Color Variation Among Habitat Types in the Spiny Softshell Turtles (Trionychidae: Apalone) of Cuatrocie´Negas, Coahuila, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Color Variation Among Habitat Types in the Spiny Softshell Turtles (Trionychidae: Apalone) of Cuatrocie´Negas, Coahuila, Mexico Journal of Herpetology, Vol. 42, No. 2, pp. 347–353, 2008 Copyright 2008 Society for the Study of Amphibians and Reptiles Color Variation among Habitat Types in the Spiny Softshell Turtles (Trionychidae: Apalone) of Cuatrocie´negas, Coahuila, Mexico SUZANNE E. MCGAUGH Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA; E-mail: [email protected] ABSTRACT.—Ground coloration is highly variable in many reptile species. In turtles, ground color may correspond well to the background coloration of the environment and can change over time to match new surroundings in the laboratory. Variable carapace and plastron coloration across three habitat types were investigated in the Black Softshell Turtle, Apalone spinifera atra, by measuring individual components of the RGB (Red, Green, Blue) color system. In general, A. s. atra carapaces were darker in turtles from lagoons than in turtles from playa lakes. Red and green values were significantly different among all pairs of habitat types, but blue values differed only between the playa lakes and lagoons. Mean color components (RG only) for each population were significantly correlated with corresponding values for the bottom substrate, indicating a positive association of carapace and habitat substrate color components. In contrast, plastron ground color RGB channels showed no significant differences between habitat types and no significant correlations with substrate RGB. These results suggest that dorsal background matching in A. s. atra may be responsible for some of the variation in this key taxonomic trait. The color of an organism is an important spinifera emoryi (Winokur, 1968), but adults component of many aspects of an organism’s show marked differences in coloration across biology and is often used as a taxonomic habitats (this study), which could be a result character (Endler, 1990; Brodie and Janzen, of genetically based ontogenetic pigmenta- 1995; Darst and Cummings, 2006). Yet, an tion variation among habitats or phenotypic animal’s coloration may be plastic and can plasticity in response to substrate color varia- depend on many different biotic and abiotic tion. factors (Endler, 1990; Bennett et al., 1994). For Apalone spinifera atra was originally described example, overall habitat irradiance is a common as an isolated species (Webb and Legler, 1960), stimulus for physiological color change in but canal building in the late 1800s was thought reptiles, presumably as a means to become to have opened the basin hydrologically, result- more cryptic (Norris and Lowe, 1964; Rosen- ing in opportunities for hybridization between blum, 2005; Rowe et al., 2006a). This physiolog- A. s. atra and A. s. emoryi (Smith and Smith, ical response occurs rapidly and uses hormonal 1979; Ernst and Barbour, 1992). A recent genetic signals to expand or contract melanophores in evaluation found no differentiation between the dermal layer of skin (Bartley, 1971). Inter- morphologically identified A. s. atra individuals estingly, laboratory tests indicate that the shells and morphologically identified A. s. emoryi and skin of turtles, too, can change color to individuals within and outside the basin more closely match dark or light backgrounds, (McGaugh and Janzen, in press). However, although this change occurs over weeks or substantial coloration differences exist among months (Woolley, 1957; Bartley, 1971; Rowe et habitats and this phenotypic variation was left al., 2006b). unexplained by the genetic study. Examination Cuatrocie´negas in Coahuila, Mexico, offers a of the color variation of the softshell turtles unique ecosystem in which to observe natural across the basin, in relation to background variation in shell color of turtles across three coloration of habitats (Woolley, 1957; Bartley, very different aquatic habitat types (Winokur, 1971; Rowe et al., 2006b), may provide an 1968). The region’s endemic and endangered important morphological perspective on A. s. Softshell Turtle, Apalone spinifera atra (atra atra’s refuted species delimitation (McGaugh meaning black or dark; Webb and Legler, and Janzen, in press). For simplicity, and 1960; Lovich et al., 1990, Fritz and Havasˇ, because haplotypes in the genetic study showed 2006), is taxonomically defined by its dark no morphological (i.e., light and dark turtles pigmentation, and the validity of A. s. atra as a shared mitochondrial and nuclear DNA haplo- full species has been challenged (Smith and types) or geographic grouping, the name A. s. Smith, 1979). Hatchlings of A. s. atra cannot be atra is used to refer to all Apalone in this study, differentiated from a lighter conspecific, Apalone even though A. s. emoryi morphs are present in 348 S. E. MCGAUGH the basin (Smith and Smith, 1979; McGaugh and (Evans, 2005) and spanned 30 days of trapping Janzen, in press). (4 June to 5 July 2004). In this study, I evaluated the hypothesis that Turtles were captured in lobster