Magnificines a and B, Antimicrobial Marine Alkaloids Featuring a Tetrahydrooxazolo[3,2-A]

Total Page:16

File Type:pdf, Size:1020Kb

Magnificines a and B, Antimicrobial Marine Alkaloids Featuring a Tetrahydrooxazolo[3,2-A] marine drugs Article Magnificines A and B, Antimicrobial Marine Alkaloids Featuring a Tetrahydrooxazolo[3,2-a]azepine-2,5(3H,6H)-dione Backbone from the Red Sea Sponge Negombata magnifica Diaa T. A. Youssef 1,* , Hani Z. Asfour 2, Grégory Genta-Jouve 3,4 and Lamiaa A. Shaala 5,6,7,* 1 Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia 2 Department of Medical Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 3 UMR 8038 CiTCoM, Faculté de Pharmacie de Paris, Université Paris Descartes, Avenue de l’observatoire, 75006 Paris, France; [email protected] 4 Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, 75231 Paris, France 5 Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia 6 Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia 7 Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt * Correspondence: [email protected] (D.T.A.Y.); [email protected] (L.A.S.); Tel.: +966-548535344 (D.T.A.Y.) Abstract: Investigation of the Red Sea sponge Negombata magnifica gave two novel alkaloids, mag- Citation: Youssef, D.T.A.; Asfour, nificines A and B (1 and 2) and a new β-ionone derivative, (±)-negombaionone (3), together with H.Z.; Genta-Jouve, G.; Shaala, L.A. Magnificines A and B, Antimicrobial the known latrunculin B (4) and 16-epi-latrunculin B (5). The analysis of the NMR and HRES- Marine Alkaloids Featuring a IMS spectra supported the planar structures and the relative configurations of the compounds. Tetrahydrooxazolo[3,2-a]azepine- The absolute configurations of magnificines A and B were determined by the analysis of the pre- 2,5(3H,6H)-dione Backbone from the dicted and experimental ECD spectra. Magnificines A and B possess a previously unreported Red Sea Sponge Negombata magnifica. tetrahydrooxazolo[3,2-a]azepine-2,5(3H,6H)-dione backbone and represent the first natural com- Mar. Drugs 2021, 19, 214. https:// pounds in this class. (±)-Negombaionone is the first β-ionone of a sponge origin. Compounds 1-3 doi.org/10.3390/md19040214 displayed selective activity against Escherichia coli in a disk diffusion assay with inhibition zones up to 22 mm at a concentration of 50 µg/disc and with MIC values down to 8.0 µM. Latrunculin B and Academic Editor: Vassilios Roussis 16-epi-latrunculin B inhibited the growth of HeLa cells with IC50 values down to 1.4 µM. Received: 24 March 2021 Keywords: Red Sea sponge; Negombata magnifica; marine alkaloids; β-ionone; magnificines A and B; Accepted: 9 April 2021 (±)-negombaionone; latrunculin B and 16-epi-latrunculin B; antimicrobial activity; E. coli; cell line Published: 12 April 2021 growth inhibition; HeLa cells Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Sponges belonging to the genus Negombata (formerly Latrunculia)[1] (pp. 698–699) are characterized by diverse secondary metabolites of different classes including macrolides (latrunculins) [2–9], pyrroloiminoquinone alkaloids (discorhabdins) [10–17], terpene per- Copyright: © 2021 by the authors. oxides [18,19], cyclic 2-oxecanone glycosides [20], diterpenes [21], ceramides [22,23], and Licensee MDPI, Basel, Switzerland. peptides [24–26]. Reported latrunculins displayed anticancer, antiviral, antibiotic, an- This article is an open access article tiangiogenic, antimigratory, and microfilament-disrupting activities [2–9]. Pyrroloimino- distributed under the terms and quinone alkaloids exhibited antimicrobial, immunomodulatory, caspase inhibition, antivi- conditions of the Creative Commons ral, feeding deterrence, and antimalarial properties and present potent inhibition potential Attribution (CC BY) license (https:// of mammalian topoisomerase II in vivo [10–17]. Additional pharmacological activities for creativecommons.org/licenses/by/ other chemical entities identified from the genus Negombata include cytotoxicity [18,19,21], 4.0/). Mar. Drugs 2021, 19, 214. https://doi.org/10.3390/md19040214 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2021, 19, 214 2 of 12 antifeeding [20], antiepileptic, and anti-inflammatory [22,23], potent inotropic effects and inhibition of the cardiac Na/Ca exchanger [24–26]. As a part of our growing interest to discover biologically active leads from ma- rine resources [27–29], the organic extract of the sponge Negombata magnifica was ex- amined. Two alkaloids, magnificines A and B (1 and 2), with a previously unreported tetrahydrooxazolo[3,2-a]azepine-2,5(3H,6H)-dione skeleton were purified. In addition, a new β-ionone derivative, (±)-negombaionone (3), with the previously reported latrunculin B(4)[2] and 16-epi-latrunculin B (5)[5] were obtained. Structural determinations of 1-5 were accomplished by HRESIMS and NMR spectral analyses. 