Eleocharis Quadrangulata (Michaux) Roemer & Schultes Square-Stemmed Spike-Rush
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eleocharis Palustris (L.) Roem
Plant Guide COMMON SPIKERUSH Conservation Uses: This species has utility for erosion control, constructed wetland system applications, wildlife Eleocharis palustris (L.) Roem. & food and cover, wetland creation and restoration, and for Schult. increasing plant diversity in wetland and riparian Plant Symbol = ELPA3 communities. Its dense root mass makes this species an excellent choice for soil stabilization in riparian and wetland sites. The rhizomes also form a matrix for many Contributed by: USDA NRCS Idaho Plant Materials beneficial bacteria making this plant an excellent choice Program for wastewater treatment. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description General: Rush Family (Cyperaceae). Creeping spikerush is a perennial, heavily rhizomatous wetland plant that is found from low to mid elevations. It has a dense root mass that extends deeper that 40 cm (16 in) in the soil profile. The stems are singular or in small clusters and it will continue to grow to keep the heads out of the water if the water rises slowly. The stems are upright, round, and may reach 1.2 m (4 ft) in height (height is dependent on the depth of water in the growing environment). The leaves are reduced to sheaths clustered at the base of the stems. The flowers are borne in a terminal spikelet, 1 flower per scale with 2 stigmas. Plants typically flower from June through September. The seeds are yellow to brown lenticular achenes, 1.5-2.5 mm (0.06-0.1 in) long including tubercle, and subtended by up to 8 bristles (Welsh et al., 2003). -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
The Mountain Tapir, Endangered 'Flagship' Species of the High Andes
ORYX VOL 30 NO 1 JANUARY 1996 The mountain tapir, endangered 'flagship' species of the high Andes Craig C. Downer The mountain tapir has already disappeared from parts of its range in the high Andes of South America and remaining populations are severely threatened by hunting and habitat destruction. With an estimated population of fewer than 2500 individuals, urgent measures are necessary to secure a future for the species. This paper presents an overview of the species throughout its range as well as some of the main results of the author's studies on tapir ecology. Finally, a plea is made for conservation action in Sangay National Park, which is one of the species's main strongholds. The mountain tapir: an overview throughout its range. There is limited evi- dence to indicate that it may have occurred in The mountain tapir Tapirus pinchaque, was dis- western Venezuela about 20 years ago. covered by the French naturalist Roulin near However, Venezuelan authorities indicate a Sumapaz in the eastern Andes of Colombia total absence of mountain tapir remains from (Cuvier, 1829). The species is poorly known Venezuelan territory, either from the recent or and most information has come from oc- distant past (J. Paucar, F. Bisbal, O. Linares, casional observations or captures in the wild, pers. comms). Northern Peru contains only a reports from indigenous people in the small population (Grimwood, 1969). species's range, and observations and studies In common with many montane forests in zoological parks (Cuvier, 1829; Cabrera and world-wide, those of the Andes are being Yepes, 1940; Hershkovitz, 1954; Schauenberg, rapidly destroyed, causing the decline of the 1969; Bonney and Crotty, 1979). -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Introduction to Common Native & Invasive Freshwater Plants in Alaska
Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting -
Conservation Assessment for the Kansan Spikerush Leafhopper (Dorydiella Kansana Beamer)
Conservation Assessment For The Kansan spikerush leafhopper (Dorydiella kansana Beamer) USDA Forest Service, Eastern Region January 11, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 1 DESCRIPTION OF SPECIES....................................................................................................... -
Eleocharis Rostellata (Torr.) Torr., Is an Obligate Wetland Graminoid Species (Reed 1988)
United States Department of Agriculture Conservation Assessment Forest Service Rocky of the Beaked Spikerush Mountain Region Black Hills in the Black Hills National National Forest Custer, Forest, South Dakota and South Dakota May 2003 Wyoming Bruce T. Glisson Conservation Assessment of Beaked Spikerush in the Black Hills National Forest, South Dakota and Wyoming Bruce T. Glisson, Ph.D. 315 Matterhorn Drive Park City, UT 84098 Bruce T. Glisson is a botanist and ecologist with over 10 years of consulting experience, located in Park City, Utah. He has earned a B.S. in Biology from Towson State University, an M.S. in Public Health from the University of Utah, and a Ph.D. in Botany from Brigham Young University EXECUTIVE SUMMARY Beaked spikerush, Eleocharis rostellata (Torr.) Torr., is an obligate wetland graminoid species (Reed 1988). Beaked spikerush is widespread in the Americas from across southern Canada to northern Mexico, to the West Indies, the Caribbean, and the Andes of South America (Cronquist et al. 1994; Hitchcock et al. 1994). The species is secure throughout its range with a G5 ranking, but infrequent across most of the U.S., with Region 2 state rankings ranging from S1, critically imperiled; to S2, imperiled; to SR, reported (NatureServe 2001). Beaked spikerush is a “species of special concern” with the South Dakota Natural Heritage Program (Ode pers. comm. 2001). The only currently known population of beaked spikerush in South Dakota is in Fall River County, along Cascade Creek, an area where several other rare plant species occur. The beaked spikerush population is present on lands administered by Black Hills National Forest (BHNF), and on surrounding private lands, including the Whitney Preserve owned and managed by The Nature Conservancy (TNC). -