or hoop background matching could be responsible for traps baited with sardines. Each A. s. atra was the observed color variation across habitats in tattooed with a unique pattern on the plastron. A. s. atra. To evaluate this hypothesis, coloration Plastron length was measured with dial calipers of the animals’ carapace and plastron and to the nearest millimeter, and sex was deter- locality substrate was measured. Background mined by tail length (Webb and Legler, 1960), matching was expected to be probable if with males identified by a much longer tail than carapace, but not plastron coloration, was females relative to their body size. All A. s. atra correlated to locality substrate coloration. had plastron lengths over 73 mm. Hatchling Color was measured with digital photographs and juvenile turtles were not included in the using the RGB system (red, green, blue; Stevens analysis. Sixty total individuals were sampled et al., 2007), the components of which corre- (Lagoon1: N 5 16, Lagoon2: N 5 6, Lagoon3: N spond to broad bands of longwave (red), 5 13, River: N 5 10, Playa lake1: N 5 10, Playa mediumwave (green), and shortwave (blue) lake2: N 5 5). light (Stevens et al., 2007). Possible influences Digital Photography and Analysis.—Digital of sex, size, and their interactions were also photographs were taken with a Canon Power evaluated. Shot G5 that was positioned directly above the turtle. Color component measurements from MATERIALS AND METHODS digital systems have been shown to be positive- ly correlated with values from spectrometry, Study Site and Field Methodology.—Three main and digital photography has many advantages habitat types, playa lakes (barrial lakes), la- over spectrometry for data acquisition in the goons, and a river, were investigated within El field (Rowe et al., 2006a; Stevens et al., 2007). A A´ rea de Proteccio´n de Flora y Fauna Cuatrocie´- level on the tripod ensured that the camera lens negas, Coahuila, Mexico. This area of high was parallel to the ground. The lens-to-animal endemism contains diverse habitats, including distance measure was not taken. Photos were hundreds of small water bodies nestled within taken out of direct sunlight and with the flash the Chihuahuan desert (Minckley, 1969; Meyer, on and white balance off. Each photo was taken 1973). Playa lakes are large, shallow lakes with the highest resolution possible for the (,1 m deep) with sparse vegetation, large daily 3 temperature fluctuations, and relatively high camera (2,592 1,944 pixels) and converted to mineral content (Minckley, 1969). Lagoons are JPEG at the highest quality compression level typically deeper lakes (,1–10 m) with abundant available on the camera. vegetation, including waterlilies (Nymphaea), Digital quantification of color was performed muskgrass (Chara), pondweeds (Potamogeton), using Jasc Paint Shop Pro9 (Corel, Eden Prairie, and cattails (Typha), and relatively constant MN) by viewing the untransformed values of R, temperatures (Minckley, 1969). Rivers are flow- G, and B in the diagnostic histogram. The HSL ing channels with steep banks that are up to (Hue, Saturation, Lightness) system was not 2.5 ms deep and have vegetation such as used in the analysis because this system may be Nymphaea, Chara, Potamogeton, Typha, bladder- inaccurate (Stevens et al., 2007). In Jasc Paint worts (Utricularia), and sedge (Eleocharis) where Shop Pro9, the histogram displays a distribution the current is slow (Minckley, 1969). Most graph of the separate channels of color in an aquatic habitats in Cuatrocie´negas have clear image and allows the user to analyze the water with a visible bottom. distribution. A swath of at least 100 square Six localities were examined for A. s. atra, and pixels was selected from the right middle localities with the same habitat types (e.g., portion of the carapace and the plastron of A. lagoons) were combined in statistical analysis s. atra. All photos were analyzed at a resolution except for the Pearson’s correlation analysis of 70.866 pixels per cm. Therefore, each A. s. atra 2 (described below). All habitats used in this sample was $14 mm . Some A. s. atra had a study are stable bodies of water of unknown blotched pattern on their carapaces, and these geologic age. No aboveground aquatic connec- were included in the analysis. Otherwise, their tions are known between the localities used in pigmentation was generally uniform. Care was this study. Turtle dispersal between sites may taken during analysis only to sample areas with not be frequent because sites are separated by a clear view of the carapace (i.e., flash glares, distances (5.53–31.58 km) greater than other algae growth, mineral deposits, or bite marks on species of softshells typically travel terrestrially the animal were excluded from the swath). (Galois et al., 2002). Sampling for shell colora- Intraindividual color variability was not mea- tion included all five drainages of the basin sured because of these various obstructions. COLOR VARIATION IN APALONE 349 A grey color standard (paint swatch EE2054C Statistical Analysis.—To test for habitat struc- from Lowe’s Home Improvement Warehouse) turing in color components, data were trans- was placed in each photo.
