Spotlight on Ocean Energy: 20 Projects + 5 Policy Initiatives

Total Page:16

File Type:pdf, Size:1020Kb

Spotlight on Ocean Energy: 20 Projects + 5 Policy Initiatives SPOTLIGHT ON OCEAN ENERGY 20 PROJECTS + 5 POLICY INITIATIVES April 2018 Disclaimer: The OES, also known as the Technology Collaboration Programme for Ocean Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of OES do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries INDEX 04 INTRODUCTION 08 SPOTLIGHT ON 20 OCEAN ENERGY PROJECTS AND 5 POLICY INITIATIVES 10 Korea: Sihwa Tidal Power Plant 11 China: LHD Tidal Current Energy Demonstration Project 12 Canada: Cape Sharp Tidal Project 13 France: SABELLA D10 Tidal Turbine 14 Italy: GEM “the Ocean’s Kite” 15 UK: Scotrenewables floating tidal system 16 UK: Shetland Tidal Array 17 Canada: Water Wall Turbine 18 Norway: Deep River Power Plant 19 Belgium: Laminaria Wave Energy Converter 20 Denmark: Resen Waves Smart Ocean Buoy 21 Ireland: Ocean Energy O35 Buoy 22 Portugal: Waveroller 23 Spain: Oceantec MARMOK A-5 Project 24 Sweden: Seabased Sotenäs Project 25 USA: Columbia Power Technologies Wave Energy Generator 26 India: Wave Power Navigational Buoy 27 Netherlands: Blue Energy Reverse Electrodialysis Project 28 Japan: Okinawa OTEC plant 29 Germany: StEnSea project Initiatives 30 UK: Wave Energy Scotland 30 USA: Wave Energy Prize 31 Mexico: CEMIE-Océano 32 Singapre: SEAcORE 32 European Commission: OCEANERA-NET INTRODUCTION 4 ABOUT OES The Technology Collaboration Programme on Ocean Energy Systems, known as OES is an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency in Paris. OES was founded by three countries in 2001 and has grown to its present 25 members, which provide a broad international base of information, sharing experience and knowledge and further a diversified representation of interests: members are from governmental departments, utilities, universities and research organizations, energy agencies and industry associations. THE OES • Securing access to advanced R&D teams in the participating countries; INTERNATIONAL • Developing a harmonized set of measures and testing protocols for the testing of prototypes; CO-OPERATION • Reducing national costs by collaborating internationally; FACILITATES: • Creating valuable international contacts between government, industry and science; • Sharing information and networking. OCEAN ENERGY POTENTIAL The ocean energy sector provides significant opportunities The OES Vision for International Deployment of Ocean to contribute to the production of low carbon renewable Energy estimated a global potential to develop 748 GW of energy around the world. Utilization of ocean energy ocean energy by 2050. Deployment of ocean energy can resources will contribute to the world’s future sustainable provide significant benefits in terms of jobs and investments. energy supply. Ocean energy will supply electricity, drinking The global carbon savings achieved through the deployment water and other products at competitive prices, creating of ocean energy could also be substantial. By 2050 this level jobs and reducing dependence on fossil fuels. It will of ocean energy deployment could save up to 5.2 billion reduce the world energy sector’s carbon emissions, whilst tonnes of CO2. minimizing impacts on marine environments. SPOTLIGHT ON OCEAN ENERGY PROJECTS | 5 THE OCEAN ENERGY POTENTIAL IS BASED ON THE FOLLOWING ENERGY RESOURCES LOCATED IN OUR OCEANS: TIDAL ENERGY OCEAN AND WAVE ENERGY RIVER CURRENTS Tidal energy is derived by Waves are created by the action height changes in sea level, Ocean currents are the constant of wind passing over the surface caused by the gravitational flows of water around the oceans. of the ocean. Wave heights and attraction of the moon, the sun These currents always flow in one thus energy are greatest at higher and other astronomical bodies direction and are driven by wind, latitudes, where the trade winds on oceanic water bodies. The water temperature, water salinity blow across large stretches of potential energy (tidal range) of and density amongst