Construction of Bridges Materials Suitable for the Construction of Long-Span Bridges 1

Total Page:16

File Type:pdf, Size:1020Kb

Construction of Bridges Materials Suitable for the Construction of Long-Span Bridges 1 Construction of Bridges Materials suitable for the Construction of Long-span Bridges 1. Stone – in arch masonry 2. Steel – in girder or box-section constructed in steel plates and standard sections 3. Steel – truss constructed of standard sections 4. Reinforced Concrete – in arch or spanned forms 5. Tensioned RC – in various forms 6. Precast – mainly in box-section girder Common Bridge Forms Simple Supported – span effective from 10m to 60m Actual example – Route 3 Interchange at Au Tau, Yuen Long Continuous Span – from 10m to 100m Actual example – construction of a span of continual section of elevated highway bridge at Route 3, Kwai Chung Balanced Cantilever – span from 25m to 200m Actual example – balanced cantilever bridge series forming the approach to the Ting Kau Bridge Balanced cantilever bridge for viaduct of West Rail at Au Tau Interchange Balanced Cantilever Suspended Span – span from 50m to 300m Steel Truss – 50m to 100m Actual example – 5-span steel truss bridge in western part of Pearl River, Guangzhou Steel Arch (framed or trussed) – from 150m to 500m The Sydney Harbour Bridge and its approach Cable suspension – from 400m to 1500m The 1377m span Tsing Ma Bridge Concrete Arch (ribbed or unribbed) – from 50m to 300m Steel Arch – from 100m to 500m Cable stayed (multi-spanned) – from 50 to 500m per span The 3-span cable-stayed Ting Kau Bridge Cable stayed span – from 200m to 800m Actual example – the connecting bridge from Macau Mainland to the Island of Taipa in Macau Example of box-sectioned steel girder bridge Structural Elements for Typical Bridges 1. Foundation –for bridge towers, portal frames or piers 2. Bridge Tower – the vertical supporting structure for cable suspension or cable-stayed bridges 3. Portal frame or pier – the vertical supporting structure for usual spanned bridges 4. Bridge deck – the horizontal part of a bridge that support pedestrian or traffic activities 5. Bridge anchor – required only for suspension bridges to counter resist the pull from the suspension cable 6. Suspension cable – for suspension and cable-stayed bridges for the hanging, support or counter-balancing of the bridge deck The foundation of the bridge tower of Ting Kau Bridge on Tsing Yi side The foundation for the Bridge Tower of Tsing Ma Bridge on the Tsing Yi side Forming the foundation for piers of elevated highway bridges Pier supports for an elevated roadway A portal frame serving also as a transfer beam in the Route 3/Airport Railway at Kwai Chung Bridge tower for Tsing Ma Bridge and Kap Shiu Mun Bridge Tsing Ma Tower The forming of the cable anchor of Tsing Ma Bridge on Ma Wan side The forming of the cable anchor of Tsing Ma Bridge on Tsing Yi side Forming the deck of the approach section of Tsing Ma Bridge on Ma Wan side using erection and hoisting approach Forming the deck of the approach section of Tsing Ma Bridge on Tsing Yi side Completing the deck of Tsing Ma Bridge (abutting section at Tsing Yi side) by erecting of the steel truss at spot Hoisting and erecting of the modulated bridge deck for the Tsing Ma Bridge Forming the bridge deck of Ting Kau Bridge using modulated steel girder frames Laying the precast deck of the steel girder frame Other methods to form the deck of bridges 1. Balanced cantilever method 2. Construct in-situ 3. Construct using precast beam 4. Construct using precast girder section and erected by a launching machine (viaduct) 5. Construct using incremental launching method Forming the deck of the Ting Kau Bridge approach section using a special balanced- cantilever traveling formwork system The Ting Kau Bridge approach section Construction of a section of elevated railway track in the KCR Ma On Shan Line using in-situ method The laying of precast beams to form the deck of the Route 3 elevated roadway at Kwai Chung Hoisting of the precast beams using a special launching gantry Construction of an elevated highway bridge using precast girder erected by the use of a launching machine Launching gantry used to erect precast girders to form a span of an elevated bridge (viaduct) A bridge in the Fo Tan Road Improvement Project making use of Incremental Launching method to span across the servicing KCR rail line Alignment of servicing rail line – elevated roadway constructed in the form of viaduct Route 3 – Kwai Chung Section Route 3 – Country Park Section at Au Tau Interchange Hung Hom Bypass Tsing Yi North Coastal Roadway Highway project in Ma On Shan Launching gantry used in the Hung Hom Bypass Launching gantry used in Route 3 at Au Tau Interchange Launching gantry used in Tsing Yi North Coastal Roadway Launching gantry used in the Ma On Shan highway project (T7) Launching Gantry used in the Route 3 Kwai Chung section A review of other highway and railway bridges – construction of the viaduct systems for the West Rail projects Viaduct for railway