Recommended publications
  • AN INTRODUCTION to Texas Turtles
    TEXAS PARKS AND WILDLIFE AN INTRODUCTION TO Texas Turtles Mark Klym An Introduction to Texas Turtles Turtle, tortoise or terrapin? Many people get confused by these terms, often using them interchangeably. Texas has a single species of tortoise, the Texas tortoise (Gopherus berlanderi) and a single species of terrapin, the diamondback terrapin (Malaclemys terrapin). All of the remaining 28 species of the order Testudines found in Texas are called “turtles,” although some like the box turtles (Terrapene spp.) are highly terrestrial others are found only in marine (saltwater) settings. In some countries such as Great Britain or Australia, these terms are very specific and relate to the habit or habitat of the animal; in North America they are denoted using these definitions. Turtle: an aquatic or semi-aquatic animal with webbed feet. Tortoise: a terrestrial animal with clubbed feet, domed shell and generally inhabiting warmer regions. Whatever we call them, these animals are a unique tie to a period of earth’s history all but lost in the living world. Turtles are some of the oldest reptilian species on the earth, virtually unchanged in 200 million years or more! These slow-moving, tooth­ less, egg-laying creatures date back to the dinosaurs and still retain traits they used An Introduction to Texas Turtles | 1 to survive then. Although many turtles spend most of their lives in water, they are air-breathing animals and must come to the surface to breathe. If they spend all this time in water, why do we see them on logs, rocks and the shoreline so often? Unlike birds and mammals, turtles are ectothermic, or cold- blooded, meaning they rely on the temperature around them to regulate their body temperature.
    [Show full text]
  • Eastern Spiny Softshell
    Eastern Spiny Softshell The Eastern Spiny Softshell Turtle, an introduced species, is unlike any other species of turtle in New Jersey, with its leathery, flattened shell, and its long narrow snout. Eastern Spiny Softshell Introduced Species - Pl.7 (Apalone spinifera spinifera) Identification: Adult females 6 1/2" - 18", males 5" - 9 1/4". The Eastern Spiny Softshell is almost perfectly round with a very flattened, leathery carapace that lacks scutes. Also note the characteristic long, narrow, tubular snout. Three characteristics that distinguish this from other softshells (which are not found in New Jersey) are streaked and spotted feet, a horizontal ridge in each nostril, and small spiny projections on the carapace. The carapace is light tan, like wet sand; a thin dark line encircles the carapace near the rim. The carapace of the male is marked with dark, round spots, while the female may be somewhat darker and more mottled. Where to find them: The Eastern Spiny Softshell is typically limited to rivers; however, it can also be found in lakes where mud bars are available. It is sometimes seen floating at the surface, where the shape is easily identifiable. Be careful if handling this species: it can claw and bite fiercely. When to find them: Active May through September. Range: An introduced and well-established population in the Maurice River system, Cumberland County and in the Raritan River Watershed. Eastern Spiny Softshell (Apalone spinifera spinifera) - text pg. 16 Key Features - Long, narrow, and tubular snout. - Carapace: flattened, leathery, and lacking scutes. - Light tan or brown in color. New Jersey Division of Fish and Wildlife ~ 2003 Excerpt from: Schwartz, V.
