Binding of the Nicotinic Cholinergic Antagonist, Dihydro-&Erythroidine, to Rat Brain Tissue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arecoline Promotes Migration of A549 Lung Cancer Cells Through Activating the EGFR/Src/FAK Pathway
toxins Article Arecoline Promotes Migration of A549 Lung Cancer Cells through Activating the EGFR/Src/FAK Pathway Chih-Hsiang Chang 1,†, Mei-Chih Chen 2,3,†, Te-Huan Chiu 1 , Yu-Hsuan Li 1, Wan-Chen Yu 1, Wan-Ling Liao 1, Muhammet Oner 1, Chang-Tze Ricky Yu 4, Chun-Chi Wu 5, Tsung-Ying Yang 6, Chieh-Lin Jerry Teng 7, Kun-Yuan Chiu 8, Kun-Chien Chen 6, Hsin-Yi Wang 9, Chia-Herng Yue 10, Chih-Ho Lai 11 , Jer-Tsong Hsieh 12 and Ho Lin 1,13,14,* 1 Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; [email protected] (C.-H.C.); [email protected] (T.-H.C.); [email protected] (Y.-H.L.); [email protected] (W.-C.Y.); [email protected] (W.-L.L.); [email protected] (M.O.) 2 Medical Center for Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung 40447, Taiwan; [email protected] 3 Department of Nursing, Asia University, Taichung 41345, Taiwan 4 Department of Applied Chemistry, National Chi Nan University, Nantou 54561, Taiwan; [email protected] 5 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; [email protected] 6 Division of Chest Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; [email protected] (T.-Y.Y.); [email protected] (K.-C.C.) 7 Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung 40705, Taiwan; [email protected] 8 Division of Urology, Taichung Veterans General Hospital, Taichung 40705, Taiwan; [email protected] 9 Department of Nuclear Medicine, Taichung -
Chemicals in the Fourth Report and Updated Tables Pdf Icon[PDF
Chemicals in the Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021 CDC’s Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, March 2021 provides exposure data on the following chemicals or classes of chemicals. The Updated Tables contain cumulative data from national samples collected beginning in 1999–2000 and as recently as 2015-2016. Not all chemicals were measured in each national sample. The data tables are available at https://www.cdc.gov/exposurereport. An asterisk (*) indicates the chemical has been added since publication of the Fourth National Report on Human Exposure to Environmental Chemicals in 2009. Adducts of Hemoglobin Acrylamide Formaldehyde* Glycidamide Tobacco Alkaloids and Metabolites Anabasine* Anatabine* Cotinine Cotinine-n-oxide* Hydroxycotinine* Trans-3’-hydroxycotinine* 1-(3-Pyridyl)-1-butanol-4-carboxylic acid* Nicotine* Nicotine-N’-oxide* Nornicotine* Tobacco-Specific Nitrosamines (TSNAs) N’-Nitrosoanabasine (NAB)* N’-Nitrosoanatabine (NAT)* N’-Nitrosonornicotine (NNN)* Total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) (NNAL)* Volatile N-nitrosamines (VNAs) N-Nitrosodiethylamine (NDEA)* N-Nitrosoethylmethylamine (NMEA)* N-Nitrosomorpholine (NMOR)* N-Nitrosopiperidine (NPIP)* N-Nitrosopyrrolidine (NPYR)* Disinfection By-Products Bromodichloromethane Dibromochloromethane Tribromomethane (Bromoform) Trichloromethane (Chloroform) Personal Care and Consumer Product Chemicals and Metabolites Benzophenone-3 Bisphenol A Bisphenol F* Bisphenol -
Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence
Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence Christie D. Fowler, Jill R. Turner, and M. Imad Damaj Contents 1 Introduction 2 Basic Neurocircuitry of Nicotine Addiction 3 Role of Nicotinic Receptors in Nicotine Dependence and Brain Function 4 Modulatory Factors That Influence nAChR Expression and Signaling 5 Genomics and Genetics of Nicotine Dependence 5.1 Overview 5.2 Human and Animal Genetic Studies 5.3 Transcriptionally Adaptive Changes 6 Other Constituents in Nicotine and Tobacco Products Mediating Dependence 7 Therapeutic Approaches for Tobacco and Nicotine Dependence 7.1 Nicotine Replacement Therapies 7.2 Varenicline and Bupropion 7.3 Novel Approaches 8 Conclusion References Abstract Tobacco dependence is a leading cause of preventable disease and death world- wide. Nicotine, the main psychoactive component in tobacco cigarettes, has also C. D. Fowler Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA J. R. Turner Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA M. Imad Damaj (*) Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA e-mail: [email protected] # Springer Nature Switzerland AG 2019 Handbook of Experimental Pharmacology, https://doi.org/10.1007/164_2019_252 C. D. Fowler et al. been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms under- lying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field’s current understanding of nicotine’s actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. -
Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism -
Effects of the Nicotinic Agonist Varenicline, Nicotinic Antagonist R-Bpidi, and DAT Inhibitor R-Modafinil on Co-Use of Ethanol and Nicotine in Female P Rats
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Psychopharmacology Manuscript Author (Berl) Manuscript Author . Author manuscript; available in PMC 2019 May 01. Published in final edited form as: Psychopharmacology (Berl). 2018 May ; 235(5): 1439–1453. doi:10.1007/s00213-018-4853-4. Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor R-modafinil on co-use of ethanol and nicotine in female P rats. Sarah E. Maggio1, Meredith A. Saunders1, Thomas A. Baxter1, Kimberly Nixon2, Mark A. Prendergast1, Guangrong Zheng3, Peter Crooks3, Linda P. Dwoskin2, Rachel D. Slack4, Amy H. Newman4, Richard L. Bell5, and Michael T. Bardo1 1Department of Psychology, University of Kentucky, Lexington, KY 40536, USA. 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA. 3Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas, Little Rock, AR 72205, USA. 4Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA. 5Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Abstract Rationale: Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use. Objectives: Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, 2-bottle choice); (2) nicotine alone (0.03 mg/kg/infusion, active vs. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
NIH Public Access Author Manuscript Neuroscience
NIH Public Access Author Manuscript Neuroscience. Author manuscript; available in PMC 2016 January 22. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuroscience. 2015 January 22; 0: 775–797. doi:10.1016/j.neuroscience.2014.10.044. Early-life Exposure to the SSRI Paroxetine Exacerbates Depression-like Behavior in Anxiety/Depression-prone rats Matthew E. Glover1, Phyllis C. Pugh1, Nateka L. Jackson1, Joshua L. Cohen1, Andrew D. Fant2, Huda Akil3, and Sarah M. Clinton1,§ 1Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, USA 2Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA 3Molecular and Behavioral Neuroscience Institute, University of Michigan, USA Abstract Selective serotonin reuptake inhibitor (SSRI) antidepressants are the mainstay treatment for the 10–20% of pregnant and postpartum women who suffer major depression, but the effects of SSRIs on their children’s developing brain and later emotional health are poorly understood. SSRI use during pregnancy can elicit antidepressant withdrawal in newborns and increase toddlers’ anxiety and social avoidance. In rodents, perinatal SSRI exposure increases adult depression- and anxiety- like behavior, although certain individuals are more vulnerable to these effects than others. Our study establishes a rodent model of individual differences in susceptibility to perinatal SSRI exposure, utilizing selectively-bred Low Responder (bLR) and High Responder (bHR) rats that were previously bred for high versus low behavioral response to novelty. Pregnant bHR/bLR females were chronically treated with the SSRI paroxetine (10 mg/kg/day p.o.) to examine its effects on offspring’s emotional behavior and gene expression in the developing brain. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
EUROPEAN COMMISSION Brussels, 11.7.2011 SEC(2011)
EUROPEAN COMMISSION Brussels, 11.7.2011 SEC(2011) 912 final COMMISSION STAFF WORKING PAPER on the assessment of the functioning of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances Accompanying the document REPORT FROM THE COMMISSION on the assessment of the functioning of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances {COM(2011) 430 final} EN EN TABLE OF CONTENTS 1. Introduction...................................................................................................................3 2. Methodology.................................................................................................................4 3. Key findings from the 2002 evaluation of the Joint Action on synthetic drugs ...........5 4. Overview of notifications, types of substances and trends at EU level 2005-2010......7 5. Other EU legislation relevant for the regulation of new psychoactive substances.....12 6. Functioning of the Council Decision on new psychoactive substances .....................16 7. Findings of the survey among Member States............................................................17 7.1. Assessment of the Council Decision ..........................................................................17 7.2. Stages in the functioning of the Council Decision .....................................................18 7.3. National responses to new psychoactive substances ..................................................20 -
