Reviews in Mineralogy & Geochemistry Vol. 81 pp. 489-578, 2016 9 Copyright © Mineralogical Society of America Petrogenesis of the Platinum-Group Minerals Brian O’Driscoll School of Earth, Atmospheric & Environmental Science The University of Manchester Williamson Building, Oxford Road Manchester M13 9PL UK
[email protected] José María González-Jiménez Department of Geology and Andean Geothermal Center of Excellence (CEGA) Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Plaza Ercilla #803, Santiago de Chile Chile
[email protected] INTRODUCTION The platinum-group minerals (PGM) are a diverse group of minerals that concentrate the platinum-group elements (PGE; Os, Ir, Ru, Rh, Pt, and Pd). At the time of writing, the International Mineralogical Association database includes 135 named discrete PGM phases. Much of our knowledge of the variety and the distribution of these minerals in natural systems comes from ore deposits associated with mafic and ultramafic rocks and their derivatives (see also Barnes and Ripley 2016, this volume). Concentrations of PGM can be found in layered mafic–ultramafic intrusions. Although they don’t typically achieve ore grade status, supra- subduction zone upper mantle (preserved in ophiolite) lithologies (i.e., chromitite [> 60 vol.% Cr-spinel], pyroxenite) characteristically host a diversity of PGM assemblages as well (Becker and Dale 2016, this volume). Occurrences of the PGM in layered intrusions, ophiolites, and several other important settings will all be described in this review. In keeping with the general theme of this volume, the focus of this chapter is on relatively high-temperature (magmatic) settings. This is not a straightforward distinction to make, as PGM assemblages that begin as high-temperature parageneses may be modified at much lower temperatures during metamorphism, hydrothermal processes or surficial weathering (e.g., Hanley 2005).