other factors. open ocean and transfer power the difference in the height of They are part of the thermo-haline to the sea swells and west-facing water at high and low tides can convection system, which moves coasts of continents tend to have be captured wit tidal barrages, water around the world. better wave energy resources. while the kinetical energy from Similarly, river currents are There are number of diverse wave the moving water of the tide available in all continents all year energy converter (WEC) concepts (tidal currents) can also be long and can be used for energy being developed, most of them captured using different tidal generation. Both ocean and river being intended to be modular and current energy converters mainly current energy technologies are deployed in arrays to capture the based on tidal turbines deployed being developed to capture this kinetic and potential energy from in arrays, similarly to wind farms kinetic energy with most concepts ocean waves and convert it to but underwater. being also based on water turbines electricity or pumping water for deployed in arrays. different uses. 6 Other uses of ocean energy Ocean energy can also be used for activities other than electricity generation or in combined hybrid systems that enhanced SALINITY GRADIENT OCEAN THERMAL the overall systems efficiency. There are Seawater is approximately 200 Ocean thermal energy arises times more saline than fresh from the temperature difference many technologies being river water, derived from rain, between near-tropical surface explored for producing snowmelt and groundwater, seawater, which may be more drinking water through which is delivered to the coast by than 20º C hotter than the desalination, supplying major rivers. The relatively high temperatures of deep ocean compressed air for salinity of seawater establishes water, which tends to be aquaculture, hydrogen a chemical pressure potential relatively constant at about production by electrolysis with fresh river water, which can 4º C. Bringing large quantities be used to generate electricity. of this cold seawater to surface or sea-based air Salinity gradient power thus has its enables a heat exchange conditioning. greatest potential at the mouths of process with the warmer major rivers, where large volumes surface waters, from which of fresh water flow out to sea. energy can be extracted. Ocean There are two technologies being Thermal Energy Conversion developed to convert this energy (OTEC) is a technology to into electricity: pressure retarded convert this energy resource osmosis (PRO) and reverse into electricity or other uses. electrodialysis (RED). SPOTLIGHT ON OCEAN ENERGY PROJECTS | 7 SPOTLIGHT ON 20 OCEAN ENERGY PROJECTS AND 5 POLICY INITIATIVES 8 This report provides insights of 20 ocean energy projects 9 and 5 policy initiatives on 6 15 1 11 8 7 4 the OES member countries. 12 18 10 4 These projects are good 5 3 14 examples of the intense 16 13 20 5 1 activity of this emerging 2 19 sector but there is a much 2 larger number of relevant 3 17 projects being developed world wide not included in 4 this report. Projects 1. Korea Sihwa Tidal Power Plant Tidal 2. China LHD Tidal Current Energy Demonstration Project 3. Canada Cape Sharp Tidal Project 4. France SABELLA D10 Tidal Turbine 5. Italy GEM "the Ocean's Kite" Tidal current You can find more 6. UK Scotrenewables floating tidal system information on other 7. UK Shetland Tidal Array projects at OES interactive 8. Canada Water Wall Turbine GIS map available on 9. Norway Deep River Power Plant River current our website. 