Alzheimer Dementia: Starting, Stopping Drug Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Alzheimer Dementia: Starting, Stopping Drug Therapy REVIEW CME CREDIT LUKE D. KIM, MD, FACP, CMD RONAN M. FACTORA, MD, FACP, AGSF Assistant Professor of Medicine, Cleveland Clinic Lerner Assistant Professor of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, College of Medicine of Case Western Reserve University, Cleveland, OH; Center for Geriatric Medicine, Medicine Cleveland, OH; Center for Geriatric Medicine, Medicine Institute, Cleveland Clinic Institute, Cleveland Clinic Alzheimer dementia: Starting, stopping drug therapy ABSTRACT lzheimer disease is the most common A form of dementia. In 2016, an estimated Alzheimer disease is the most common type of dementia. 5.2 million Americans age 65 and older had Two classes of cognition-enhancing drugs are approved Alzheimer disease. The prevalence is project- to treat the symptoms, and both have provided modest ed to increase to 13.8 million by 2050, includ- benefi t in clinical trials. Psychotropic drugs are sometimes ing 7 million people age 85 and older.1 used off-label to treat behavioral symptoms of Alzheimer Although no cure for dementia exists, sev- disease. All these medications should be continuously eral cognition-enhancing drugs have been ap- evaluated for clinical effi cacy and, when appropriate, proved by the US Food and Drug Administra- discontinued if the primary benefi t—preservation of cog- tion (FDA) to treat the symptoms of Alzheimer nitive and functional status and a reduction in behaviors dementia. The purpose of these drugs is to associated with dementia—is no longer being achieved. stabilize cognitive and functional status, with a secondary benefi t of potentially reducing be- KEY POINTS havioral problems associated with dementia. In 2016, an estimated 5.2 million Americans age 65 and ■ CURRENTLY APPROVED DRUGS older had Alzheimer disease; by 2050, the prevalence is expected to be 13.8 million. Two classes of drugs are approved to treat Alz- heimer disease: cholinesterase inhibitors and an N-methyl-d-aspartate (NMDA) receptor Cognitive enhancers (cholinesterase inhibitors and an antagonist (Table 1). N-methyl-D-aspartate receptor antagonist) have shown modest effi cacy in preserving cognitive function. Cholinesterase inhibitors The cholinesterase inhibitors act by revers- When evaluating therapy with a cognitive enhancer, prac- ibly binding and inactivating acetylcholines- titioners need to consider the potential adverse effects, terase, consequently increasing the time the neurotransmitter acetylcholine remains in the especially gastrointestinal effects with cholinesterase synaptic cleft. The 3 FDA-approved cholines- inhibitors. terase inhibitors are donepezil, galantamine, and rivastigmine. Tacrine, the fi rst approved Discontinuation should be considered when the demen- cholinesterase inhibitor, was removed from tia reaches the advanced stage and the initial intended the US market after reports of severe hepatic purpose of these drugs is no longer achievable. toxicity.2 The clinical effi cacy of cholinesterase in- hibitors in improving cognitive function has been shown in several randomized controlled trials.3–10 However, benefi ts were generally modest, and some trials used questionable Dr. Factora has disclosed stock ownership in Pfi zer, Inc. methodology, leading experts to challenge the doi:10.3949/ccjm.85a.16080 overall effi cacy of these agents. CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 85 • NUMBER 3 MARCH 2018 209 Downloaded from www.ccjm.org on September 25, 2021. For personal use only. All other uses require permission. ALZHEIMER DRUGS TABLE 1 Cognitive enhancers approved for Alzheimer disease Proprietary name Drug (date approved) Indications Formulations Cholinesterase inhibitors Donepezil Aricept (1996), Mild to moderate Tablets, disintegrating tablets generics available disease (5–10 mg), moderate to severe disease (10–23 mg) Rivastigmine Exelon (2000), Mild to moderate Tablets, oral solution, transdermal patch generics available disease Galantamine Razadyne (2001), Mild to moderate Immediate-release tablets, oral solution, generics available disease extended-release tablets N-methyl-D-aspartate receptor antagonist Memantine Namenda (2003), Moderate to severe Tablets, oral solution generics available disease Combination drug Donepezil + Namzaric (2014), Moderate to severe Extended-release capsules memantine generics available disease All 3 drugs are approved for