NJ Native Plants - USDA
NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana -
Eleocharis Elliptica Kunth (Elliptic Spikerush): a Technical Conservation Assessment
Eleocharis elliptica Kunth (elliptic spikerush): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project August 10, 2006 James E. Nellessen, Ph.D. Taschek Environmental Consulting 8901 Adams St., NE, Suite D Albuquerque, NM 87113 Peer Review Administered by Center for Plant Conservation Nellessen, J.E. (2006, August 10). Eleocharis elliptica Kunth (elliptic spikerush): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/ assessments/eleochariselliptica.pdf [date of access]. ACKNOWLEDGMENTS Production of this assessment would not have been possible without the help of others. I wish to thank David Wunker for his help conducting Internet searches for information on Eleocharis elliptica. I wish to thank Ron Hartman for supplying photocopies of herbarium specimen labels from the University of Wyoming. Numerous other specimen labels were obtained through searches of on-line databases, so thanks go to those agencies (cited in this document) for having such convenient systems established. I would like to thank local Region 2 botanists Bonnie Heidel of the Wyoming Natural Heritage Program, and Beth Burkhart of the Black Hills National Forest for supplying information. Thanks go to Paula Nellessen for proofing the drafts of this document. Thanks go to Teresa Hurt and John Taschek of Taschek Environmental Consulting for supplying tips on style and presentation for this document. Thanks are extended to employees of the USFS Region 2, Kathy Roche and Richard Vacirca, for reviewing, supplying guidance, and making suggestions for assembling this assessment. Final thanks go to two external reviewers, one unidentified, and Dr. -
New to Oklahoma: Eleocharis Equisetoides (Cyperaceae)
Buthod, A.K. and B.W. Hoagland. 2017. New to Oklahoma: Eleocharis equisetoides (Cyperaceae). Phytoneuron 2017-78: 1–4. Published 25 October 2017. ISSN 2153 733X NEW TO OKLAHOMA: ELEOCHARIS EQUISETOIDES (CYPERACEAE) AMY K. BUTHOD Oklahoma Biological Survey/Oklahoma Natural Heritage Inventory/Robert Bebb Herbarium University of Oklahoma Norman, Oklahoma 73019 [email protected] BRUCE W. HOAGLAND Oklahoma Biological Survey/Oklahoma Natural Heritage Inventory/ Department of Geography and Environmental Sustainability University of Oklahoma Norman, Oklahoma 73019 ABSTRACT This paper documents an occurrence of a vascular plant species previously unreported for the flora of Oklahoma. Eleocharis equisetoides , a perennial spikerush, was found along a lake margin in north-central Pushmataha County. Eleocharis equisetoides (Elliott) Torr. (Cyperaceae, subg. Limnochloa; horsetail spikerush, jointed spikesedge) is a perennial spikerush found in marshes, lakes, ponds, ditches, and streams (ITIS 2017; Smith et al. 2002). While the majority of the known populations are from coastal regions of the southeastern USA, E. equisetoides has also been reported as far north as Ontario (Kartesz 2014; USDA, NRCS 2017). In the USA its distribution includes Alabama, Arkansas, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Louisiana, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Rhode Island, South Carolina, Tennessee, Texas, Virginia, and Wisconsin (Kartesz 2014; USDA, NRCS 2017). It is listed as critically imperiled, imperiled, or vulnerable in all but five of these states (Alabama, Florida, Louisiana, South Carolina, and Texas), and is known only historically from three (Arkansas, Massachusetts , and Missouri; NatureServe 2012). The taxon is presumed extirpated from Illinois (NatureServe 2012). The Oklahoma collection of Eleocharis equisetoides (figures 1 and 2) was found at the margin of a small lake in Pushmataha County in southeastern Oklahoma. -
Evaluating the Feasibility of Planting Aquatic Plants in Shallow Lakes in the Mississippi Delta
J. Aquat. Plant Manage. 44: 73-80 Evaluating the Feasibility of Planting Aquatic Plants in Shallow Lakes in the Mississippi Delta PETER C. SMILEY, JR.1 AND ERIC D. DIBBLE1 ABSTRACT planting seeds, propagules (stems and tubers), or whole plants. Previous work has found that planting whole plants is Planting aquatic plants is a technique used to restore na- the most effective method of establishing aquatic plants in tive aquatic plants in lakes. However, the feasibility of using lakes and wetlands (Hammer 1992, Smart et al. 2005). How- this restoration technique in shallow lakes in the Mississippi ever, planting whole plants is a time consuming and costly Delta has not been evaluated. We conducted two exclosure procedure (Hammer 1992). Time and expense can be used experiments to evaluate the success of planting aquatic plants most efficiently if project designers know which plant species in a shallow lake in the Mississippi Delta. We planted three will exhibit the greatest survival and growth before the initia- emergent and one submersed species in experiment 1 and tion of planting. four submersed species in experiment 2. Each experiment The feasibility of planting aquatic plants in lakes and res- contained a control treatment in which no aquatic plants ervoirs in the southern United States has been evaluated in were planted. We measured physico-chemical characteristics Alabama, Oklahoma, and Texas (Table 1). Initial studies in of sediment and water and monitored aquatic plants in each Alabama and Texas (Doyle and Smart 1993, Doyle et al. exclosure. No differences in mean sediment and water pa- 1997, Smart et al.