track of the Kowloon Canton Railway West Rail at the northwestern part of the New Territory, Hong Kong Some sections of viaduct spanning more than 40m at Au Tau Interchange Forming the viaduct for railway track using the under- slung girder and longitudinal beam supported method Erection of the viaduct using balanced cantilever arrangement with temporary anchor before completion of a span Precast box girders used for the viaduct A section of viaduct with provision for an extension to the future northern link Construction of some sections of elevated railway track using in-situ method Constructing the linking bridge between Tung Chung and Chek lap Kok (the Airport Railway) using Incremental Launching method Principle of viaduct construction using segmental launching (by Launching Machine) (SWL = 105 T) (For end span and 1st pair segment erection) Slave winch Hangers Front (SWL = 120T) Main Truss support Master winch 116m long Rear leg Rear Front leg support Elevation of the Launching Machine Typical installation of the precast box-girder to form the viaduct: Install the 1st Pair Segment By The Launching Machine with Hangers 1st pair segment preassembled on ground, ready to be lifted up by master winches. a) Stitching platform and rebar cage b) Hanger frame c) Stressing Platform FIRST PAIR SEGMENTS LIFTING (WITH FORMWORK AND STRESSING PLATFORM) Hang the 1st pair segments to launching girder After fine adjustment, cast the stitch concrete FIRST PAIR SEGMENTS IN PLACE Perform the tendon stressing, load transfer from LG to Portal Pier Remove the platforms FORMWORK REMOVAL FIRST PAIR SEGMENTS STITCHING COMPLETED Typical installation of the precast box-girder to form the viaduct: Continue to erect the segments pairs by pairs Using balanced cantilever principle LIFT SEGMENT FROM GROUND TO ERECTING POSITION Lift and erect the next precast segment Apply epoxy glue to the match cast face and temporary stressing. Erect the conjugate segment pair; After application of cantilever tendon, load transfer to pier completed; A section of viaduct erected in a balanced cantilever manner Continue the segment erection for the rest segment pairs Typical Span Completion of a span Hang the end span segments with hanger frame Adjust the geometry of the hanging segments Concrete the stitch joints Perform the span tendon stressing when concrete has developed the required strength,. Load transfer to pier or portal completed, released the hangers End-span erection with the use of hanger to support the precast box from the launching girder Trends in the Construction of Bridges in HK Construction of large and long-span bridges is of no doubt a part of the major infrastructure development for a city, which is, again, a reflection of the economical climate and development strategy of the area. On the construction side, the limited land reserve in Hong Kong does imposes stringent conditions especially where the options and cost effectiveness of constructing a bridge is concerned. To cope with these considerations, a few world-class bridges over 1000m span are yet scheduled for completion in the coming decade, in view of keeping Hong Kong to be competitive in particular within the highly economic-active region in the southern part of China. The construction of these bridges is, without much choice, in the form of either cable-stayed or suspension bridges. The construction of other medium to short-span bridges are becoming much popular recently as part of the highway improvement strategy in Hong Kong. The shortage of space for highway improvement works, the involvement of complicated interchanging provisions, the familiarization of bridge construction techniques in catering various local constraints with acceptable cost, are factors that made bridges of this type becoming popular. Some inherited difficulties such as the requirement of large amount of working spaces for the forming, transporting and storing of the roomy precast elements; the operation of the launching works, or arrangement for traffic diversion within existing busy roadway, still makes roadwork under urban environments complicated and costly. Needless to mention working in environmental sensitive locations such as where protection to natural habitats or rural culture is required; or where waste, noise and dust problems are of ultimate concern. The cost for constructing bridges are unavoidably high in particular working within congested and complicated urban environment like Hong Kong. As a tradition, bridges and elevated highway structures in Hong Kong are mainly constructed in concrete. As a cost saving option, steel bridge, say, in hollow section, box-girder or any other feasible design, may be alternative choices for highway bridges, like those commonly used in Mainland China or Japan. The saving in initial cost and construction time of using such alternatives may provide surplus capitals and expedite the ongoing infrastructure projects, this is essential especially in the forthcoming years when the economic situation is expected to be less favourable than before.