2. Results and Discussion 2.1. Purification of 1-5 Fractionation of the methanolic extract of N. magnifica [30] (Figure1) using partition (on silica gel), size exclusion (Sephadex LH 20), and purification of active fractions on HPLC afforded 1-5. Figure 1. Underwater photograph of the Red Sea Negombata magnifica. 2.2. Structure of Magnificine A (1) 25 Magnificine A (1) (Figure2) obtained as an optically active ([ α] = + 70◦) oil. D The chemical structure of 1 was determined from interpretation of its MS and NMR + spectra (Figures S1–S10). The HRESIMS data (m/z = 282.0961, C11H17NNaO6, [M + Na] ) supported molecular formula C11H17NO6, suggesting four degrees of unsaturation. Its 13C NMR spectrum and HSQC experiment exhibited 11 signals including four quaternary carbons, two oxygenated methines, two methylenes and three methyls (Figure2 and Table1 ). The combined 1H NMR spectrum and COSY experiment supported the existence 1 1 of a single H- H coupling system from H2-7 to H2-9 (CH2-7–CH-8–CH2-9) (Figure3). 2 Beside the geminal coupling between the protons at C-7 (δH 2.03 and 1.33, J7a,7b = 11.5 Hz), 3 3 vicinal couplings from H-7a ( J7a,8 = 4.2 Hz) and H-7b ( J7b,8 = 11.5 Hz) to the oxygenated methine H-8 (δH 4.13, tt, J = 11.5, 4.2 Hz) were observed. Furthermore, H-8 exhibited 3 additional vicinal ( JHH) couplings to H-9a (δH 2.54, ddd, J = 11.5, 4.2, 1.8 Hz) and H-9b (δH 1.51, t, J = 11.5 Hz) completing the coupling system. Mar. Drugs 2021, 19, 214 3 of 12 Figure 2. Chemical structures of 1-5. 1 13 Table 1. NMR data of 1 (600 MHz for H and 150 for C, CDCl3). No. δC (mult.) δH [mult., J (Hz)] HMBC NOESY 2 171.5, qC H-3 3 113.3, CH 5.72 (s) H3-11 5 180.7, qC H-3, H2-7, H3-11, H3-12 6 35.0, qC H3-11, H3-12, H2-7 7a 49.8, CH2 2.03 (ddd, 11.5, 4.2, 2.4) H3-11, H3-12, H2-9 7b 1.33 (t, 11.5) 8 65.1, CH 4.13 (tt, 11.5, 4.2) H2-7, H2-9 H-7b, H3-12, H3-13 9a 47.9, CH2 2.54 (ddd, 11.5, 4.2, 1.8) H2-7, H3-13 9b 1.51 (t, 11.5) 10 86.4, qC H3-13, H-3, H2-9 11 29.9, CH3 1.31 (s) H3-12 H-3 12 25.1, CH3 1.27 (s) H3-11 H-8, H3-13 13 25.6, CH3 1.59 (s) H-8, H3-12 Figure 3. Subunits of 1 and 3, and COSY and HMBC of 1-3. 13 The C NMR resonances at δC 49.8 (CH2, C-7), 65.1 (CH, C-8), and 47.9 (CH2, C-9) are correlated to the protons at δH 2.03/1.33 (H-7a and H-7b), 4.13 (H-8), and 2.54/1.51 (H-9a and H-9b) in the HSQC experiment, supporting the assignment of these signals and the placement of OH group at C-8. The interruption of the spin-coupling system of H2-7– H-8–H2-9 on both sides suggests the quaternary nature of C-6 and C-10. The substituents at C-6 and C-10, and the existence of an amidic carbonyl (δC 180.7, C-5) were confirmed from the HMBC of H3-11/C-6, H3-12/C-6, H3-11/C-7, H3-12/C-7, H3-11/C-5, H3-12/C-5, H3-13/C-9, H3-13/C-10, H2-7/C-5, and H2-9/C-10 (Table1 and Figure3) , completing the structure of the seven-membered ring (Fragment A). The remaining elements of C2H2O4 1 13 (Fragment B) displayed two signals in the H and C NMR spectra at δH/C 171.5 (qC, Mar. Drugs 2021, 19, 214 4 of 12 C-2) and 5.72/113.3 (CH, s, H-3/C-3) corresponding to a carbonyl of a lactone moiety and an oxygenated methine. The downfield chemical shift of C-10 at δC 86.4 (qC) supported its attachment to the heteroatoms (O and N) of the lactone and amide functionalities. The HMBC of H-3/C-10, H2-9/C-10 and H3-10/C-10 supported this assignment. The appearance of the NMR signals of H-3/C-3 at δH/C 5.72/113.3 supported the attachment C-3 to the N atom of the amidic group of the seven-membered ring as well as the presence of the remaining elements (OOH) at C-3, completing the molecular formula of 1.