mild to mod- In December 2014, the FDA approved a No novel drug erate Alzheimer disease (stages 4–6 on the capsule formulation combining donepezil and for Alzheimer Global Deterioration Scale; Table 2)11,12; only memantine to treat symptoms of Alzheimer donepezil is approved for severe Alzheimer dis- dementia. However, no novel pharmacologic disease has ease. Rivastigmine has an added indication for treatment for Alzheimer disease has been ap- been approved treating mild to moderate dementia associated proved since 2003. Furthermore, recently Pfi z- since 2003 with Parkinson disease. Cholinesterase inhibi- er announced a plan to eliminate 300 research tors are often used off-label to treat other forms positions aimed at fi nding new drugs to treat of dementia such as vascular dementia, mixed Alzheimer disease and Parkinson disease.15 dementia, and dementia with Lewy bodies.13 ■ CONSIDERATIONS WHEN STARTING NMDA receptor antagonist COGNITIVE ENHANCERS Memantine, currently the only FDA-approved NMDA receptor antagonist, acts by reducing Cholinesterase inhibitors neuronal calcium ion infl ux and its associated Adverse effects of cholinesterase inhibitors are excitation and toxicity. Memantine is approved generally mild and well tolerated and subside for moderate to severe Alzheimer disease. within 1 to 2 weeks. Gastrointestinal effects are common, primarily diarrhea, nausea, and Combination therapy vomiting. They are transient but can occur in Often, these 2 classes of medications are pre- about 20% of patients (Table 3). scribed in combination. In a randomized con- Other potential adverse effects include trolled trial that added memantine to stable bradycardia, syncope, rhabdomyolysis, neu- doses of donepezil, patients had signifi cantly roleptic malignant syndrome, and esophageal better clinical response on combination ther- rupture. Often, the side-effect profi le helps de- apy than on cholinesterase inhibitor mono- termine which patients are appropriate candi- therapy.14 dates for these medications. 210 CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 85 • NUMBER 3 MARCH 2018 Downloaded from www.ccjm.org on September 25, 2021. For personal use only. All other uses require permission. KIM AND FACTORA TABLE 2 Alzheimer disease: Severity, associated symptoms, and recommended treatment Dementia category Global Deterioration Scale (stages 1–7) Medications Not demented 1 No cognitive impairment No indication for cognitive enhancers 2 Very mild decline: age-associated cognitive impairment 3 Mild cognitive impairment, minor neurocognitive decline Mild dementia 4 Decreased knowledge of current and recent events Cholinesterase inhibitors Decreased ability to travel, handle fi nances, and manage basic activities of daily living Moderate 5 Unable to recall a major relevant aspect of their current life, Cholinesterase inhibitors dementia an address or telephone number of many years, or the names with or without an NMDA of close family members receptor antagonist Basic activities of daily living begin to be impaired Severe dementia 6 Occasionally forgets the name of the spouse or caregiver on whom Cholinesterase inhibitor he or she is entirely dependent (donepezil) with or without an NMDA receptor Unaware of all recent events and experiences in their lives antagonist Most basic activities of daily living impaired Advanced 7 Cannot speak or walk, has incontinence and diffi culty swallowing No randomized controlled dementia trials in stage 7 NMDA = N-methyl-D-aspartate Based on information in references 11 and 12. As expected, higher doses of donepezil (23 Bradycardia risk. Patients with signifi cant mg vs 5–10 mg) are associated with higher bradycardia or who are taking medications rates of nausea, diarrhea, and vomiting. that lower the heart rate may experience a Dosing. The cholinesterase inhibitors worsening of their bradycardia or associated should be slowly titrated to minimize side ef- symptoms if they take a cholinesterase inhibi- fects. Starting at the lowest dose and main- tor. Syncope from bradycardia is a signifi cant taining it for 4 weeks allows suffi cient time for concern, especially in patients already at risk transient side effects to abate. Some patients of falls or fracture due to osteoporosis. may require a longer titration period. As the dose is escalated, the probability of NMDA receptor antagonist side effects may increase. If they do not sub- The side-effect profi le of memantine is gener- side, dose reduction with maintenance at the ally more favorable than that of cholinesterase next lower dose is appropriate. inhibitors. In clinical trials, it has been bet- Gastrointestinal effects. Given the ad- ter tolerated with fewer adverse effects than verse gastrointestinal effects associated with placebo, with the exception of an increased this class of medications, patients experienc- incidence of dizziness, confusion, and delu- ing signifi cant anorexia and weight loss should sions.16,17 generally avoid cholinesterase inhibitors. Caution is required when treating patients However, the rivastigmine patch, a transder- with renal impairment. In patients with a mal formulation, is an alternative