Recommended publications
  • Review on Applicability of Box Girder for Balanced Cantilever Bridge Sneha Redkar1, Prof
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072 Review on applicability of Box Girder for Balanced Cantilever Bridge Sneha Redkar1, Prof. P. J. Salunke2 1Student, Dept. of Civil Engineering, MGMCET, Maharashtra, India 2Head, Assistant Professor, Dept. of Civil Engineering, MGMCET, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper gives a brief introduction to the 1874. Use of steel led to the development of cantilever cantilever bridges and its evolution. Further in cantilever bridges. The world’s longest span cantilever bridge was built bridges it focuses on system and construction of balanced in 1917 at Quebec over St. Lawrence River with main span of cantilever bridges. The superstructure forms the dynamic 549 m. India can boast of one such long bridge, the Howrah element as a load carrying capacity. As box girders are widely bridge, over river Hooghly with main span of 457 m which is used in forming the superstructure of balanced cantilever fourth largest of its kind. bridges, its advantages are discussed and a detailed review is carried out. Concrete cantilever construction was first introduced in Europe in early 1950’s and it has since been broadly used in design and construction of several bridges. Unlike various Key Words: Bridge, Balanced Cantilever, Superstructure, bridges built in Germany using cast-in-situ method, Box Girder, Pre-stressing cantilever construction in France took a different direction, emphasizing the use of precast segments. The various advantages of precast segments over cast-in-situ are: 1. INTRODUCTION i. Precast segment construction method is a faster method compared to cast-in-situ construction method.
    [Show full text]
  • Bridges Key Stage 2 Thematic Unit
    Bridges Key Stage 2 Thematic Unit Supporting the Areas of Learning and STEM Contents Section 1 Activity 1 Planning Together 3 Do We Need Activity 2 Do We Really Need Bridges? 4 Bridges? Activity 3 Bridges in the Locality 6 Activity 4 Decision Making: Cantilever City 8 Section 2 Activity 5 Bridge Fact-File 13 Let’s Investigate Activity 6 Classifying Bridges 14 Bridges! Activity 7 Forces: Tension and Compression 16 Activity 8 How Can Shapes Make a Bridge Strong? 18 Section 3 Activity 9 Construction Time! 23 Working with Activity 10 Who Builds Bridges? 25 Bridges Activity 11 Gustave Eiffel: A Famous Engineer 26 Activity 12 Building a Bridge and Thinking Like an Engineer 28 Resources 33 Suggested Additional Resources 60 This Thematic Unit is for teachers of Key Stage 2 children. Schools can decide which year group will use this unit and it should be presented in a manner relevant to the age, ability and interests of the pupils. This Thematic Units sets out a range of teaching and learning activities to support teachers in delivering the objectives of the Northern Ireland Curriculum. It also supports the STEM initiative. Acknowledgement CCEA would like to thank The Institution of Civil Engineers Northern Ireland (ICE NI) for their advice and guidance in the writing of this book. Cover image © Thinkstock Do We Need Bridges? Planning together for the theme. Discovering the reasons for having, and the impact of not having, bridges. Writing a newspaper report about the impact of a missing bridge. Researching bridges in the locality. Grouping and classifying bridges.
