A Geospatial Evaluation of Aedes Vigilax Larval Control Efforts Across a Coastal Wetland, Northern Territory, Australia

Total Page:16

File Type:pdf, Size:1020Kb

A Geospatial Evaluation of Aedes Vigilax Larval Control Efforts Across a Coastal Wetland, Northern Territory, Australia Vol. 34, no. 2 Journal of Vector Ecology 317 A geospatial evaluation of Aedes vigilax larval control efforts across a coastal wetland, Northern Territory, Australia N. Kurucz1, P. I. Whelan1, J.M. Carter1, and S.P. Jacups2 1Medical Entomology, Centre for Disease Control, Department of Health and Families, Darwin, Northern Territory, Australia 2School for Environmental Research, Institute of Advanced Studies, Charles Darwin University, Darwin, Northern Territory, Australia Received 19 May 2009; Accepted 18 September 2009 ABSTRACT: Adjacent to the northern suburbs of Darwin is a coastal wetland that contains important larval habitats for Aedes vigilax (Skuse), the northern salt marsh mosquito. This species is a vector for Ross River virus and Barmah Forest virus, as well as an appreciable human pest. In order to improve aerial larval control efforts, we sought to identify the most important vegetation categories and climatic/seasonal aspects associated with control operations in these wetlands. By using a generalized linear model to compare aerial control for each vegetation category, we found that Schoenoplectus/ mangrove areas require the greatest amount of control for tide-only events (30.1%), and also extensive control for tide and rain events coinciding (18.2%). Our results further indicate that tide-affected reticulate vegetation indicated by the marsh grasses Sporobolus virginicus and Xerochloa imberbis require extensive control for Ae. vigilax larvae after rain-only events (44.7%), and tide and rain events coinciding (38.0%). The analyses of vector control efforts by month indicated that September to January, with a peak in November and December, required the most control. A companion paper identifies the vegetation categories most associated with Aedes vigilax larvae population densities in the coastal wetland. To maximize the efficiency of aerial salt marsh mosquito control operations in northern Australia, aerial control efforts should concentrate on the vegetation categories with high larval densities between September and January. Journal of Vector Ecology 34 (2): 317-323. 2009. Keyword Index: Aedes vigilax, aerial mosquito control, landscape ecology. INTRODUCTION mosquito larval control programs were initiated in 1986 to reduce the risk of arbovirus transmission and the number of Darwin is the largest city in the Northern Territory pest complaints in the adjacent residential areas (Brogan et (NT) of Australia, located on the north coast (Figure 1), al. 2002, Whelan 2007). This paper outlines the vegetation with a population of approximately 105,991 (Australian categories and seasonal conditions most associated with Bureau of Statistics 2006). The Darwin area experiences a aerial control efforts for Ae. vigilax larvae in this wetland. monsoonal climate, with a high average annual rainfall of A companion paper addresses vegetation category 1,708 mm (Australian Bureau of Meteorology 2008), and associations with Ae. vigilax larvae densities in the wetland most rainfall occurs during the wet season from November (Jacups et al. 2009). By identifying the most significant to April. Some of Darwin’s northern suburbs are adjacent vegetation categories and seasonal conditions associated to an extensive coastal marsh and upper mangrove wetland with Ae. vigilax breeding, survey time can be reduced and that experiences seasonal tidal inundation providing the efficiency of aerial salt marsh mosquito larval control suitable breeding conditions for the northern salt marsh can be maximized. mosquito Aedes vigilax (Skuse) (Whelan 1989) (Figure 1). Aedes vigilax is recognized as a major human pest species MATERIALS AND METHODS (Mackerras 1926, Marks 1967, Gislason and Russell 1997, Webb and Russell 1999) and is also a major vector for GIS analysis Ross River virus and Barmah Forest virus in the Northern Aerial larval mosquito survey and control operations Territory (Merianos et al. 1992, Tai et al. 1993, Whelan et al. have been conducted in the coastal wetlands within a 5 1997, Russell 1998, Jacups et al. 2008). These two arboviruses km radius of Darwin’s northern suburbs margin; namely constitute the majority of arbovirus infections in Australia Leanyer, Holmes Jungle, Micket Creek, and Shoal Bay (Russell 1994, 1995). Thus, control of Ae. vigilax is of great swamps (Figures 1 and 2). We determined the vegetation importance for disease prevention and nuisance reduction categories most associated with Ae. vigilax aerial control in the NT and other areas in Australia. from July, 2000 to June, 2007. Aerial control primarily Medical Entomology in Darwin conducts integrated used large volume water-based Bacillus thuringiensis var. mosquito control measures for Ae. vigilax breeding in the israelensis (Bti) mist applications applied by helicopter. wetland. Extensive engineering works completed in 1985 Control operations for other mosquito species were have led to improved drainage; both aerial and ground excluded. 