Recommended publications
  • The Role of Serotonin in Memory: Interactions with Neurotransmitters and Downstream Signaling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bushehr University of Medical Sciences Repository Exp Brain Res (2014) 232:723–738 DOI 10.1007/s00221-013-3818-4 REVIEW The role of serotonin in memory: interactions with neurotransmitters and downstream signaling Mohammad Seyedabadi · Gohar Fakhfouri · Vahid Ramezani · Shahram Ejtemaei Mehr · Reza Rahimian Received: 28 April 2013 / Accepted: 20 December 2013 / Published online: 16 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Serotonin, or 5-hydroxytryptamine (5-HT), is there has been an alteration in the density of serotonergic found to be involved in many physiological or pathophysi- receptors in aging and Alzheimer’s disease, and serotonin ological processes including cognitive function. Seven dis- modulators are found to alter the process of amyloidogen- tinct receptors (5-HT1–7), each with several subpopulations, esis and exert cognitive-enhancing properties. Here, we dis- have been identified for serotonin, which are different in cuss the serotonin-induced modulation of various systems terms of localization and downstream signaling. Because involved in mnesic function including cholinergic, dopa- of the development of selective agonists and antagonists minergic, GABAergic, glutamatergic transmissions as well for these receptors as well as transgenic animal models as amyloidogenesis and intracellular pathways. of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has Keywords Serotonin · Memory · Signaling pathways improved in recent years. A large body of evidence indi- cates the interplay between serotonergic transmission and Abbreviations other neurotransmitters including acetylcholine, dopamine, 2PSDT Two-platform spatial discrimination task γ-aminobutyric acid (GABA) and glutamate, in the neu- 3xTg-AD Triple-transgenic mouse model of Alzheimer’s robiological control of learning and memory.
    [Show full text]
  • Neuronal Nicotinic Receptors
    NEURONAL NICOTINIC RECEPTORS Dr Christopher G V Sharples and preparations lend themselves to physiological and pharmacological investigations, and there followed a Professor Susan Wonnacott period of intense study of the properties of nAChR- mediating transmission at these sites. nAChRs at the Department of Biology and Biochemistry, muscle endplate and in sympathetic ganglia could be University of Bath, Bath BA2 7AY, UK distinguished by their respective preferences for C10 and C6 polymethylene bistrimethylammonium Susan Wonnacott is Professor of compounds, notably decamethonium and Neuroscience and Christopher Sharples is a hexamethonium,5 providing the first hint of diversity post-doctoral research officer within the among nAChRs. Department of Biology and Biochemistry at Biochemical approaches to elucidate the structure the University of Bath. Their research and function of the nAChR protein in the 1970’s were focuses on understanding the molecular and facilitated by the abundance of nicotinic synapses cellular events underlying the effects of akin to the muscle endplate, in electric organs of the acute and chronic nicotinic receptor electric ray,Torpedo , and eel, Electrophorus . High stimulation. This is with the goal of affinity snakea -toxins, principallyaa -bungarotoxin ( - Bgt), enabled the nAChR protein to be purified, and elucidating the structure, function and subsequently resolved into 4 different subunits regulation of neuronal nicotinic receptors. designateda ,bg , and d .6 An additional subunit, e , was subsequently identified in adult muscle. In the early 1980’s, these subunits were cloned and sequenced, The nicotinic acetylcholine receptor (nAChR) arguably and the era of the molecular analysis of the nAChR has the longest history of experimental study of any commenced.