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • Dissertation
    Applications of Computational Methods and African Natural Product Databases to Search for Novel Inhibitors of Histone Deacetylases DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Herrn M.Sc. Conrad Simoben, Veranso geboren am 19. Apr. 1990 in Nkambe Gutachter: Prof. Dr. Wolfgang Sippl, Halle Prof. Dr. Stefan Günther, Freiburg Prof. Dr. Dusanka Janezic, Ljubljana Datum der Disputation: 23 March 2021 i Abstract Computational methods have been proven to be shortcuts in developing novel lead compounds and drug candidates. They can cut down the cost as well as reduce the time involved. For example, computer-aided drug discovery (CADD) methods have been used to guide the discovery of histone deacetylase (HDAC) inhibitors. HDACs represent an interesting class of Zn-dependent enzymes and they have been demonstrated to play important physiological roles associated with genome functions that have been linked to several diseases. In this thesis, several computational methods were applied to suggest novel molecules that could target HDAC isoforms. First, a new class of HDAC small inhibitor (“reverse hydroxamate” as zinc-binding motif) was discovered by virtual screening and confirmed to inhibit Schistosoma mansoni HDAC8 (smHDAC8) with IC50 values in the low micromole range. Additional testing of the molecules indicated that they were equally potent inhibitors of human HDAC1, 6 and 8. The binding mode of the best hit could be confirmed by X-ray crystallography. Second, using virtual screening, a set of molecules with reverse HIV latency was discovered. They may act as a starting point in a structure-based design and/or in chemical optimization efforts to improve the HIV shock-and-kill-based strategy.
    [Show full text]
  • Marine Caves of the Mediterranean Sea: a Sponge Biodiversity Reservoir Within a Biodiversity Hotspot
    Marine Caves of the Mediterranean Sea: A Sponge Biodiversity Reservoir within a Biodiversity Hotspot Vasilis Gerovasileiou*, Eleni Voultsiadou Department of Zoology, School of Biology, Aristotle University, Thessaloniki, Greece Abstract Marine caves are widely acknowledged for their unique biodiversity and constitute a typical feature of the Mediterranean coastline. Herein an attempt was made to evaluate the ecological significance of this particular ecosystem in the Mediterranean Sea, which is considered a biodiversity hotspot. This was accomplished by using Porifera, which dominate the rocky sublittoral substrata, as a reference group in a meta-analytical approach, combining primary research data from the Aegean Sea (eastern Mediterranean) with data derived from the literature. In total 311 species from all poriferan classes were recorded, representing 45.7% of the Mediterranean Porifera. Demospongiae and Homoscleromorpha are highly represented in marine caves at the family (88%), generic (70%), and species level (47.5%), the latter being the most favored group along with Dictyoceratida and Lithistida. Several rare and cave-exclusive species were reported from only one or few caves, indicating the fragmentation and peculiarity of this unique ecosystem. Species richness and phylogenetic diversity varied among Mediterranean areas; the former was positively correlated with research effort, being higher in the northern Mediterranean, while the latter was generally higher in caves than in the overall sponge assemblages of each area. Resemblance analysis among areas revealed that cavernicolous sponge assemblages followed a pattern quite similar to that of the overall Mediterranean assemblages. The same pattern was exhibited by the zoogeographic affinities of cave sponges: species with Atlanto-Mediterranean distribution and Mediterranean endemics prevailed (more than 40% each), 70% of them having warm-water affinities, since most caves were studied in shallow waters.