10. Belgium Laminaria Wave Energy Converter 11. Denmark Resen Waves Smart Ocean Buoy 12. Ireland OcenEnergy O35 Buoy 13. Portugal Waveroller Waves 14. Spain Oceantec MARMOK A-5 Project Initiatives 15. Sweden Seabased Sotenäs Project 1. UK Wave Energy Scotland 16. USA Columbia Power Technologies Wave Energy Generator 2. USA Wave Energy Prize 17. India Wave Power Navigational Buoy 3. Mexico Cemie-Océano 18. Netherlands Blue Energy Reverse Electrodialysis Project Salinity Gradient 4. Singapre SEAcORE 19. Japan Okinawa OTEC plant OTEC 5. European OCEANERA-NET 20. Germany StEnSea project Other uses Commission SPOTLIGHT ON OCEAN ENERGY PROJECTS | 9 SPOTLIGHT ON OCEAN ENERGY PROJECTS 01 Sihwa Tidal Power Plant Project South Korea FACTS AND FIGURES Lake Sihwa is a man-made lake constructed from June 1987 to January 1994 originally planned for supplying water to an agricultural and industrial area, but after the completion of the embankment, severe water contamination appeared. In 2002, the Korean government approved a plan called K-Water for constructing a tidal power plant to improve water quality of the lake by regular exchange and circulation of seawater while harvesting renewable energy. The turn-key based project was started in 2004 and completed in December 2011 with the installed capacity of 254 MW (10 units of one-way bulb turbine-generator of 25.4 MW unit capacity) and 8 sluices with an opening of 15x 12m each, Aerial view of construction of Sihwa TPP (top) and restored generating 553GWh of electricity per year. tidal flat after operation of Sihwa TPP (down) In addition to the electricity generation, the project has rapidly improved the water quality and the Details about the project species diversity of Lake Sihwa. Concretely, the Project Type | Commercial project organic content in the sediment decreased from K-Water Tidal Power Plant 8% to 1-2% between 2009 and 2013 and the Technology name | number of species of benthos increased from 83 Technology type | Tidal barrage to 232 between 2005 and 2014. Technology developer | K-Water Energy source | Tidal Range Location | Gyeonggi Bay (South Korea) Status | Operational Project Capacity | 254 MW Website | http://tlight.kwater.or.kr 10 02 LHD Tidal Current Energy Demonstration Project China FACTS AND FIGURES This tidal current demonstration project is being developed near Xiushan island by the LHD Technology. So far, two vertical axis LHD Tidal Current turbines have been installed (of 400 kW and 600 kW respectively) on a bottom-standing platform and connected to the grid in August 2016.
Recommended publications
  • The Stone Tidal Fish Weirs of the Molene Archipelago
    bs_bs_bannerbs_bs_banner The International Journal of Nautical Archaeology (2018) 47.1: 5–27 doi: 10.1111/1095-9270.12277 The Stone Tidal Fish Weirs of the Molene` Archipelago, Iroise Sea, Brittany, Western France: a long-term tradition with early megalithic origins Henri Gandois UMR Trajectoires, Universite´ de Paris I Pantheon´ Sorbonne, Paris, France, research associate at the UMR CReAAH, Universite´ de Rennes 1, Rennes, France, [email protected] Pierre Stephan´ CNRS, UMR LETG, Universite´ de Bretagne Occidentale, Institut Universitaire Europeen´ de la Mer, 29280 Plouzane,´ France. LTSER France, Zone Atelier ‘Brest-Iroise’, [email protected] David Cuisnier Ferme insulaire de Kemenez, ˆıle de Kemenez, Le Conquet, France, [email protected] Olivia Hulot DRASSM, Ministere` de la Culture et de la Communication, Marseille, France, [email protected] Axel Ehrhold IFREMER, Geosciences´ Marines, Centre, de Brest, BP70, CS10070, 29280 Plouzane,´ France, [email protected] Marine Paul CNRS, UMR LETG, Universite´ de Bretagne Occidentale, Institut Universitaire Europeen´ de la Mer, 29280 Plouzane,´ France, [email protected] Nicolas Le Dantec CEREMA, UMR 6538 Geosciences´ Ocean,´ Universite´ de Bretagne Occidentale, Institut Universitaire Europeen´ de la Mer, 29280 Plouzane,´ France Marcaurelio Franzetti CNRS, UMR 6538 Geosciences´ Ocean,´ Universite´ de Bretagne Occidentale, Institut Universitaire Europeen´ de la Mer, 29280 Plouzane,´ France This reports on a project that combined evidence gleaned from aerial photographs, place-names, interviews, topography, LIDAR data, and sonar bathymetry to locate stone tidal fish weirs in the Molene` Archipelago. The results were verified by diver and pedestrian visual surveys. Models of Holocene sea-level change allowed a group of possibly Late Mesolithic–Early Neolithic weirs to be recognized, with a second group broadly dated to the later Neolithic–Early Bronze Age.