    [Show full text]
  • Monoamine Oxidase Inhibitors: Promising Therapeutic Agents for Alzheimer's Disease (Review)
    MOLECULAR MEDICINE REPORTS 9: 1533-1541, 2014 Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer's disease (Review) ZHIYOU CAI Department of Neurology, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China Received July 2, 2013; Accepted February 10, 2014 DOI: 10.3892/mmr.2014.2040 Abstract. Activated monoamine oxidase (MAO) has a critical 6. MAO activation contributes to cognitive impairment in role in the pathogenesis of Alzheimer's disease (AD), including patients with AD the formation of amyloid plaques from amyloid β peptide (Aβ) 7. Activated MAO contributes to the formation of amyloid production and accumulation, formation of neurofibrillary plaques tangles, and cognitive impairment via the destruction of cholin- 8. Is activated MAO associated with the formation of ergic neurons and disorder of the cholinergic system. Several neurofibrillary tangles? studies have indicated that MAO inhibitors improve cognitive 9. Evidence for the neuroprotective effect of MAO inhibitors deficits and reverse Aβ pathology by modulating proteolytic in AD cleavage of amyloid precursor protein and decreasing Aβ 10. Conclusions and outlook protein fragments. Thus, MAO inhibitors may be considered as promising therapeutic agents for AD. 1. Introduction Monoamine oxidase (MAO) catalyzes the oxidative deamina- Contents tion of biogenic and xenobiotic amines and has an important role in the metabolism of neuroactive and vasoactive amines in 1. Introduction the central nervous system (CNS) and peripheral tissues. The 2. Monoamine oxidase (MAO) enzyme preferentially degrades benzylamine and phenylethyl- 3. Involvement of MAO in neurodegeneration amine and targets a wide variety of specific neurotransmitters 4.
    [Show full text]
  • Cholinergic Treatments with Emphasis on M1 Muscarinic Agonists As Potential Disease-Modifying Agents for Alzheimer’S Disease
    Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics Cholinergic Treatments with Emphasis on M1 Muscarinic Agonists as Potential Disease-Modifying Agents for Alzheimer’s Disease Abraham Fisher Israel Institute for Biological Research, P. O. Box 19, Ness-Ziona 74100, Israel Summary: The only prescribed drugs for treatment of Alzhei- formation of ␤-amyloid plaques, and tangles containing hyper- mer’s disease (AD) are acetylcholinesterase inhibitors (e.g., phosphorylated tau proteins) are apparently linked. Such link- donepezil, rivastigmine, galantamine, and tacrine) and meman- ages may have therapeutic implications, and this review is an tine, an NMDA antagonist. These drugs ameliorate mainly the attempt to analyze these versus the advantages and drawbacks symptoms of AD, such as cognitive impairments, rather than of some cholinergic compounds, such as acetylcholinesterase halting or preventing the causal neuropathology. There is cur- inhibitors, M1 muscarinic agonists, M2 antagonists, and nico- rently no cure for AD and there is no way to stop its progres- tinic agonists. Among the reviewed treatments, M1 selective sion, yet there are numerous therapeutic approaches directed agonists emerge, in particular, as potential disease modifiers. against various pathological hallmarks of AD that are exten- Key Words: Alzheimer’s, cholinergic, ␤-amyloid, tau, acetyl- sively being pursued. In this context, the three major hallmark cholinesterase inhibitors, M1 muscarinic, nicotinic, agonists, characteristics of AD (i.e., the CNS cholinergic hypofunction, M2 muscarinic antagonists. INTRODUCTION (␣-APPs) that is neurotrophic and neuroprotective. In an alternate pathway, ␤-secretase (BACE1) cleaves APP Alzheimer’s disease (AD) is a progressive, neurode- releasing a large secreted derivative sAPP␤ andaC- generative disease that is a major health problem in terminal fragment C99 that can be further cleaved by modern societies.