318 Journal of Vector Ecology December 2009 Figure 1. Study area proximity to Darwin urban residential area within Australia. The wetland was divided into discernible vegetation category represented. Thus, a generalized linear model using categories based on previous vegetation surveys and the use a binominal distribution with logit link was applied to the of recent aerial photographs with ground truthing (Figure aerial control data. Three models were created, one for each 2) (Whelan 1989, Hayes 2000). Vegetation samples of each of the control datasets; tide-only events (Model 1), rain- category were formally identified by the NT Herbarium only events (Model 2), and rain and tide events coinciding (Table 1) (Northern Territory Government 2008). (Model 3). The vegetation category least associated withAe. Helicopter surveys were conducted after monthly high tides vigilax larval abundance “lower mangroves”, was chosen or rain events (>10 mm) for retained water and the presence as the reference category (Jacups et al. 2009). Similarly, of mosquito larvae. Details of aerial control were recorded March had the lowest aerial control activity recorded, for each vegetation category and subsequently mapped and and thus became the reference month for aerial control recorded as feature themes using ArcGIS (ArcGIS 3.2). The measures for vegetation categories by month. For ease of area of each vegetation category controlled for mosquito comparison between vegetation categories, we report odds breeding was calculated by intersecting each vegetation ratios (OR) rather than coefficients. All statistical analysis category with the control feature. Control areas were were performed using Intercooled Stata 10.0 (Stata Corp., separated into tide-only, rain-only, and tide and rain events College Station, TX). coinciding, with the latter defined as tide events plus >10 mm rain occurring within four days of the control event RESULTS (Table 1). All salt marsh mosquito larval control operations from July, 2000 to June, 2007 were included. Cumulated total areas controlled for Ae. vigilax larvae using aerial spraying are presented (Table 1). Schoenoplectus/ Environmental data mangroves (i) received the highest amount of control for Sea level data were provided by the Bureau of tide-only control efforts by total area (765.18 ha, 30.1%), Meteorology (BOM), with tidal maximums observed followed by the tide-affected reticulate (b) category during aerial survey operations and topographical data (indicated by the marsh grasses Sporobolus virginicus and used to indicate tide inundation levels. High tides variably Xerochloa imberbis) (679.7 ha, 26.7%) (Table 1, Figure 2). inundated the various vegetation categories in the wetland; Tide-affected reticulate vegetation (b) received the highest with a low (> 7.4 m), medium (> 7.6 m) and high (> 7.8 m) level of control (908.87 ha, 44.7%) for rain-only and for monthly tide. In addition, highest average tides >7.5 m were rain and tides coinciding control efforts (919.63 ha, 38.0%) calculated for each month using BOM tide data over the (Table 1, Figure 2), indicating that tide-affected reticulate study period (Australian Bureau of Meteorology 2006). vegetation is the most important area for salt-marsh mosquito control with respect to total area sprayed. Data analyses- vector control Results of the binomial models adjusted for the total Total areas controlled by aerial larvicide applications area for each vegetation category are presented in Table were cumulatively collated over the study period (Table 2. Control measures were most strongly associated with 1). Control efforts for each vegetation category were then Schoenoplectus/mangrove (i) vegetation (OR = 46.8) for statistically compared as a proportion of the total area for tide-only events (Model 1, Table 2). All vegetation categories that vegetation category, independent of the total area each received significantly more control efforts (P<0.01) than the Vol. 34, no. 2 Journal of Vector Ecology 319 Table 1. Vegetation categories and areas controlled in the northern Darwin coastal wetlands, July, 2000 to June, 2007. Total area Vegetation Dominant plant species Tide* (ha) Total area (ha) Rain** (ha) T&R*** (ha) controlled categories present (% total tide) (ha) Model 1 2 3 Lower Rhizophora stylosa a 908.35(28.9%) 173.66(6.8%) 45.87(2.3%) 62.44(2.6%) 281.97 mangroves Avicennia marina Reticulate tide- Xerochloa imberbis b 190.7(6.1%) 679.7(26.7%) 908.87(44.7%) 919.63(38.0%) 2508.2 affected Sporobolus virginicus Sporobolus virginicus Reticulate Xerochloa imberbis c 64.03(2.0%)