    [Show full text]
  • Development of Marine Renewable Energies and the Preservation Of
    Development of marine renewable energies and the Renewable energies preservation of biodiversity - VOLUME 2 - Editors: Marion PEGUIN, under the coordination of Christophe LE VISAGE, coordinator of the contact group "Marine Renewable Energy", Guillemette ROLLAND, President of the Commission on Ecosystem Management, and Sébastien MONCORPS, director of the French Committee of IUCN. Acknowledgements: The French Committee of IUCN would particularly like to thank: the reviewers of this report: BARILLIER Agnès (EDF) - BAS Adeline (EDF EN) - BONADIO Jonathan (MEDDE- DGEC) - CARLIER Antoine (IFREMER) - DELENCRE Gildas (Energies Réunion) - GALIANO Mila (Ademe) - GUENARD Vincent (Ademe) - LEJART Morgane (FEM) - MARTINEZ Ludivine (Observatoire Pelagis) - MENARD Jean-Claude (ELV) - MICHEL Sylvain (AAMP) - de MONBRISON David (BRLi), the members of the "Sea and Coasts" working group of the IUCN French Committee, chaired by Ludovic FRERE ESCOFFIER (Nausicaa), the participants of the various steering committees: AMY Frédérique (DREAL HN) - ANDRE Yann (LPO) - ARANA-DE-MALEVILLE Olivia (FEE) - AUBRY Jérémy (Gondwana) - ARGENSON Alain (FNE) - BARBARY Cédric (GDF Suez) - BAS Adeline (Ifremer / EDF EN) - BEER-GABEL Josette (expert) - BELAN Pierre-Yves (CETMEF) - BONADIO Jonathan (MEDDE-DGEC) - BONNET Céline (Va- lorem) - BORDERON Séverine (GREDEG-CNRS) - BOUTTIER Jenny (BRLi) - CAILLET Antonin (Alstom Ocean Energy) - CANON Marina (EDPR) - CANTERI Thierry (PNM Iroise, AAMP) - CARRE Aurélien (UICN France) - CASTÉRAS Rémi (WPD Offshore) - CHATEL Jean (RTE) -
    [Show full text]
  • OES Annual Report 2018
    ANNUAL REPORT AN OVERVIEW OF OCEAN ENERGY ACTIVITIES IN ACTIVITIES AN OVERVIEW OF OCEAN ENERGY ANNUAL REPORT AN OVERVIEW OF OCEAN ENERGY ACTIVITIES IN 2018 2018 ANNUAL REPORT AN OVERVIEW OF OCEAN ENERGY ACTIVITIES IN 2018 1 Published by: The Executive Committee of Ocean Energy Systems Edited by: Ana Brito e Melo and Henry Jeffrey Designed by: Formas do Possível - Creative Studio www.formasdopossivel.com COUNTRY REPORTS AUTHOR (S) Australia Republic of Korea Mark Hemer and Tracey Pitman (CSIRO) Jin-Hak Yi (Korea Institute of Ocean Science Stephanie Thornton (Australian Ocean Energy Group) and Technology) Belgium Mexico Vicky Stratigaki (Ghent University) Rodolfo Silva-Casarín (CEMIE Océano) Ludovic Mouffe (Federal Public Service Economy, Directorate-General Energy) Netherlands Jos Reijnders (Netherlands Enterprise Agency) Canada Ghanashyam Ranjitkar (CanmetENERGY-Ottawa, Natural New Zealand Resources Canada) Gareth Gretton (AWATEA and Wellington Institute Sue Molloy (Glas Ocean Engineering) of Technology) China Norway Peng Wei (National Ocean Technology Center) Daniel J. Willoch (NORWEA) Harald Rikheim (Research Council of Norway) Denmark Kim Nielsen (Ramboll) Portugal Ana Brito e Melo (WavEC Offshore Renewables) European Commission António Falcão (Instituto Superior Técnico) Davide Magagna (DG JRC) Matthijs Soede (DG RTD) Singapore Srikanth Narasimalu (Nanyang Technological France University) Yann-Hervé De Roeck (France Energies Marines) Spain Germany Yago Torre-Enciso (BiMEP) Jochen Bard and Fabian Thalemann Jose Luis Villate (TECNALIA)
    [Show full text]
  • Numerical Wave Modeling in Conditions with Strong Currents