    [Show full text]
  • Benthic Habitats and Biodiversity of Dampier and Montebello Marine
    CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM),
    [Show full text]
  • Zootaxa 20 Years: Phylum Porifera
    Zootaxa 4979 (1): 038–056 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:3409F59A-0552-44A8-89F0-4F0230CB27E7 Zootaxa 20 years: Phylum Porifera JOHN N.A. HOOPER1,2*, GERT WÖRHEIDE3,4,5, EDUARDO HAJDU6, DIRK ERPENBECK3,5, NICOLE J. DE VOOGD7,8 & MICHELLE KLAUTAU9 1Queensland Museum, PO Box 3300, South Brisbane 4101, Brisbane, Queensland, Australia [email protected], https://orcid.org/0000-0003-1722-5954 2Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Queensland, Australia 3Department of Earth- and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany 4SNSB-Bavarian State Collection of Palaeontology and Geology, Richard-Wagner Straße 10, 80333 Munich, Germany 5GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany [email protected], https://orcid.org/0000-0002-6380-7421 [email protected], https://orcid.org/0000-0003-2716-1085 6Museu Nacional/UFRJ, TAXPO - Depto. Invertebrados, Quinta da Boa Vista, s/n 20940-040, Rio de Janeiro, RJ, BRASIL [email protected], https://orcid.org/0000-0002-8760-9403 7Naturalis Biodiversity Center, Dept. Marine Biodiversity, P.O. Box 9617, 2300 RA Leiden, The Netherlands [email protected], https://orcid.org/0000-0002-7985-5604 8Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands 9Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373, CEP 21941- 902, Rio de Janeiro, RJ, Brasil.
    [Show full text]
  • Functional Studies of Novel Bioactives from Complex Host-Microbiomes As Drug Leads for Cancer, Infectious Disease, Depression and Pain" (2012)
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2012 Functional Studies of Novel Bioactives From Complex Host- Microbiomes as Drug Leads for Cancer, Infectious Disease, Depression and Pain John Jason Bowling Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Bowling, John Jason, "Functional Studies of Novel Bioactives From Complex Host-Microbiomes as Drug Leads for Cancer, Infectious Disease, Depression and Pain" (2012). Electronic Theses and Dissertations. 58. https://egrove.olemiss.edu/etd/58 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. FUNCTIONAL STUDIES OF NOVEL BIOACTIVES FROM COMPLEX HOST- MICROBIOMES AS DRUG LEADS FOR CANCER, INFECTIOUS DISEASE, DEPRESSION AND PAIN A Dissertation presented in partial fulfillment of requirements for the degree of Doctorate of Philosophy in the Department of Pharmacognosy The University of Mississippi by John J. Bowling September 2012 Copyright ©2012 by John J. Bowling ALL RIGHTS RESERVED ABSTRACT The drug discovery process has become increasingly complex in comparison to early efforts particularly those involving diseases or conditions that affect large numbers of the human population. It is difficult to point directly to one factor leading evolution of the process but the definition of a mechanism of pharmacological action for a drug lead has noticeably become a higher priority. This evolution has helped diminish the stigma of natural products and compound supply issues.
    [Show full text]
  • The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT ..........................................................................................................................................