Recommended publications
  • Green and Blue Infrastructure in Darwin; Carbon Economies and the Social and Cultural Dimensions of Valuing Urban Mangroves in Australia
    Article Green and Blue Infrastructure in Darwin; Carbon Economies and the Social and Cultural Dimensions of Valuing Urban Mangroves in Australia Jennifer Atchison Australian Centre for Culture, Environment, Society and Space (ACCESS), University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; [email protected] Received: 26 June 2019; Accepted: 29 July 2019; Published: 31 July 2019 Abstract: Darwin’s mangrove ecosystems, some of the most extensive and biodiverse in the world, are part of the urban fabric in the tropical north of Australia but they are also clearly at risk from the current scale and pace of development. Climate motivated market-based responses, the so-called ‘new-carbon economies’, are one prominent approach to thinking differently about the value of living infrastructure and how it might provide for and improve liveability. In the Australian context, there are recent efforts to promote mangrove ecosystems as blue infrastructure, specifically as blue carbon, but also little recognition or valuation of them as green or urban infrastructure. Drawing on observational and qualitative analysis of semi-structured interviews, this study examines how key stakeholders in Darwin frame and understand mangroves in relation to the urban, and how they are anticipating and responding to governance efforts to frame mangroves and pay for their carbon sequestration and storage services as blue carbon. The push for large infrastructure development and an expanding urban footprint, present serious challenges for mangrove protection, and the study evidences both denial and complacency in this regard. However, although the concept of blue carbon is already taking effect in some circles, it was not viewed as straightforward or as appropriate by all study participants and may very well work in practice to exclude groups within the community.
    [Show full text]
  • Three Aboriginal Shell Mounds at Hope Inlet: Evidence for Coastal, Not Maritime Late Holocene Economies on the Beagle Gulf Mainland, Northern Australia
    Three Aboriginal shell mounds at Hope Inlet: Evidence for coastal, not maritime Late Holocene economies on the Beagle Gulf mainland, northern Australia Patricia M. Bourke Abstract Many hundreds of Aboriginal shell mounds exist on the northern coasts of Australia. Though these archaeological features increasingly figure in broad constructions of past coastal hunter-gatherer economies, few have been analysed in any detail. This paper describes the excavation and analysis of three Anadara-dominated shell mounds situated in adjacent microenvironments at Hope Inlet, Shoal Bay near Darwin on the Northern Territory coast. These stratified deposits, formed over some 15 centuries between about 2000 and 500 years B.P., provide a relatively fine- grained record of subsistence and settlement strategies of hunter-gatherer peoples during this Late Holocene period. This study finds that these North Australian coastal groups practiced not a specialised marine or maritime subsistence economy focused on offshore resources, but a generalised and flexible coastal subsistence economy tied to the land. Introduction Many hundreds of Aboriginal shell mounds exist on Australia’s northern coasts. Though these archaeological features increasingly figure in broad constructions of past coastal hunter-gatherer economies, relatively few have been excavated and analysed in fine detail. This paper describes the excavation and analysis of three shell mounds at Hope Inlet, Shoal Bay on the Northern Territory coast near Darwin, undertaken in 1996 with the permission and help of traditional owners, the Larrakia community. The excavated sites are three of hundreds of mounds dominated by Location of Hope Inlet on the North Australian Anadara granosa shell, recorded during surveys for a PhD Figure 1 coast, showing places mentioned in the text.