    1 Numerical wave modeling in conditions with strong currents: 2 dissipation, refraction and relative wind. 1 Generated using version 3.0 of the official AMS LATEX template ∗ 3 Fabrice Ardhuin, Ifremer, Laboratoire d'Oc´eanographie Spatiale, Centre de Brest, 29200 Plouzan´e,France Aron Roland, Technological University of Darmstadt, Germany Franck Dumas and Anne-Claire Bennis, Ifremer, Laboratoire PHYSED, Centre de Brest, 29200 Plouzan´e,France Alexei Sentchev, Laboratoire d'Oc´eanologie et G´eosciences (CNRS-UMR8187), Universit´edu Littoral - C^ote d'Opale, Wimereux, France Philippe Forget, Mediterranean Institute of Oceanography (MIO), CNRS, Aix-Marseille University, Sud Toulon-Var University, IRD, La Garde, France Judith Wolf, National Oceanographic Center, Liverpool, UK Franc¸oise Girard, Actimar SAS, Brest, France Pedro Osuna, CICESE, Ensenada, BC, Mexico Michel Benoit, Laboratoire Saint Venant, Chatou, France 2 4 ABSTRACT 5 Currents effects on waves have lead to many developments in numerical wave modeling over 6 the past two decades, from numerical choices to parameterizations. The performance of 7 numerical models in conditions with strong currents is reviewed here, and observed strong 8 effects of opposed currents and modulations of wave heights by tidal currents in several typ- 9 ical situations are interpreted. For current variations on small scales, the rapid steepening 10 of the waves enhances wave breaking. Using parameterizations with a dissipation rate pro- 11 portional to some measure of the wave steepness to the fourth power, the results are very 12 different, with none being fully satisfactory, pointing for the need for more measurements and 13 further refinements of parameterizations. For larger scale current variations, the observed 14 modifications of the sea state are mostly explained by refraction of waves over currents, 15 and relative wind effects, i.e.
    [Show full text]
  • Downloaded 10/03/21 07:30 PM UTC 2102 JOURNAL of PHYSICAL OCEANOGRAPHY VOLUME 42
    DECEMBER 2012 A R DHUIN ET AL. 2101 Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind 1 # # FABRICE ARDHUIN,* ARON ROLAND, FRANCK DUMAS, ANNE-CLAIRE BENNIS, @ & 11 ALEXEI SENTCHEV, PHILIPPE FORGET, JUDITH WOLF,** FRANC¸ OISE GIRARD, ## @@ PEDRO OSUNA, AND MICHEL BENOIT * Ifremer, Laboratoire d’Oce´anographie Spatiale, Plouzane´, France 1 Technological University of Darmstadt, Darmstadt, Germany # Ifremer, Laboratoire PHYSED, Plouzane´, France @ Laboratoire d’Oce´anologie et Ge´osciences (CNRS-UMR8187), Universite´ du Littoral-Coˆte d’Opale, Wimereux, France & Mediterranean Institute of Oceanography, CNRS, and Aix-Marseille University, and Sud Toulon-Var University, IRD, La Garde, France ** National Oceanographic Center, Liverpool, United Kingdom 11 Actimar SAS, Brest, France ## CICESE, Ensenada, Baja California, Mexico @@ Laboratoire Saint Venant, Chatou, France (Manuscript received 28 November 2011, in final form 9 July 2012) ABSTRACT Currents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and observed strong effects of opposed currents and modulations of wave heights by tidal currents in several typical situations are interpreted. For current variations on small scales, the rapid steepening of the waves enhances wave breaking. Using different parameterizations with a dissipation rate proportional to some measure of the wave steepness to the fourth power, the results are very different, none being fully satisfactory, which points to the need for more measurements and further re- finements of parameterizations. For larger-scale current variations, the observed modifications of the sea state are mostly explained by refraction of waves over currents and relative wind effects, that is, the wind speed relevant for wave generation is the speed in the frame of reference moving with the near-surface current.