    [Show full text]
  • Novel Extracts from Callyspongia Siphonella and Negombata Magnifica Sponges from the Red Sea, Induced Antiproliferative and Proa
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(7): 319 – 347 (2020) www.ejabf.journals.ekb.eg Novel extracts from Callyspongia siphonella and Negombata magnifica sponges from the Red Sea, induced antiproliferative and proapoptotic activity in HepG-2, MCF-7, and Caco-2 cancer cell lines Islam Rady1,2*, Mansour A.E. Bashar1 1. Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. 2. Masonic Cancer Center, University of Minnesota, Minnesota, Minnesota, USA. * Corresponding Author: [email protected] _______________________________________________________________________________ ARTICLE INFO ABSTRACT Article History: Marine organisms derived extracts have been shown to exert multiple anti- Received: Sept. 21, 2020 cancer activities. Two marine sponge species; finger-sponge ―Negombata Accepted: Oct. 24, 2020 magnifica (Nm)‖ and tube-sponge ―Callyspongia siphonella (Cs)‖ were Online: Nov. 1, 2020 collected during summer 2020 from the Gulf of Aqaba (Red Sea, Egypt). Each _______________ sponge macerated with methylene chloride (CH2Cl2), ethyl acetate (C4H8O2), acetone (C H O), and chloroform (CHCl₃) separately into four different crude Keywords: 3 6 extracts for each sponge species and eight extracts as a total for both marine Sponges; species, where each extract was in vitro assessed for its antiproliferative and Callyspongia siphonella; proapoptotic activity in HepG-2, MCF7, and Caco-2 cancer cell lines. Cs- Negombata magnifica; CH Cl , Cs-C H O , Cs-C H O, Cs-CHCl , Nm-CH Cl , Nm-C H O , Nm- Red Sea; 2 2 4 8 2 3 6 3 2 2 4 8 2 C H O, and Nm-CHCl , each in a dose-dependent manner inhibited the growth Anticancer; 3 6 3 of HepG2 cancer cells within IC values 17.53, 11.18, 9.97, 19.21, 9.14, 10.94, Antiproliferation; 50 8.78, and 7.23 μg/ml, respectively, MCF-7 cancer cells within IC values of Apoptosis.
    [Show full text]
  • Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges
    Mar. Drugs 2013, 11, 1126-1139; doi:10.3390/md11041126 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges Tom Turk 1, Jerneja Ambrožič Avguštin 1, Urška Batista 2, Gašper Strugar 1, Rok Kosmina 1, Sandra Čivović 1, Dorte Janussen 3, Silke Kauferstein 4, Dietrich Mebs 4 and Kristina Sepčić 1,* 1 Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; E-Mails: [email protected] (T.T.); [email protected] (J.A.A.); [email protected] (G.S.); [email protected] (R.K.); [email protected] (S.Č.) 2 Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, 1000 Ljubljana, Slovenia; E-Mail: [email protected] 3 Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, D-60325 Frankfurt, Germany; E-Mail: [email protected] 4 Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, 60596 Frankfurt, Germany; E-Mails: [email protected] (S.K.); [email protected] (D.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +386-1-320-3419; Fax: +386-1-257-3390. Received: 21 February 2013; in revised form: 5 March 2013 / Accepted: 15 March 2013 / Published: 2 April 2013 Abstract: We report on the screening of ethanolic extracts from 33 deep-sea Antarctic marine sponges for different biological activities. We monitored hemolysis, inhibition of acetylcholinesterase, cytotoxicity towards normal and transformed cells and growth inhibition of laboratory, commensal and clinically and ecologically relevant bacteria.
    [Show full text]
  • Pharmacoinformatic Investigation of Medicinal Plants from East Africa
    Full Paper www.molinf.com DOI: 10.1002/minf.202000163 Pharmacoinformatic Investigation of Medicinal Plants from East Africa Conrad V. Simoben,*[a] Ammar Qaseem,[b] Aurélien F. A. Moumbock,[b] Kiran K. Telukunta,[c] Stefan Günther,[b] Wolfgang Sippl,[a] and Fidele Ntie-Kang*[a, d, e] To Prof. Simon M. N. Efange for his contributions towards academic drug discovery in Sub-Saharan Africa Abstract: Medicinal plants have widely been used in the of each compound have been included. A comparative traditional treatment of ailments and have been proven analysis of some physico-chemical properties like molecular effective. Their contribution still holds an important place in weight, H-bond donor/acceptor, logPo/w, etc. as well scaffold modern drug discovery due to their chemical, and bio- diversity analysis has been carried out with other published logical diversities. However, the poor documentation of NP databases. EANPDB was combined with the previously traditional medicine, in developing African countries for published Northern African Natural Products Database instance, can lead to the loss of knowledge related to such (NANPDB), to form a merger African Natural Products practices. In this study, we present the Eastern Africa Database (ANPDB), containing ~6500 unique molecules Natural Products Database (EANPDB) containing the struc- isolated from about 1000 source species (freely available at tural and bioactivity information of 1870 unique molecules http://african-compounds.org). As a case study, latrunculins isolated from about 300 source species from the Eastern A and B isolated from the sponge Negombata magnifica African region. This represents the largest collection of (Podospongiidae) with previously reported antitumour natural products (NPs) from this geographical region, cover- activities, were identified via substructure searching as ing literature data of the period from 1962 to 2019.
    [Show full text]