foot in the Standing Horse F
EQUINE VETERINARY EDUCATION / AE / FEBRUAry 2008 93 Original Article A technique for computed tomography (CT) of the foot in the standing horse F. G. D ESBROSSE, J.-M. E. F. VANDEWEERD*, R. A. R. PERRIN, P. D. CLEGG†, M. T. LAUNOIS, L. BROGNIEZ AND S. P. GEHIN Clinique Equine Desbrosse, 18, rue des Champs, La Brosse, 78470, St Lambert des Bois, France; and †Department of Veterinary Clinical Science and Animal Husbandry, The University of Liverpool, Leahurst, Neston, Cheshire CH64 7TE, UK. Keywords: horse; computed tomography; standing; foot Summary fracture lines within the bone (Rose et al. 1997; Martens et al. 1999). Computed tomography has proved to be valuable in Computed tomography (CT) in equine orthopaedics is the diagnosis of lameness associated with distal limb currently limited because of the price, availability, pathology in the horse (Whitton et al. 1998; Tucker and Sande impossibility to transport the scanner into surgical 2001; Nowak 2002; Puchalski et al. 2007). Though CT has theatre, and the contraindications of general anaesthesia traditionally been perceived as an inferior soft tissue imaging in some patients. A pQCT (peripheral quantitative modality compared to MRI, a recent abstract indicated that it computerised tomography) scanner was designed by the may be a useful modality for soft tissue injury of the equine authors to image the limbs of the horse, both in standing foot (Eliashar et al. 2006). or recumbent position. Standing computed tomography However, the use of CT in equine orthopaedics is currently of the foot with a pQCT scanner is feasible and well limited because of the expense, availability and logistic tolerated by the horse.