    [Show full text]
  • Encouraging Harmonious Co-Existence of Marine Renewables Projects with Other Marine Uses & Interests
    Lessons and recommendations from the Celtic Seas Encouraging harmonious co-existence of marine renewables projects with other marine uses & interests Encouraging harmonious co-existence of marine renewables projects with other marine uses & interests – Lessons and recommendations from the Celtic Seas 1 20.06.16 Author: Geoff Nuttall Lessons and recommendations from the Celtic Seas Encouraging harmonious co-existence of marine renewables projects with other marine uses & interests CONTENTS 3 INTRODUCTION AND BACKGROUND 7 RECOMMENDATIONS FOR EFFECTIVE APPROACHES, TOOLS AND MECHANISMS TO MEET THE CHALLENGE OF CO-LOCATING RENEWABLES WITH OTHER MARINE USES AND INTERESTS 11 THE CHALLENGES OF MARINE RENEWABLES DEVELOPMENT AND CO-EXISTENCE WITH OTHER INTERESTS 13 SUMMARY OF EXISTING GUIDANCE AND OTHER USEFUL RESOURCES, CONTACTS AND INFORMATION 17 DETAILED CASE STUDIES Celtic Seas Partnership is an EC LIFE+ project with the contribution of the LIFE financial instrument of the European Community. It is a four-year project, running from January 2013 to December 2016. WWF-UK is the lead with partners the University of Liverpool, Eastern and Midland Regional Assembly, the Natural Environment Research Council and SeaWeb Europe. Project number: LIFE11/ENV/UK/392 2 3 20.06.16 Author: Geoff Nuttall Lessons and recommendations from the Celtic Seas Encouraging harmonious co-existence of marine renewables projects with other marine uses & interests INTRODUCTION AND BACKGROUND In increasingly crowded waters, developing new marine renewable energy projects in ways which command the support of local communities and other users of the same or neighbouring sea space poses a major challenge for developers. Whilst the global need to reduce carbon emissions to protect our climate becomes ever more urgent, marine renewables developers continue to battle not only engineering challenges, but also significant opposition NORTH GREATER ATLANTIC NORTH from other stakeholders and lengthy OCEAN CELTIC SEA delays which threaten the viability of SEAS their projects.
