International Forum on Aeroelasticity and Structural Dynamics IFASD 2019 9-13 June 2019, Savannah,IFASD Georgia,-2019- USA106 THEODORSEN’S AND GARRICK’S COMPUTATIONAL AEROELASTICITY, REVISITED Boyd Perry, III NASA – Langley Research Center Hampton, Virginia 23681-2199 USA
[email protected] Keywords: Flutter; NACA Reports 496, 685, 741; Theodore Theodorsen; I.E. Garrick Abstract: This paper describes a multiyear effort to recompute all of the numerical flutter results contained in Theodore Theodorsen’s and I.E. Garrick’s (“T&G’s”) groundbreaking trilogy of National Advisory Committee for Aeronautics technical reports on aeroelastic flutter (NACA Reports 496, 685, and 741). The paper includes overviews of T&G’s aeroelastic equations and solution methods, comparisons between the original and recomputed numerical results, and instances of errors and tripping points (potentials for confusing the reader) in the original NACA reports. 1 INTRODUCTION In 1934, starting from first principles, Theodore Theodorsen laid out the theory of aeroelastic flutter for a typical section with three degrees of freedom and provided a method for its practical solution [1]. At the time, this solution method offered the only means of solving the flutter problem in an exact closed-form way. To borrow today’s terminology and retroactively apply it to 1934, it can be argued that reference 1 was the original paper on computational aeroelasticity, the only differences between the original and today’s variations being the accuracy and fidelity of their respective structural and unsteady aerodynamic representations. There were follow-on papers in 1938 [2] and 1942 [3] co-authored with I.E.