    [Show full text]
  • Treating Dementia with Cholinesterase Inhibitors Patient Information - Older Persons Mental Health
    Treating Dementia with Cholinesterase Inhibitors Patient information - Older Persons Mental Health www.cdhb.health.nz/patientinfo Dementia is a progressive disease of the brain in which brain cells die and are not replaced. It results in impaired memory, thinking and behaviour. In recent years a number of medications for dementia have become available in New Zealand, includ- ing cholinesterase inhibitors, which are discussed below. For more information, please contact your GP or specialist. Other useful sources of information are Alzhei- mer’s Canterbury (314 Worcester St, Christchurch, phone (03) 379 2590) and the website www.alzheimers.org.nz click on “your Alzheimer’s organisation” to take you to Canterbury. Cholinesterase Cholinesterase Treating Dementia with with Dementia Treating Inhibitors Older Older Persons Mental Health How do cholinesterase inhibitors work? Cholinesterase inhibitors are designed to enhance memory and other brain functions by influencing chemical activity in the brain. Acetylcholine is a chemical messenger in the brain that is thought to be important for the function of brain cells involved in memory, thought and judgement. Acetylcholine is released by one brain cell to transmit a message to another. Once a message is received, various enzymes, including some called cholinesterases, break down the chemical messenger for reuse. In the brain affected by dementia, the cells that produce acetylcholine are damaged or destroyed, resulting in lower levels of the chemical messenger. A cholinesterase inhibitor is designed to reduce the activity of the cholinesterases, thereby slowing down the breakdown of acetylcholine. By maintaining levels of acetylcholine, the drug may help compensate for the loss of functioning brain cells.
    [Show full text]
  • Drug Treatments for Alzheimer's Disease
    Factsheet 407LP Drug treatments December 2014 for Alzheimer’s disease There are no drug treatments that can cure Alzheimer’s disease or any other common type of dementia. However, medicines have been developed for Alzheimer’s disease that can temporarily alleviate symptoms, or slow down their progression, in some people. This factsheet explains how the main drug treatments for Alzheimer’s disease work, how to access them, and when they can be prescribed and used effectively. For more information about Alzheimer’s disease see factsheet 401, What is Alzheimer’s disease? Contents n What are the main drugs used? n How do they work? n Are these drugs effective for everyone with Alzheimer’s disease? n Are there any side effects? n How are these drugs prescribed? n Are these drugs effective for other types of dementia? n Taking the drugs n Questions to ask the doctor when starting the drugs n Stopping treatment n NICE guidance: a summary n Research into new treatments n Other useful organisations. 2 Drug treatments for Alzheimer’s disease Drug treatments for Alzheimer’s disease Drug treatment for Alzheimer’s disease is important, but the benefits are small, and drugs should only be one part of a person’s overall care. Non- drug treatments, activities and support are just as important in helping someone to live well with Alzheimer’s disease. Many drugs have at least two names. The generic name identifies the substance. The brand name varies depending on the company that manufactures it. For example, a familiar painkiller has the generic name paracetamol and is manufactured under brand names such as Panadol and Calpol, among others.
    [Show full text]
  • Neuromuscular Blocking Agents
    Neuromuscular Blocking Agents Summary Neuromuscular blocking agents (NMBAs) are used to facilitate endotracheal intubation and provide skeletal muscle relaxation during surgery or mechanical ventilation. NMBAs do not provide sedation, analgesia, or amnesia; administer only after unconsciousness has been induced and maintain adequate amnesia and analgesia throughout paralysis. NMBA selection depends on clinical application and patient factors; consider the onset and duration of action, adverse effects, and metabolism/excretion of each agent. Pharmacology Neuromuscular blocking agents (NMBAs) cause skeletal muscle relaxation by blocking acetylcholine, and therefore, the transmission of nerve impulses at the neuromuscular junction. Depolarizing NMBAs bind to and activate cholinergic receptor sites, making the muscle fiber refractory to the action of acetylcholine. Nondepolarizing NMBAs competitively antagonize cholinergic receptors. Nondepolarizing NMBAs are divided into 2 broad structural classes: aminosteroidal and benzylisoquinolinium agents. Differences in chemical structure reflect little but variance in drug elimination pathways.[52452][52486] [65358][65369][65389] Neuromuscular Blocking Agent General Pharmacology[65358][65369] Metabolism/ Drug Mechanism Class Elimination plasma esterase/ Atracurium Nondepolarizing Benzylisoquinolinium Hofmann elimination plasma esterase/ Cisatracurium Nondepolarizing Benzylisoquinolinium Hofmann elimination* Mivacurium Nondepolarizing Benzylisoquinolinium plasma cholinesterase Pancuronium Nondepolarizing
    [Show full text]
  • Monoamine Oxidase B Is Elevated in Alzheimer Disease Neurons, Is Associated with Γ-Secretase and Regulates Neuronal Amyloid Β
    Schedin-Weiss et al. Alzheimer's Research & Therapy (2017) 9:57 DOI 10.1186/s13195-017-0279-1 RESEARCH Open Access Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels Sophia Schedin-Weiss1*, Mitsuhiro Inoue1,2, Lenka Hromadkova3,4, Yasuhiro Teranishi1,2, Natsuko Goto Yamamoto1,2, Birgitta Wiehager1, Nenad Bogdanovic5, Bengt Winblad1, Anna Sandebring-Matton1, Susanne Frykman1 and Lars O. Tjernberg1 Abstract Background: Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. Methods: MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ- secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis.