    [Show full text]
  • Over Jones Falls. This Bridge Was Originally No
    The same eastbound movement from Rockland crosses Bridge 1.19 (miles west of Hollins) over Jones Falls. This bridge was originally no. 1 on the Green Spring Branch in the Northern Central numbering scheme. PHOTO BY MARTIN K VAN HORN, MARCH 1961 /COLLECTION OF ROBERT L. WILLIAMS. On October 21, 1959, the Interstate Commerce maximum extent. William Gill, later involved in the Commission gave notice in its Finance Docket No. streetcar museum at Lake Roland, worked on the 20678 that the Green Spring track west of Rockland scrapping of the upper branch and said his boss kept would be abandoned on December 18, 1959. This did saying; "Where's all the steel?" Another Baltimore not really affect any operations on the Green Spring railfan, Mark Topper, worked for Phillips on the Branch. Infrequently, a locomotive and a boxcar would removal of the bridge over Park Heights Avenue as a continue to make the trip from Hollins to the Rockland teenager for a summer job. By the autumn of 1960, Team Track and return. the track through the valley was just a sad but fond No train was dispatched to pull the rail from the memory. Green Spring Valley. The steel was sold in place to the The operation between Hollins and Rockland con- scrapper, the Phillips Construction Company of tinued for another 11/2 years and then just faded away. Timonium, and their crews worked from trucks on ad- So far as is known, no formal abandonment procedure jacent roads. Apparently, Phillips based their bid for was carried out, and no permission to abandon was the job on old charts that showed the trackage at its ' obtained.
    [Show full text]
  • Polydron-Bridges-Work-Cards.Pdf
    Getting Started You will need: A Polydron Bridges Set ❑ This activity introduces you to the parts in the set and explains what each of them does. A variety of traditional Polydron and Frameworks pieces are used in each of the activities. However, they are coloured to produce more realistic effects. For example, the traditional squares are black and used to represent the road on the bridge deck. Plinth ❑ On the right you can see the plinth or bridge base. All of the bridges use one or two of these. They give each bridge a firm base and allow special parts to be connected easily. Notice the two holes in the top on the plinth. These holes are for long struts. These can be seen in place below. ❑ The second picture shows the plinth with two right-angled triangles and a rectangle connected. All three of these parts clip into the plinth. Struts ❑ There are three different lengths of strut in the set. There are 80mm short struts that are used with the pulleys with lugs to carry cables. These are shown on the left. The lugs fit into long struts. On the Drawbridge 110mm short struts are used with ordinary pulleys and a winding handle. ❑ Long struts are also used to support the cable assembly of the Suspension Bridge and the Cable Stay Bridge. This idea can be seen in the picture on the right. ❑ Long struts are also used to connect the two sections of the Drawbridge. ® ©Bob Ansell Special Rectangles ❑ Special rectangles can be used in a variety of ways.