    [Show full text]
  • Apalone Spinifera Atra (Webb and Legler 1960) – Black Spiny Softshell Turtle, Cuatrociénegas Softshell, Tortuga Concha Blanda, Tortuga Negra De Cuatrociénegas
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTrionychidae of the IUCN/SSC — ApaloneTortoise and spinifera Freshwater atra Turtle Specialist Group 021.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, and J.B. Iverson, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.021.atra.v1.2008 © 2008 by Chelonian Research Foundation • Published 9 August 2008 Apalone spinifera atra (Webb and Legler 1960) – Black Spiny Softshell Turtle, Cuatrociénegas Softshell, Tortuga Concha Blanda, Tortuga Negra de Cuatrociénegas ADRIÁN CERDÁ -ARDUR A 1, FR A N C IS C O SOBERÓN -MOB A R A K 2, SUZ A NNE E. MCGA U G H 3, A ND RI C H A RD C. VO G T 4 1Romero 93 Col. Niños Heroes, C.P. 03440, Mexico D.F. Mexico [[email protected]]; 2Xavier Sorondo 210 Col. Iztaccihuatl, C.P. 03520, Mexico D.F. Mexico [[email protected]]; 3Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA [[email protected]]; 4CPBA/INPA, Caixa Postal 478, Petropolis, Manaus, Amazonas 69011-970 Brazil [[email protected]] SU mma RY . – Apalone spinifera atra (Family Trionychidae), endemic to the Cuatrociénegas Basin of Coahuila, Mexico, is an enigmatic and severely threatened softshell turtle. On the basis of mor- phology, it has been regarded as a full species (Apalone ater), but by phylogenetic molecular analyses it is currently considered a subspecies of A. spinifera. The discovery of color morphs correlated to substrate coloration in different localities and the recognition of hybridization between A.
    [Show full text]
  • Cantor's Giant Softshell Turtle, Pelochelys Cantorii
    M Cantor’s Giant Softshell turtle, Pelochelys cantorii Compiler: Ayushi Jain Suggested citation: Jain, A., Das, A., V. Deepak., Cavada-Blanco, F. 2021. A Survival Blueprint for the Cantor’s Giant Softshell Turtle Pelochelys cantorii in India. EDGE of Existence programme, Zoological Society of London, UK 1. STATUS REVIEW 1.1 Taxonomy: Class : Reptilia Order : Testudines Family : Trionychidae Genus : Pelochelys Species : Pelocheys cantorii (Gray, 1864) Common Name : Cantor’s Giant softshell turtle/ Asian Giant softshell turtle/ Local name : Bheemanama, Paala poovan (Malayalam) Synonyms: Pelochelys clivepalmeri (Hoser, 2014), P. cumingii (Gray, 1864), P. poljakowii (Strauch, 1890), P. telstraorum (Hoser, 2014), P. cantoris (Boulenger, 1889) Pelochelys cantorii (Gray, 1864) is one of the three species in the genus Pelochelys. The other two species are P. bibroni and P. signifera known only from Papua New Guinea and Indonesia (Papua), respectively. P. cantorii has a large distribution across south and south-east Asia (Das, 2008). It is among the largest freshwater turtles in the world with adults reaching a carapace length of around 100 cm (Das, 2008). Sexual dimorphism is present with males having longer and thicker tales than females; something common for other softshell turtles. Females are also larger in size than males (Das, 2008). According to the last IUCN Red List of threatened species assessment for the species, Pelochelys cantorii might hide a complex of several different species (ATTWG, 2000) A B Figure 1. An adult Pelochelys cantorii on the banks of Chandragiri river caught as by-catch in a fishing line (A), and a close-up head shot showing the keratinized sheath or “teeth” of the species (B).