    [Show full text]
  • Annual Report 2017/18 Acknowledgement of Country
    ANNUAL REPORT 2017/18 ACKNOWLEDGEMENT OF COUNTRY City of Darwin acknowledges the Larrakia people as the Traditional Owners of all the land and waters of the Greater Darwin region. To the Larrakia, Darwin is known as Garramilla. The original language of the Larrakia is Gulumirrgin (pronounced Goo-loo-midgin). Often referred to as Saltwater People, the Larrakia lived on pristine coastal land. They established Song Lines that connected Larrakia people to Country, allowing stories and history to be told and retold for future generations. Larrakia people are proud of their rich and vibrant culture, and work hard to maintain their links to Country and ancestors. IMAGE BY DENISE OVALL (2016) (REFER TO PAGE 194/195) 2 OUR CITY CITY OF DARWIN OUR CITY OUR PERFORMANCE GOVERNANCE FINANCES APPENDICES WELCOME TO THE CITY OF DARWIN ANNUAL REPORT FOR 2017/18 City of Darwin is proud to present the • Demonstrate our commitment to good City of Darwin Annual Report for 2017/18. governance as an accountable and This report outlines City of Darwin’s transparent local government. performance over the year against the • Promote City of Darwin and Council to investors locally and goals and outcomes of the Evolving Darwin with our neighbours in Asia. Towards 2020 Strategic Plan, Annual • Build confidence and satisfaction in the Municipal Plan and budget. It also provides partnerships that are being created with an insight into our aspirations for the future other levels of government, community to ensure we remain on track to deliver on groups, local business and industry leaders our 2020 vision. through key projects and services.
    [Show full text]
  • Northern Brush-Tailed Phascogale)
    This Conservation Advice was approved by the Minister on 13 July 2010 Approved Conservation Advice for Phascogale pirata (Northern Brush-tailed Phascogale) (s266B of the Environment Protection and Biodiversity Conservation Act 1999) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Phascogale pirata (Northern Brush-tailed Phascogale), Family Dasyuridae, is a carnivorous marsupial. The body is 150–210 mm long, with silvery-grey fur. Eyes and ears are large, and the snout is sharply pointed. Body weight is about 150–230 g. Its most notable feature is a long (180–210 mm) tail distinguished by long black hairs. The hairs can be erected when alarmed to form a bottlebrush shape. Conservation Status This species is eligible for listing as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as the total number of mature individuals is limited, continued decline is likely, and the geographic range is precarious. While the estimated extent of occurrence is 57 000 km2, the area of occupancy is estimated to be less than 9 000 km2 and populations within this appear to be discontinuous (TSSC, 2009). The species is also listed as vulnerable under the Northern Territory’s Territory Parks and Wildlife Conservation Act 2000. Distribution and Habitat The Northern Brush-tailed Phascogale is restricted to eucalypt forests in the top end of the Northern Territory. It has been recorded from Melville Island (Tiwi group) and West Island (Sir Edward Pellew group), Cobourg Peninsula and Gove Peninsula.