    [Show full text]
  • Cantilever Bridges: the Governor Harry W
    CANTILEVER BRIDGES: THE GOVERNOR HARRY W. NICE MEMORIAL BRIDGE From a technical perspective, cantilever construction of a bridge defines a specific form of support of the bridge rather than a particular bridge type such as the truss or girder. Simply supported bridges are directly supported on piers and abutments, while continuous structures, as developed in both metal and reinforced concrete during the late nineteenth and early twentieth centuries, include spans that are continuous across one or more intermediate supports. By contrast, the cantilever form of support occurs when the support is at one end and the other end of the span is free. Cantilever bridges consist of a series of cantilevered spans including a main span and two anchor spans which flank it (Pennsylvania Historical and Museum Commission, and Pennsylvania Department of Transportation 1986:124). Based on historical research alone, cantilever bridges in Maryland appear to be represented by only one bridge, which may be briefly described in order to provide historic technological context for the evaluation of that bridge, the 1940 Governor Harry W. Nice Memorial Bridge carrying U.S. 301 over the Potomac River. Bridge historian J.A.L. Waddell noted that "the development of the cantilever. did not proceed very far until modern times, when the truss form of structure had become established and when iron and steel constituted the materials of construction" (Waddell 1916:7). Waddell and subsequent technological historians dated the major advent of modern cantilever bridges to the design and construction of the high bridge over the Kentucky River at Dixville in 1876-1877.
    [Show full text]
  • Cable-Stayed Bridge from Wikipedia, the Free Encyclopedia Cable-Stayed Bridge
    Cable-stayed bridge From Wikipedia, the free encyclopedia Cable-stayed bridge The Rio-Antirrio bridge in Greece Ancestor Suspension bridge Related None Side-spar cable-stayed bridge, Self- Descendant anchored suspension bridge, cantilever spar cable-stayed bridge Pedestrians, bicycles, automobiles, Carries trucks, light rail Span range Medium Steel rope, post-tensioned concrete Material box girders, steel or concrete pylons Movable No Design effort medium Falsework Normally none required A cable-stayed bridge is a bridge that consists of one or more columns (normally referred to as towers or pylons), with cables supporting the bridge deck. There are two major classes of cable-stayed bridges: In a harp design, the cables are made nearly parallel by attaching them to various points on the tower(s) so that the height of attachment of each cable on the tower is similar to the distance from the tower along the roadway to its lower attachment. In a fan design, the cables all connect to or pass over the top of the tower(s). Compared to other bridge types, the cable-stayed is optimal for spans longer than typically seen in cantilever bridges, and shorter than those typically requiring a suspension bridge. This is the range in which cantilever spans would rapidly grow heavier if they were lengthened, and in which suspension cabling does not get more economical, were the span to be shortened. History of development Cable-stayed bridge by the Renaissance polymath Fausto Veranzio, from 1595/1616 Cable-stayed bridges can be dated back to 1595, where designs were found in a book by the Venetian inventor Fausto Veranzio, called Machinae Novae.
    [Show full text]
  • Bridge Engineering Handbook Superstructure Design Segmental
    This article was downloaded by: 10.3.98.104 On: 02 Oct 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Bridge Engineering Handbook Superstructure Design Wai-Fah Chen, Lian Duan Segmental Concrete Bridges Publication details https://www.routledgehandbooks.com/doi/10.1201/b16523-4 Wai-Fah Chen, Lian Duan Published online on: 24 Jan 2014 How to cite :- Wai-Fah Chen, Lian Duan. 24 Jan 2014, Segmental Concrete Bridges from: Bridge Engineering Handbook, Superstructure Design CRC Press Accessed on: 02 Oct 2021 https://www.routledgehandbooks.com/doi/10.1201/b16523-4 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 Segmental Concrete Bridges 3.1 Introduction ........................................................................................91