    [Show full text]
  • Norepinephrine May Oppose Other Neuromodulators to Impact Alzheimer’S Disease
    International Journal of Molecular Sciences Hypothesis Norepinephrine May Oppose Other Neuromodulators to Impact Alzheimer’s Disease Paul J. Fitzgerald Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA; pfi[email protected] Abstract: While much of biomedical research since the middle of the twentieth century has focused on molecular pathways inside the cell, there is increasing evidence that extracellular signaling pathways are also critically important in health and disease. The neuromodulators norepinephrine (NE), serotonin (5-hydroxytryptamine, 5HT), dopamine (DA), acetylcholine (ACH), and melatonin (MT) are extracellular signaling molecules that are distributed throughout the brain and modulate many disease processes. The effects of these five neuromodulators on Alzheimer’s disease (AD) are briefly examined in this paper, and it is hypothesized that each of the five molecules has a u- shaped (or Janus-faced) dose-response curve, wherein too little or too much signaling is pathological in AD and possibly other diseases. In particular it is suggested that NE is largely functionally opposed to 5HT, ACH, MT, and possibly DA in AD. In this scenario, physiological “balance” between the noradrenergic tone and that of the other three or four modulators is most healthy. If NE is largely functionally opposed to other prominent neuromodulators in AD, this may suggest novel combinations of pharmacological agents to counteract this disease. It is also suggested that the majority of cases of AD and possibly other diseases involve an excess of noradrenergic tone and a collective deficit of the other four modulators. Keywords: neurodegeneration; dementia; cognitive impairment; noradrenaline; locus coeruleus; Citation: Fitzgerald, P.J. clonidine; guanfacine; propranolol; prazosin; terazosin; cholinesterase inhibitors Norepinephrine May Oppose Other Neuromodulators to Impact Alzheimer’s Disease.
    [Show full text]
  • Binding of the Nicotinic Cholinergic Antagonist, Dihydro-&Erythroidine, to Rat Brain Tissue
    0270.6474/84/0412-2906$02,00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 12, pp. 2906-2911 Printed in U.S.A. December 1964 BINDING OF THE NICOTINIC CHOLINERGIC ANTAGONIST, DIHYDRO-&ERYTHROIDINE, TO RAT BRAIN TISSUE’ MICHAEL WILLIAMS’ AND JANET L. ROBINSON Merck Institute for Therapeutic Research, Merck, Sharp and Dohme Research Laboratories, West Point, Pennsylvania Received November 3, 1983; Revised April 20, 1984; Accepted May 8, 1984 Abstract The nicotinic cholinergic antagonist, dihydro-P-erythroidine, binds to two sites in rat cortical membranes with dissociation constants of 4 and 22 nM and respective apparent B,,, values of 52 and 164 fmol/mg of protein. Binding to the higher affinity site, defined by the use of 2 nM (3H]dihydro-/3-erythroidine, was saturable, reversible, and susceptible to protein denaturation. Binding was highest in the thalamus and lowest in the spinal cord and showed preferential enrichment in a synaptosomal subfraction of rat brain. Nicotine displaced [3H]dihydro-/3-erythroidine in a stereospecitic manner, the (-)-isomer being approximately 6 times more potent than the (+)-isomer. The alkaloid nicotinic agonists, cytisine and lobeline, were potent inhibitors of binding, while acetylcholine in the presence of the cholinesterase inhibitor di-isopropylfluorophosphate was equipotent with (+)-nicotine. Binding was also inhibited by the muscarinic ligands, arecoline, atropine, and oxotremorine. The nicotinic antagonists mecamylamine, hexamethonium, and pempidine were essentially inactive in displacing [3H]dihydro-fi-erythroidine. These findings indicate that dihydro-B-erythroidine binds to a nicotinic recognition site in rat brain which is neuromuscular, rather than ganglionic, in nature and that such binding is similar in several respects to that seen with nicotinic agonists.