    [Show full text]
  • Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind
    DECEMBER 2012 A R DHUIN ET AL. 2101 Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind 1 # # FABRICE ARDHUIN,* ARON ROLAND, FRANCK DUMAS, ANNE-CLAIRE BENNIS, @ & 11 ALEXEI SENTCHEV, PHILIPPE FORGET, JUDITH WOLF,** FRANC¸ OISE GIRARD, ## @@ PEDRO OSUNA, AND MICHEL BENOIT * Ifremer, Laboratoire d’Oce´anographie Spatiale, Plouzane´, France 1 Technological University of Darmstadt, Darmstadt, Germany # Ifremer, Laboratoire PHYSED, Plouzane´, France @ Laboratoire d’Oce´anologie et Ge´osciences (CNRS-UMR8187), Universite´ du Littoral-Coˆte d’Opale, Wimereux, France & Mediterranean Institute of Oceanography, CNRS, and Aix-Marseille University, and Sud Toulon-Var University, IRD, La Garde, France ** National Oceanographic Center, Liverpool, United Kingdom 11 Actimar SAS, Brest, France ## CICESE, Ensenada, Baja California, Mexico @@ Laboratoire Saint Venant, Chatou, France (Manuscript received 28 November 2011, in final form 9 July 2012) ABSTRACT Currents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and observed strong effects of opposed currents and modulations of wave heights by tidal currents in several typical situations are interpreted. For current variations on small scales, the rapid steepening of the waves enhances wave breaking. Using different parameterizations with a dissipation rate proportional to some measure of the wave steepness to the fourth power, the results are very different, none being fully satisfactory, which points to the need for more measurements and further re- finements of parameterizations. For larger-scale current variations, the observed modifications of the sea state are mostly explained by refraction of waves over currents and relative wind effects, that is, the wind speed relevant for wave generation is the speed in the frame of reference moving with the near-surface current.
    [Show full text]
  • Article EWTEC2015 Mapping Tidal Energy Resources by HFR Ushant
    Proceedings of the 11th European Wave and Tidal Energy Conference 6-11th Sept 2015, Nantes, France Mapping tidal energy resources by High Frequency Radar: Application to resource characterization around the Ushant Island (W. Brittany coast) Alexei Sentchev∗, Maxime Thiébaut∗ ∗Laboratoire d’Océanologie et de Géosciences (CNRS UMR 8187), Université du Littoral - Côte d’Opale, 62930 Wimereux, France. E-mail: [email protected]; [email protected] Abstract—A methodology of assessing the hydrokinetic re- powerful tool and allowed a considerable gain of the quality sources and tidal flow potential at a near-shore site in the Iroise of velocity and available power estimation. Nowadays, 3D Sea is presented. More than a year-long surface current velocity models are routinely applied for tidal energy site assessment, time series recorded by high frequency radars (HFR) were used for site screening. We focused on the analysis of tidal current resource quantification, and studies of the impact of energy pattern around the Ushant Island which is a promising site of devices on the local circulation and environment. For example, tidal energy generation. Our results revealed current velocities numerical simulations by Regional Ocean Modeling System of 4 m/s northwest of the island and in the Fromveur Strait, (ROMS) allowed examining the tidal asymmetry in a promis- % % with 1 m/s value exceeded 60 and 70 of time respectively. ing site of Orkney Islands [3], or evaluating the wave influence The monitoring of surface currents allowed to discover an exceptionally high asymmetry between the flood and ebb flow on tidal stream energy resources [4].
    [Show full text]
  • Annualreport