    [Show full text]
  • Deputy Principal the Essington School
    FISH & NANKIVELL SYDNEY | CANBERRA | MELBOURNE Head Office: LEVEL 7, NO. 1 COLLINS STREET MELBOURNE VIC. 3000 AUSTRALIA TELEPHONE: + 61 3 9654 7622 EMAIL: [email protected] FISH & NANKIVELL OGILVIE WATSON PTY. LTD. A.C.N. 095 449 326 / A.B.N 74 095 449 326 ANDREW BONWICK JAMES MACMILLAN KATHY McLEAN – 0414 376 698 – [email protected] IAN W.C. NANKIVELL JULIA SOUTTER POSITION DESCRIPTION March 2021 DEPUTY PRINCIPAL THE ESSINGTON SCHOOL CONTENTS ORGANISATION DESCRIPTION ......................................................................................................................... 2 BACKGROUND ........................................................................................................................................................ 2 KEY ASPECTS OF THE SCHOOL .................................................................................................................................... 3 STRUCTURE AND GOVERNANCE .................................................................................................................................. 5 FUTURE DIRECTIONS AND KEY DRIVERS ....................................................................................................................... 7 FURTHER INFORMATION ........................................................................................................................................... 8 POSITION DESCRIPTION ................................................................................................................................... 9 SUMMARY
    [Show full text]
  • Final Re Ort P
    final report Project code: B.CCH.2056 Prepared by: Garry Cook CSIRO Date published: May 2014 PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 ished by The identification of rangeland regions where severe fire regimes affect cattle producers Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. The identification of rangeland regions where severe fire regimes affect cattle producers Abstract This project identified cattle producing regions where the Australian Government’s Carbon Farming Initiative (CFI) Savanna Burning Methodology to account for reductions in greenhouse gas emissions or a similar lower-rainfall methodology could be applied. Across seven bioregions in northern Australia where late dry season fires dominated, 73 properties with a total of 537 000 head of cattle had an average of 36% of their properties burnt annually. Only one of these bioregions had a mean annual rainfall greater than 1000 mm required for the current Methodology. The other bioregions may be able to use a lower-rainfall Methodology that is currently under development. In other bioregions, there may be individual properties that may find it advantageous to participate in savanna burning management under the CFI.
    [Show full text]
  • GLOBAL ECOLOGICAL ZONES for FAO FOREST REPORTING: 2010 Update