The Role of Serotonin in Memory: Interactions with Neurotransmitters and Downstream Signaling
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bushehr University of Medical Sciences Repository Exp Brain Res (2014) 232:723–738 DOI 10.1007/s00221-013-3818-4 REVIEW The role of serotonin in memory: interactions with neurotransmitters and downstream signaling Mohammad Seyedabadi · Gohar Fakhfouri · Vahid Ramezani · Shahram Ejtemaei Mehr · Reza Rahimian Received: 28 April 2013 / Accepted: 20 December 2013 / Published online: 16 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Serotonin, or 5-hydroxytryptamine (5-HT), is there has been an alteration in the density of serotonergic found to be involved in many physiological or pathophysi- receptors in aging and Alzheimer’s disease, and serotonin ological processes including cognitive function. Seven dis- modulators are found to alter the process of amyloidogen- tinct receptors (5-HT1–7), each with several subpopulations, esis and exert cognitive-enhancing properties. Here, we dis- have been identified for serotonin, which are different in cuss the serotonin-induced modulation of various systems terms of localization and downstream signaling. Because involved in mnesic function including cholinergic, dopa- of the development of selective agonists and antagonists minergic, GABAergic, glutamatergic transmissions as well for these receptors as well as transgenic animal models as amyloidogenesis and intracellular pathways. of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has Keywords Serotonin · Memory · Signaling pathways improved in recent years. A large body of evidence indi- cates the interplay between serotonergic transmission and Abbreviations other neurotransmitters including acetylcholine, dopamine, 2PSDT Two-platform spatial discrimination task γ-aminobutyric acid (GABA) and glutamate, in the neu- 3xTg-AD Triple-transgenic mouse model of Alzheimer’s robiological control of learning and memory. -
Cognitive, Behavioral, and Physiologic Responses John T
Combined Nicotinic and Muscarinic Blockade in Elderly Normal Volunteers: Cognitive, Behavioral, and Physiologic Responses John T. Little, M.D., Douglas N. Johnson, Ph.D., Marcia Minichiello, M.A., Herb Weingartner, Ph.D., and Trey Sunderland, M.D. Establishing a pharmacologic model of the memory deficits scopolamine alone. Increased impairment was also seen for of Alzheimer’s disease could be an important tool in the mecamylamine 1 scopolamine condition as compared to understanding how memory fails. We examined the scopolamine alone in selected behavioral ratings. Pupil size combined effects of the muscarinic antagonist scopolamine increased when mecamylamine was added to scopolamine, and the nicotinic antagonist mecamylamine in eight normal while systolic blood pressure and pulse changed in elderly volunteers (age 61.9 6 8.3 yrs, SD). Each received concordance with ganglionic blockade. These data together four separate drug challenges (scopolamine (0.4 mg IV), with previous brain-imaging results suggest that this mecamylamine (0.2 mg/kg up to 15 mg PO), muscarinic–nicotinic drug combination may better model mecamylamine 1 scopolamine, and placebo). There was a Alzheimer’s disease than either drug alone. trend toward increased impairment in explicit memory for [Neuropsychopharmacology 19:60–69, 1998] the mecamylamine 1 scopolamine condition as compared to Published by Elsevier Science Inc. KEY WORDS: Scopolamine; Mecamylamine; Cognitive; al. 1985; Shimohama et al. 1986; Whitehouse and Au Geriatrics; Muscarinic antagonist; Nicotinic antagonist 1986; D’Amato et al. 1987; Zubenko et al. 1988), many cognitive dysfunction modeling studies have focused Given the limited animal models of Alzheimer’s disease on this system (Beatty et al.