    [Show full text]
  • Nilssonia Leithii (Gray 1872) – Leith's Softshell Turtle
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project ofTrionychidae the IUCN/SSC Tortoise— Nilssonia and Freshwater leithii Turtle Specialist Group 075.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.075.leithii.v1.2014 © 2014 by Chelonian Research Foundation • Published 17 February 2014 Nilssonia leithii (Gray 1872) – Leith’s Softshell Turtle INDRANE I L DAS 1, SHASHWAT SI RS I 2, KARTH ik EYAN VASUDE V AN 3, AND B.H.C.K. MURTHY 4 1Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia [[email protected]]; 2Turtle Survival Alliance-India, D-1/316 Sector F, Janakipuram, Lucknow 226 021, India [[email protected]]; 3Laboratory for Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Pillar 162, PVNR Expressway, Hyderguda, Hyderabad 500 048, India [[email protected]]; 4Zoological Survey of India, J.L. Nehru Road, Kolkata 700 016, India [[email protected]] SU mm ARY . – Leith’s Softshell Turtle, Nilssonia leithii (Family Trionychidae), is a large turtle, known to attain at least 720 mm in carapace length (bony disk plus fibrocartilage flap), and possibly as much as 1000 mm. The species inhabits the rivers and reservoirs of southern peninsular India, replacing the more familiar Indian Softshell Turtle, N. gangetica, of northern India. The turtle is apparently rare within its range, even within protected areas, which is suspected to be due to a past history of exploitation.
    [Show full text]
  • Spiny Softshell Turtle: What You Can Do to Help the Spiny Softshell Turtle (Apalone Spinifera) Is a Medium to Large-Sized Freshwater Turtle
    Saving Spiny Softshell Turtle: What you can do to help The Spiny Softshell Turtle (Apalone spinifera) is a medium to large-sized freshwater turtle. Females can grow more than 4 times as big as males. Their carapace (top shell) is olive to tan, flat, round, keelless (no raised ridge down the centre of the shell), and leathery. The surface of the carapace may be slightly rough, like sandpaper, especially in adult males. Adult males have black circles on their carapace but females have a mottled or blotched pattern. The head and legs are green to gray, with a pattern of dark spots and yellowish-green stripes. The tubular snout has large nostrils, the lips are yellowish with dark spots, and the jaws are sharp. All four feet are webbed, and the webbing Photo: Scott Gillingwater extends up the back legs. Do you live near Spiny Softshell Field check Turtles? Long neck In the Carolinian zone the Spiny Softshell Turtle Long snout can be found in Lake St. Clair, Lake Erie Very flat, leathery, olive to brownish (including major tributaries like the Thames and coloured carapace Sydenham Rivers), and western Lake Ontario. They live in soft-bottomed rivers and lakes. They Very fast on land and in water are often seen at or just downstream of river Buries into the mud and then wiggles bends. They spend a lot of time basking on to settle the mud over the shell sunlit riverbanks, logs, rocks, and some artificial structures. They hunt for food in riffles, creeks, shallow inlets, and areas with vegetative debris and aquatic plants.
    [Show full text]
  • RELATIVE ABUNDANCE of SPINEY SOFTSHELL TURTLES (Apalone Spinifera) on the MISSOURI and YELLOWSTONE RIVERS in MONTANA FINAL REPOR
    RELATIVE ABUNDANCE OF SPINEY SOFTSHELL TURTLES (Apalone spinifera) ON THE MISSOURI AND YELLOWSTONE RIVERS IN MONTANA FINAL REPORT Arnold R. Dood, Brad Schmitz, Vic Riggs, Nate McClenning, Matt Jeager, Dave Fuller, Ryan Rauscher, Steve Leathe, Dave Moore, JoAnn Dullum, John Ensign, Scott Story, Mike Backes Abstract In 2003, the Missouri River Natural Resources Committee (MRNRC) Wildlife Section advocated developing a survey for the relative abundance of softshell turtles (Apalone sp.) on the Missouri River system. Softshell turtles were selected because they occur throughout the system and there was some information suggesting that they may have been impacted by system operations. As a common riverine species, there were possibilities that softshell turtles may have been impacted because of the timing, level, and temperature of river flows as well as by dam construction and bank stabilization. In addition, there were reports from other areas in the species range that they may be especially sensitive to human disturbance. From 2004 through 2008, State and Federal agencies and Pacific Power and Light in Montana sampled the Missouri River from Great Falls, MT, to the confluence of the Missouri and Yellowstone (except Fort Peck Reservoir) as well as they Yellowstone River from above Billings to the confluence. Sampling consisted of setting turtle traps every two river miles and checking for three days. Turtles captured were measured, marked, and released. Results of the sampling efforts indicated high relative densities above Fort Peck Reservoir and variable densities on the Yellowstone. No spiny softshells were found below Fort Peck or on the Yellowstone below Sidney, MT. Possible reasons are presented and recommendations for future program direction as well as potential system modifications to benefit this species are discussed.