    ANNUAL REPORT AN OVERVIEW OF OCEAN ENERGY ACTIVITIES IN ACTIVITIES AN OVERVIEW OF OCEAN ENERGY ANNUAL REPORT AN OVERVIEW OF OCEAN ENERGY ACTIVITIES IN 2018 2018 ANNUAL REPORT AN OVERVIEW OF OCEAN ENERGY ACTIVITIES IN 2018 1 Published by: The Executive Committee of Ocean Energy Systems Edited by: Ana Brito e Melo and Henry Jeffrey Designed by: Formas do Possível - Creative Studio www.formasdopossivel.com COUNTRY REPORTS AUTHOR (S) Australia Republic of Korea Mark Hemer and Tracey Pitman (CSIRO) Jin-Hak Yi (Korea Institute of Ocean Science Stephanie Thornton (Australian Ocean Energy Group) and Technology) Belgium Mexico Vicky Stratigaki (Ghent University) Rodolfo Silva-Casarín (CEMIE Océano) Ludovic Mouffe (Federal Public Service Economy, Directorate-General Energy) Netherlands Jos Reijnders (Netherlands Enterprise Agency) Canada Ghanashyam Ranjitkar (CanmetENERGY-Ottawa, Natural New Zealand Resources Canada) Gareth Gretton (AWATEA and Wellington Institute Sue Molloy (Glas Ocean Engineering) of Technology) China Norway Peng Wei (National Ocean Technology Center) Daniel J. Willoch (NORWEA) Harald Rikheim (Research Council of Norway) Denmark Kim Nielsen (Ramboll) Portugal Ana Brito e Melo (WavEC Offshore Renewables) European Commission António Falcão (Instituto Superior Técnico) Davide Magagna (DG JRC) Matthijs Soede (DG RTD) Singapore Srikanth Narasimalu (Nanyang Technological France University) Yann-Hervé De Roeck (France Energies Marines) Spain Germany Yago Torre-Enciso (BiMEP) Jochen Bard and Fabian Thalemann Jose Luis Villate (TECNALIA)
    [Show full text]
  • The Stone Tidal Fish Weirs of the Mol`Ene Archipelago, Iroise Sea
    The Stone Tidal Fish Weirs of the Mol‘ene Archipelago, Iroise Sea, Brittany, Western France: a long-term tradition with early megalithic origins Henri Gandois, Pierre Stéphan, David Cuisnier, Olivia Hulot, Axel Ehrhold, Marine Paul, Nicolas Le Dantec, Marcaurelio Franzetti To cite this version: Henri Gandois, Pierre Stéphan, David Cuisnier, Olivia Hulot, Axel Ehrhold, et al.. The Stone Tidal Fish Weirs of the Mol‘ene Archipelago, Iroise Sea, Brittany, Western France: a long-term tradition with early megalithic origins. International Journal of Nautical Archaeology, Wiley, 2018, 47 (1), pp.5-27. 10.1111/1095-9270.12277. hal-01654772 HAL Id: hal-01654772 https://hal.archives-ouvertes.fr/hal-01654772 Submitted on 4 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author Query Form Journal IJNA Article ijna12277 Dear Author, During the copyediting of your manuscript the following queries arose. Please refer to the query reference callout numbers in the page proofs and respond to each by marking the necessary comments using the PDF annotation tools. Please remember illegible or unclear comments and corrections may delay publication. Many thanks for your assistance. Query No.
    [Show full text]
  • Ice Report T1.4: a Community Specific Assessment of Local Energy
    ICE REPORT T1.4: A COMMUNITY SPECIFIC ASSESSMENT OF LOCAL ENERGY 13/03/2018 1 Deliverable T1.4: A Community Specific Assessment of Local Energy Jon Hardwick, Siming Zheng, Helen C.M. Smith, Oscar Fitch-Roy, Jonathan Williams, Peter M. Connor, Senthilarasu Sundaram, Gregorio Iglesias. About ICE Supported by Interreg VA France (Channel) England, the Intelligent Community Energy (ICE) project aims to design and implement innovative smart energy solutions for isolated territories in the Channel area. Islands and isolated communities face unique energy challenges. Many islands have no connection to wider electricity distribution systems and are dependent on imported energy supplies, typically fossil fuel driven. The energy systems that isolated communities depend on tend to be less reliable, more expensive and have more associated greenhouse gas (GHG) emissions than mainland grid systems. In response to these problems, the ICE project considers the entire energy cycle, from production to consumption, and integrates new and established technologies in order to deliver innovative energy system solutions. These solutions will be implemented and tested at our unique pilot demonstration sites (Ushant island and the University of East Anglia’s campus), to demonstrate their feasibility and to develop a general model for isolated smart energy systems elsewhere. The ICE consortium brings together researcher and business support organisations in France and the UK, and engagement with SMEs will support project rollout and promote European cooperation. 3 Executive summary This report builds on the output generated in ICE reports T1.1.1 and T1.1.2 to assess the current generation and demand characteristics for the two target sites: the island of Ushant off Northwest France and the University of East Anglia campus in Norfolk, England.
    [Show full text]