    [Show full text]
  • The Pipeline and Future of Drug Development In
    Molecular Psychiatry (2007) 12, 904–922 & 2007 Nature Publishing Group All rights reserved 1359-4184/07 $30.00 www.nature.com/mp FEATURE REVIEW The pipeline and future of drug development in schizophrenia JA Gray1 and BL Roth2 1Department of Psychiatry, University of California, San Francisco, CA, USA and 2Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA While the current antipsychotic medications have profoundly impacted the treatment of schizophrenia over the past 50 years, the newer atypical antipsychotics have not fulfilled initial expectations, and enormous challenges remain in long-term treatment of this debilitating disease. In particular, improved treatment of the negative symptoms and cognitive dysfunction in schizophrenia which greatly impact overall morbidity is needed. In this review we will briefly discuss the current pipeline of drugs for schizophrenia, outlining many of the strategies and targets currently under investigation for the development of new schizophrenia drugs. Many of these compounds have great potential as augmenting agents in the treatment of negative symptoms and cognition. In addition, we will highlight the importance of developing new paradigms for drug discovery in schizophrenia and call for an increased role of academic scientists in discovering and validating novel drug targets. Indeed, recent breakthroughs in genetic studies of schizophrenia are allowing for the development of hypothesis-driven approaches for discovering possible disease-modifying drugs for schizophrenia. Thus, this is an exciting and pivotal time for the development of truly novel approaches to drug development and treatment of complex disorders like schizophrenia. Molecular Psychiatry (2007) 12, 904–922; doi:10.1038/sj.mp.4002062; published online 31 July 2007 Keywords: antipsychotics; cognition; negative symptoms; drug discovery; preclinical models; target validation Introduction antipsychotic drugs.
    [Show full text]
  • Unwarranted Administration of Acetylcholinesterase Inhibitors Can
    Anesthesiology 2007; 107:621–9 Copyright © 2007, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Unwarranted Administration of Acetylcholinesterase Inhibitors Can Impair Genioglossus and Diaphragm Muscle Function Matthias Eikermann, M.D., Ph.D.,* Philipp Fassbender,† Atul Malhotra, M.D.,‡ Masaya Takahashi, Ph.D.,§ Shigeto Kubo, M.D.,࿣ Amy S. Jordan, Ph.D.,# Shiva Gautam, Ph.D.,** David P. White, M.D.,†† Nancy L. Chamberlin, Ph.D.§ Background: It is standard practice to administer a cholines- tromyogram effects were the same when neostigmine was given terase inhibitor (e.g., neostigmine) at the end of a surgical case with no previous NB. Neostigmine caused a decrease in upper to reverse suspected effects of neuromuscular blocking agents airway volume to 83 ؎ 3% of control, whereas end-expiratory lung regardless of whether such residual effects are present. The volume remained constant. Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/107/4/621/364870/0000542-200710000-00018.pdf by guest on 02 October 2021 authors hypothesized that cholinesterase inhibition when Conclusions: The cholinesterase inhibitor neostigmine mark- given the in absence of neuromuscular blockade (NB) would edly impairs upper airway dilator volume, genioglossus muscle decrease upper airway dilatory muscle activity and conse- function, diaphragmatic function, and breathing when given quently upper airway volume. after recovery from vecuronium-induced neuromuscular block. Methods: The authors measured genioglossus and diaphragm electromyograms during spontaneous ventilation in anesthe- PARTIAL neuromuscular transmission failure (train-of- tized, tracheostomized rats before and after administration of four [TOF] ratio at the adductor pollicis muscle: 0.5–0.9) neostigmine (0.03, 0.06, or 0.12 mg/kg), after recovery of the evokes dysphagia,1 aspiration,1 and a decrease in the rate train-of-four ratio (quadriceps femoris muscle) to unity after NB 2,3 -of maximum airflow during inspiration by partial in ؍ (n 18).
    [Show full text]