    [Show full text]
  • Parasites of Florida Softshell Turtles (Apalone Ferox} from Southeastern Florida
    J. Helminthol. Soc. Wash. 65(1), 1998 pp. 62-64 Parasites of Florida Softshell Turtles (Apalone ferox} from Southeastern Florida GARRY W. FOSTER,1-3 JOHN M. KINSELLA,' PAUL E. MoLER,2 LYNN M. JOHNSON,- AND DONALD J. FORRESTER' 1 Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611 (e-mail:[email protected]; [email protected]; [email protected]) and 2 Florida Game and Fresh Water Fish Commission, Gainesville, Florida 32601 (e-mail: pmoler®wrl.gfc.state.fi.us) ABSTRACT: A total of 15 species of helminths (4 trematodes, 1 monogenean, 1 cestode, 5 nematodes, 4 acan- thocephalans) and 1 pentastomid was collected from 58 Florida softshell turtles (Apalone ferox) from south- eastern Florida. Spiroxys amydae (80%), Cephalogonimiis vesicaudus (80%), Vasotrema robiistum (76%), and Proteocephalus sp. (63%) were the most prevalent helminths. Significant lesions were associated with the at- tachment sites of Spiroxys amydae in the stomach wall. Contracaecum multipapillatum and Polymorphus brevis are reported for the first time in reptiles. The pentastomid Alofia sp. is reported for the first time in North America and in turtles. KEY WORDS: Softshell turtle, Apalone ferox, helminths, pentastomes, Florida. The Florida softshell turtle (Apalone ferox) softshell turtles from southeastern Florida are ranges from southern South Carolina, through discussed. southern Georgia to Mobile Bay, Alabama, and all of Florida except the Keys (Conant and Col- Methods lins, 1991). Where it is sympatric with the Gulf A total of 58 Florida softshell turtles was examined. Coast spiny softshell turtle (Apalone spinifera Fifty-seven were obtained from a commercial proces- asperd) in the Florida panhandle, the Florida sor in Palm Beach County, Florida, between 1993 and softshell is found more often in lacustrine hab- 1995.
    [Show full text]
  • A Field Guide to South Dakota Turtles
    A Field Guide to SOUTH DAKOTA TURTLES EC919 South Dakota State University | Cooperative Extension Service | USDA U.S. Geological Survey | South Dakota Cooperative Fish and Wildlife Research Unit South Dakota Department of Game, Fish & Parks This publication may be cited as: Bandas, Sarah J., and Kenneth F. Higgins. 2004. Field Guide to South Dakota Turtles. SDCES EC 919. Brookings: South Dakota State University. Copies may be obtained from: Dept. of Wildlife & Fisheries Sciences South Dakota State University Box 2140B, NPBL Brookings SD 57007-1696 South Dakota Dept of Game, Fish & Parks 523 E. Capitol, Foss Bldg Pierre SD 57501 SDSU Bulletin Room ACC Box 2231 Brookings, SD 57007 (605) 688–4187 A Field Guide to SOUTH DAKOTA TURTLES EC919 South Dakota State University | Cooperative Extension Service | USDA U.S. Geological Survey | South Dakota Cooperative Fish and Wildlife Research Unit South Dakota Department of Game, Fish & Parks Sarah J. Bandas Department of Wildlife and Fisheries Sciences South Dakota State University NPB Box 2140B Brookings, SD 57007 Kenneth F. Higgins U.S. Geological Survey South Dakota Cooperative Fish and Wildlife Research Unit South Dakota State University NPB Box 2140B Brookings, SD 57007 Contents 2 Introduction . .3 Status of South Dakota turtles . .3 Fossil record and evolution . .4 General turtle information . .4 Taxonomy of South Dakota turtles . .9 Capturing techniques . .10 Turtle handling . .10 Turtle habitats . .13 Western Painted Turtle (Chrysemys picta bellii) . .15 Snapping Turtle (Chelydra serpentina) . .17 Spiny Softshell Turtle (Apalone spinifera) . .19 Smooth Softshell Turtle (Apalone mutica) . .23 False Map Turtle (Graptemys pseudogeographica) . .25 Western Ornate Box Turtle (Terrapene ornata ornata) .