    Forest Resources Assessment Working Paper 179 GLOBAL ECOLOGICAL ZONES FOR FAO FOREST REPORTING: 2010 UPDate NOVEMBER, 2012 Forest Resources Assessment Working Paper 179 Global ecological zones for FAO forest reporting: 2010 Update FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2012 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. Contents Acknowledgements v Executive Summary vi Acronyms vii 1. Introduction 1 1.1 Background 1 1.2 The GEZ 2000 map 1 2. Methods 6 2.1 The GEZ 2010 map update.
    [Show full text]
  • Australia's 89 Bioregions (PDF
    ARC Arnhem Coast ARP Arnhem Plateau TIW AUA Australian Alps AVW Avon Wheatbelt BBN Brigalow Belt North DARWIN ! ARC BBS Brigalow Belt South BEL Ben Lomond ITI DAC PCK ARP BHC Broken Hill Complex CEA BRT Burt Plain CAR Carnarvon ARC CEA Central Arnhem DAB CYP CEK Central Kimberley CER Central Ranges NOK VIB CHC Channel Country CMC Central Mackay Coast GUC COO Coolgardie GFU STU COP Cobar Peneplain COS Coral Sea CEK CYP Cape York Peninsula OVP DAB Daly Basin DAC Darwin Coastal DAL WET GUP EIU DAL Dampierland DEU Desert Uplands DMR Davenport Murchison Ranges COS DRP Darling Riverine Plains DMR TAN EIU Einasleigh Uplands MII ESP Esperance Plains GSD EYB Eyre Yorke Block FIN Finke FLB Flinders Lofty Block CMC FUR Furneaux BRT GAS Gascoyne PIL DEU GAW Gawler MGD BBN GES Geraldton Sandplains GFU Gulf Fall and Uplands MAC GID Gibson Desert LSD GID GSD Great Sandy Desert GUC Gulf Coastal GUP Gulf Plains CAR GAS CER FIN CHC GVD Great Victoria Desert HAM Hampton ITI Indian Tropical Islands SSD JAF Jarrah Forest KAN Kanmantoo KIN King GVD LSD Little Sandy Desert STP BBS MUR SEQ MAC MacDonnell Ranges MUL MAL Mallee ! BRISBANE MDD Murray Darling Depression YAL MGD GES Mitchell Grass Downs STP MII Mount Isa Inlier MUL Mulga Lands NUL MUR Murchison NAN Nandewar GAW NET NCP Naracoorte Coastal Plain SWA COO NAN NET New England Tablelands AVW HAM BHC DRP NNC NSW North Coast FLB NOK Northern Kimberley ! COP PERTH NSS NSW South Western Slopes MDD NNC NUL Nullarbor MAL EYB OVP Ord Victoria Plain PCK Pine Creek JAF ESP SYB PSI PIL Pilbara ADELAIDE ! ! PSI Pacific
    [Show full text]
  • Interim Biogeographic Regionalisation for Australia, Version 7 Data Used Are Assumed to Be Correct As Received from the Data Suppliers
    ARC Arnhem Coast ARP Arnhem Plateau TIW AUA Australian Alps AVW Avon Wheatbelt DARWIN BBN Brigalow Belt North ARC BBS Brigalow Belt South BEL Ben Lomond ITI DAC PCK ARP BHC Broken Hill Complex CEA BRT Burt Plain CAR Carnarvon ARC CEA Central Arnhem DAB CYP CEK Central Kimberley CER Central Ranges NOK VIB CHC Channel Country CMC Central Mackay Coast GUC COO Coolgardie GFU STU COP Cobar Peneplain COS Coral Sea CEK CYP Cape York Peninsula OVP DAB Daly Basin DAC Darwin Coastal DAL WET GUP EIU DAL Dampierland DEU Desert Uplands DMR Davenport Murchison Ranges COS DRP Darling Riverine Plains DMR TAN EIU Einasleigh Uplands MII ESP Esperance Plains GSD EYB Eyre Yorke Block FIN Finke FLB Flinders Lofty Block CMC FUR Furneaux BRT GAS Gascoyne PIL DEU GAW Gawler MGD BBN GES Geraldton Sandplains GFU Gulf Fall and Uplands MAC GID Gibson Desert LSD GID GSD Great Sandy Desert GUC Gulf