    [Show full text]
  • Identifying and Preserving Historic Bridges
    Appendix B—State Departments of Transportation Alabama Department of Transportation Florida Department of Transportation 1409 Coliseum Boulevard 605 Suwannee Street Montgomery, AL 36130 Tallahassee, FL 32399-0450 (334) 242-6311 (850) 488-8541 (334) 262-8041 (fax) (850) 277-3403 (fax) Alaska Department of Transportation & Public Facilities Georgia Department of Transportation 3132 Channel Drive 2 Capital Square Juneau, AK 99801-7898 Atlanta, GA 30334 (907) 465-3900 (404) 656-5206 (907) 586-8365 (fax) (404) 657-8389 (fax) Internet address: [email protected] Arizona Department of Transportation 206 S. 17th Avenue Hawaii Department of Transportation Phoenix, AZ 85007 869 Punchbowl Street (602) 255-7011 Honolulu, HI 96813-5097 (602) 256-7659 (fax) (808) 587-2150 (808) 587-2167 (fax) Arkansas State Highway and Transportation Department State Highway Department Building Idaho Transportation Department P.O. Box 2261, 10324 Interstate 30 3311 W. State Street Little Rock, AR 72203 P.O. Box 7129 (501) 569-2000 Boise, ID 83707 (501) 569-2400 (fax) (208) 334-8000 (208) 334-3858 (fax) California Department of Transportation 1120 N Street Illinois Department of Transportation P.O. Box 942673 2300 S. Dirksen Parkway Sacramento, CA 94273-0001 Springfield, IL 62764 (916) 654-5266 (217) 782-5597 (217) 782-6828 (fax) Colorado Department of Transportation 4201 East Arkansas Avenue Indiana Department of Transportation Denver, CO 80222 Indiana Government Center North (303) 757-9201 100 North Senate Avenue (303) 757-9149 (fax) Indianapolis, IN 46204-2249 (317) 232-5533 Connecticut Department of Transportation (317) 232-0238 (fax) P.O. Box 317546 / 2800 Berlin Turnpike Newington, CT 06131-7546 Iowa Department of Transportation (860) 594-3000 800 Lincoln Way Ames, IA 50010 Delaware Department of Transportation (515) 239-1101 Bay Road, Route 113, P.O.
    [Show full text]
  • Bridge Engineering Handbook
    Sauvageot, G. “Segmental Concrete Bridges.” Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 11 Segmental Concrete Bridges 11.1 Introduction 11.2 Balanced Cantilever Girder Bridges Overview • Span Arrangement and Typical Cross Sections • Cast-in-Place Balanced Cantilever Bridges • Precast Balanced Cantilever Bridges • Loads on Substructure • Typical Post-Tensioning Layout • Articulation and Hinges 11.3 Progressive and Span-by-Span Constructed Bridges Overview • Progressive Construction • Span-by-Span Construction 11.4 Incrementally Launched Bridges Overview • Special Requirements • Typical Post-Tensioning Layout • Techniques for Reducing Launching Moments • Casting Bed and Launching Methods 11.5 Arches, Rigid Frames, and Truss Bridges Arch Bridges • Rigid Frames • Segmental Trusses 11.6 Segmental Cable-Stayed Bridges Overview • Cantilever Construction • In-Stage Construction • Push-Out Construction 11.7 Design Considerations Overview • Span Arrangement • Cross-Section Dimensions • Temperature Gradients • Deflection • Post-Tensioning Layout 11.8 Seismic Considerations Design Aspects and Design Codes • Deck/Superstructure Connection 11.9 Casting and Erection Casting • Erection 11.10 Future of Segmental Bridges The Challenge • Concepts • New Developments • Environmental Impact • Industrial Production of Gerard Sauvageot Structures • The Assembly of Structures • J. Muller International Prospective © 2000 by CRC Press LLC 11.1 Introduction Before the advent of segmental construction, concrete bridges would often be made of several precast girders placed side by side, with joints between girders being parallel to the longitudinal axis of the bridge. With the modern segmental concept, the segments are slices of a structural element between joints which are perpendicular to the longitudinal axis of the structure. When segmental construction first appeared in the early 1950s, it was either cast in place as used in Germany by Finsterwalder et al., or precast as used in France by Eugène Freyssinet and Jean Muller.