    [Show full text]
  • Sex Identification in the Chinese Softshell Turtle Pelodiscus Sinensis
    Research Note Sex Identification in the Chinese Softshell Turtle Pelodiscus sinensis (Trionychidae) Using the SBNO1 Gene Lan Zhao#, Xin Wang#, Qiu-Hong Wan, Sheng-Guo Fang* The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China # These authors contributed equally to this work. *Corresponding author: Prof. Sheng-Guo Fang Email: [email protected] Running title Sex identification in the Chinese softshell turtle Abstract The Chinese softshell turtle exhibits ZZ/ZW sex determination. To identify the sex of embryos, juvenile and adult individuals, we designed two pairs PCR primers, SB1-196 which amplify a fragment of 196 bp in the female and the other, CK1-482, amplify 482 bp fragment in both the sexes. It is validated in 24 adult turtles of known sex, sampled from three different locations. This one-step sexing technique is rapid and easy to perform, and reported for the first time. Key words: PCR, sex identification, sex chromosome, molecular sexing, reptile, Chinese softshell turtle. Introduction Chinese softshell turtle, Pelodiscus sinensis (family Trionychidae, suborder Cryptodira), possesses heteromorphic sex chromosomes (ZZ male, ZW female) (Kawai et al. 2007) is widely distributed in China and southeastern Asia (Zhao and Adler 1993) and have several populations named after the place of origin, e.g. Yellow River population, Taihu Lake population, and Japanese population, are well-studied in China (Liu et al. 2004; Xiao et al. 2005; Wang et al. 2010). Owing to the high economic value because of its larger size in male turtles (Figure 1a) in China, identification of the sex of embryos and juvenile is an important area of research.
    [Show full text]
  • Annual Report on Conservation and Science INTRODUCTION 2
    2013 Annual Report on Conservation and Science INTRODUCTION 2 2013 Annual Report on Conservation and Science Highlights The Association of Zoos and Aquariums’ (AZA) 2013 Annual Report on Conservation and Science (ARCS) celebrates the activities of AZA-accredited zoos and aquariums and certified related facilities in the following areas: » field conservation » mission-related research » education programming » sustainable (green) business practices Each of these areas has been carefully defined to maximize consistency of reporting and enhance data quality. Field conservation focuses on efforts having a direct impact on animals and habitats in the wild. Education programming includes those with specific goals and delivery methods, defined content, and a clear primary discipline and target audience. Mission-related research projects involve application of the scientific method and is therefore hypothesis (or question)-driven, involves systematic data collection and analysis of those data, and draws conclusions from the research process. Sustainable (green) business practices cover related staff support, purchasing policies, and education and outreach initiatives, as well as the management of six key resources: chemicals, energy, fuel, waste, water, and construction. While previous reports focused exclusively on field conservation, this is the first year all four of these areas are featured. Because of the history of reporting field conservation efforts, readers of this report will notice a discrepancy in response rates between field conservation (over 86 percent response rate) and the three new areas (approximately 52 percent for each area). AZA fully anticipates that response rates in future reports will increase across the four areas as the AZA community becomes more familiarized with the related data collection and reporting processes.
    [Show full text]
  • Table 7: Species Changing IUCN Red List Status (2020-2021)
    IUCN Red List version 2021-1: Table 7 Last Updated: 25 March 2021 Table 7: Species changing IUCN Red List Status (2020-2021) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2020 (IUCN Red List version 2020-3) and 2021 (IUCN Red List version 2021-1) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2020) List (2021) change version Category
    [Show full text]