Coastal GUP Gulf Plains CAR GAS CER FIN CHC GVD Great Victoria Desert HAM Hampton ITI Indian Tropical Islands SSD JAF Jarrah Forest KAN Kanmantoo KIN King GVD LSD Little Sandy Desert STP BBS MUR SEQ MAC MacDonnell Ranges MUL BRISBANE MAL Mallee MDD Murray Darling Depression YAL MGD GES Mitchell Grass Downs STP MII Mount Isa Inlier MUL Mulga Lands NUL MUR Murchison NAN Nandewar GAW NET NCP Naracoorte Coastal Plain SWA COO NAN NET New England Tablelands AVW HAM BHC DRP NNC NSW North Coast FLB NOK Northern Kimberley PERTH COP NSS NSW South Western Slopes MDD NNC NUL Nullarbor MAL EYB OVP Ord Victoria Plain PCK Pine Creek JAF ESP SYB PIL Pilbara ADELAIDE SYDNEY PSI PSI Pacific
    [Show full text]
  • Interim Biogeographic Regionalisation for Australia, Version 7 419 Sub Regions
    SEQ02 SEQ04 BBS19 BBS17 BBS20 BBS18 SEQ03 SEQ10 CYP03 SEQ11 TIW02 ARC05 NAN01 NET15 TIW01 ARC01 NNC02 CYP04 ARC02 BBS22 NET12 SEQ13 DAC01 DRP03 NET14 NNC18 ITI03 ARP01 BBS21 DARWIN ARC03 NET10 NET06 PCK01 ARP02 SEQ12 CEA02 NAN02 NET11 CEA01 CYP07 NET07 NNC03 NNC05 VIB02 NET17 ARC04 NET18 CYP01 NAN03 NET09 NNC04 DAB01 CYP09 NET01 NET05 NOK02 BBS23 NET16 NET08 NNC06 CYP08 NET04 VIB01 VIB03 CYP06 NAN04 NET13 NOK01 STU03 GUC02 NNC08 GFU01 GUC01 CYP02 NNC09 OVP03 NNC07 CYP05 BBS25 NNC10 GUP10 NET03 STU02 WET09 CEK01 GUP04 EIU03 CEK03 OVP01 GUP06 WET08 NNC11 GUP07 BBS24 OVP04 GFU02 WET07 NNC14 OVP02 STU01 GUP01 NNC12 DAL01 WET04 WET03 CEK02 GUP02 BBS26 NNC15 NNC13 DAL02 EIU02 EIU06 WET02 BBS27 MGD01 EIU01 NNC17 DMR01 GUP08 WET06 WET01 MII02 SYB01 SYB02 WET05 NSS01 NNC16 DMR03 GUP03 GUP05 EIU04 SYB04 SYB05 TAN02 MGD02 GUP09 GSD01 TAN01 MII01 EIU05 BBN01 COS01 DMR02 MII03 CMC06 MGD06 PIL04 TAN03 DEU03 BBN02 GSD02 CMC01 BBN03 BBN04 PIL01 CMC02 BRT01 DEU01 BBN05 CHC01 MGD03 MGD07 DEU02 BRT02 BRT04 MGD05 BBN06 CMC03 LSD01 GSD05 GSD06 BBN07 PIL02 BRT03 MGD04 PIL03 GSD03 MAC03 BBN12 CAR01 GID02 MAC01 BBN09 BBN10 CMC04 DEU04 BBN11 BBN14 CMC05 GAS01 LSD02 MAC02 SSD01 BBN08 BBN13 GID01 GSD04 CHC03 BBS03 SEQ14 FIN01 MGD08 FIN02 SSD02 CHC04 BBS02 BBS05 BBS01 GAS03 CER01 BBS04 MUL09 BBS09 BBS06 BBS07 FIN03 SEQ01 CAR02 GAS02 BBS10 STP06 CHC02 BBS08 CHC05 FIN04 MUL06 SEQ08 MUL10 MUL04 BBS11 GVD04 CER03 STP05 CHC07 BBS12 SEQ07 MUR02 CER02 BBS13 STP01 MUL08 SEQ09 STP02 SSD03 SEQ05 CHC06 CHC08 BBS14 SEQ04 YAL01 GVD02 MUL02 SEQ06 MUL03 BBS16 BRISBANE MUR01 GVD05
    [Show full text]
  • Terrestrial Protected Areas - IBRA Boundaries
    Appendix 7 Terrestrial protected areas - IBRA boundaries AA Australian Alps TIW ARC Arnhem Coast Terrestrial Protected Areas - ARP Arnhem Plateau ARC AW Avon Wheatbelt 80,895,099 hectares (10.52%) BBN Brigalow Belt North DARWIN BBS Brigalow Belt South DAC ARP BEL Ben Lomond PCK CA BHC Broken Hill Complex BRT Burt Plain CA Central Arnhem DAB CYP CAR Carnarvon CHC Channel Country NK VB CK Central Kimberley GUC CMC Central Mackay Coast GFU COO Coolgardie STU CP Cobar Peneplain CR Central Ranges CK OVP CYP Cape York Peninsula DAB Daly Basin DL WT DAC Darwin Coastal GUP EIU DEU Desert Uplands DL Dampierland DMR Davenport Murchison Ranges DMR DRP Darling