    [Show full text]
  • Ten Years of Segmental Achievements and Projections for ~He Next Century
    Ten Years of Segmental Achievements and Projections for ~he Next Century The last 10 years have seen dramatic growth in the construction of segmental concrete bridges in North America, which is estimated to have an annual construction volume exceeding one billion dollars. The bridges have been built using both precast and cast-in-place concrete segmen..ts. Many of these projects have won national and regional awards ~ · · fhis article presents summaries of the major structural features of some of the most outstanding segmental bridges constructed in North America during the last 10 years. Clifford l. Freyermuth Details concerning the design and method of construction of each Manager project are discussed. Finally, the future prospects and potential for American Segmental Bridge Institute segmental bridge construction in the next century are addressed. Phoenix, Arizona Clifford L. Freyermuth is president rom Bangkok to Boston, the past It is estimated that since 1980, the of Clifford L. Freyermuth, Inc. , 10 years have witnessed the cost of segmental construction (pre­ which was formed in 1988 to Femergence of segmental con­ cast and cast-in-place) completed in provide structural consu lting crete bridge construction as the North America is about $5 billion. services for post-tensioned, method of choice for major transporta­ prestressed concrete buildings and Today, the annual construction vol­ bridges. The firm has provided tion projects. In the United States, this ume of this industry is around $1 bil­ management and technical serv ices result has primarily been achieved due lion and is expected to grow in the to the American Segmental Bridge to the initial cost advantages of seg­ next century.
    [Show full text]
  • Segmental Bridge Construction in Florida — a Review and Perspective
    Special Report Segmental Bridge Construction in Florida — A Review and Perspective by Alan J. Moreton, P.E. State Structures Engineer Florida Department of Transportation Tallahassee, Florida 36 SYNOPSIS This paper offers an overview of the precast concrete segmental bridges designed and built in the state of Florida during the last ten years. The article summarizes various statistical structural parameters, segment manufacturing and erection methods, construction times, costs, and reviews problems typically encountered. Also included is a discussion of current industry and nationwide design and construction practices and some suggestions for possible improvements. CONTENTS Synopsis............................................37 1. Introduction ......................................38 2. Precast Segmental Bridges ........................38 3. Florida's Segmental Bridges .......................44 4. Structural Parametrics .............................44 5. Casting Yard Operations ...........................48 6. Rejected Segments .............................. 49 7. Erection Operations ...............................50 8. Some Typical Problems ...........................52 9. Time ............................................55 10. Costs ...........................................57 11. Administration Processes — Design, Construction andShop Drawings ...............................60 12. Actions by the Florida Department of Transportation ...63 13. Benefits of Segmental Bridges ......................64 14. Summary ........................................65
    [Show full text]
  • K'nex Intro to Structures: Bridges Teacher Guide
    INTRO TO STRUCTURES BRIDGES Teacher’s Guide KNX 96168-V2 K’NEX Education is a Registered Trademark © 2007 K’NEX Limited Partnership Group of K’NEX Limited Partnership Group. and its licensors. Conforms to the Requirements of ASTM Standard Consumer Safety Specification on Toy Safety, F963-03. Manufactured under U.S. Patents 5,061,219; 5,199,919; 5,350,331; 5,137,486. Other U.S. and foreign patents pending. Protected by International Copyright. All rights reserved. A NOTE ABOUT SAFETY: CAUTIONS: Safety is of primary concern in science and Students should not overstretch or overwind their technology classrooms. It is recommended that Rubber Bands. Overstretching and overwinding you develop a set of rules that governs the safe, can cause the Rubber Band to snap and cause proper use of K’NEX in your classroom. Safety, personal injury. Any wear and tear or deterioration as it relates to the use of the Rubber Bands of Rubber Bands should be reported immediately should be specifically addressed. to the teacher. Teachers and students should inspect Rubber Bands for deterioration before each experiment. Caution students to keep hands and hair away from all moving parts. Never put fingers in moving Gears or other moving parts. CHOKE HAZARD - Small parts. Not for children under 3 years. BRIDGES Introduction: OVERVIEW This Teacher’s Guide has been developed to support you as your students investigate the K’NEX Introduction to Structures: Bridges set. In conjunction with the K’NEX materials and individual student journals that we suggest your students maintain throughout their investigations, the information and resources included here can be used to build your students’ understanding of scientific, technical and design concepts and to channel their inquiries into active and meaningful learning experiences.
    [Show full text]