Riverine Plains TAN EIU Einasleigh Uplands MII ESP Esperance Plains GSD EYB Eyre Yorke Block FIN Finke FLB Flinders Lofty Block MGD BRT CMC FLI Flinders PIL DEU GAS Gascoyne BBN GAW Gawler GD Gibson Desert MAC GFU Gulf Fall and Uplands LSD GD GS Geraldton Sandplains GSD Great Sandy Desert CR FIN GUC Gulf Coastal CAR GAS GUP Gulf Plains CHC GVD Great Victoria Desert HAM Hampton SSD JF Jarrah Forest BBS KAN Kanmantoo SEQ KIN King STP ML LSD Little Sandy Desert MUR GVD BRISBANE MAC MacDonnell Ranges MAL Mallee MDD Murray Darling Depression GS YA L MGD Mitchell Grass Downs MII Mount Isa Inlier ML Mulga Lands NUL MUR Murchison NAN NAN Nandewar GAW DRP NET NCP Naracoorte Coastal Plain AW COO BHC NET New England Tablelands FLB NK Northern Kimberley PERTH HAM CP NNC NSW North Coast NSS NSW South Western Slopes SWA NNC MAL EYB NUL Nullarbor OVP Ord Victoria Plain JF SB PCK Pine Creek ESP NSS PIL Pilbara RIV SYDNEY RIV Riverina ADELAIDE SB Sydney Basin SEH ± WAR MDD SCP South East Coastal Plain 200100 0 200 400 KAN SEC South East Corner SEH South Eastern Highlands NCP AA SEQ South Eastern Queensland Kilometres VM SSD Simpson Strzelecki Dunefields Sources: STP Stony Plains IBRA 6.1 - IBRA Version 6.1 (2004), Australian Government Department of the Environment and VVP SEC STU Sturt Plateau Heritage through compilation of State/Territory SCP SWA Swan Coastal Plain datasets.
    [Show full text]
  • Stage 1 - Database 1: Introduced Species on Northern Territory Islands (Com ID: 49530)
    Stage 1 - Database 1: Introduced Species on Northern Territory Islands (Com ID: 49530) Decimal Decimal Island Name Lat Long GROUP_NAME INDNAME Gazetteer AREA_HA_ Land Tenure Category Land Status Ownership NT Bioregion Joined? Surveyed? Arnhem Land Aboriginal ALGER ISLAND 135.96611 -11.87810 CUNNINGHAM ISLANDS/WESSEL ISLANDS Toombuli Yes 845.333 Aboriginal Freehold and Leasehold Aboriginal Freehold and Leasehold Land Trust Arnhem Coast no Yes Arnhem Land Aboriginal ANGARMBULUMARDJA ISLAND 136.63495 -13.66611 Yes 169.956 Aboriginal Freehold and Leasehold Aboriginal Freehold and Leasehold Land Trust Arnhem Coast no No Arnhem Land Aboriginal ASTELL ISLAND 136.39856 -11.88248 THE ENGLISH COMPANYS ISLANDS Yinbadak Yes 1264.439 Aboriginal Freehold and Leasehold Aboriginal Freehold and Leasehold Land Trust Arnhem Coast no Yes Arnhem Land Aboriginal not an off BANYAN ISLAND 135.21349 -12.25819 Yes 4943.473 Aboriginal Freehold and Leasehold Aboriginal Freehold and Leasehold Land Trust Arnhem Coast shore island No BARRON ISLAND 132.35042 -12.17392 Djidbordu Yes 450.472 Aboriginal Freehold - National Park Reserve Kakadu National Park Darwin Coastal no Yes Arnhem Land Aboriginal not an off BAT ISLAND 134.17367 -12.10151 Yes 376.139 Aboriginal Freehold and Leasehold Aboriginal Freehold and Leasehold Land Trust Arnhem Coast shore island No BATHURST ISLAND 130.32948 -11.57578 Yes 169319.353 Aboriginal Freehold and Leasehold Aboriginal Freehold and Leasehold Tiwi Land Trust Tiwi Cobourg no Yes Aboriginal Freehold and BEATRICE ISLAND 135.78374 -15.09723
    [Show full text]