Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Final Report Phase-I Study of the E ects of Professional Development and Long-Term Support on Program Implementation and Scaling Up: Final Report Paul R. Brandon, Alice K. H. Taum, Carlos C. Ayala, Donald B. Young, Mary E. Gray, Thomas W. Speitel, Thanh Truc T. Nguyen, and Francis M. Pottenger III Curriculum Research & Development Group College of Education University of Hawai‘i at Mānoa Honolulu, Hawai‘i May 2007 Phase-I Study of the Effects of Professional Development and Long-Term Support on Program Implementation and Scaling Up: Final Report Paul R. Brandon, Alice K. H. Taum, Carlos C. Ayala, Donald B. Young, Mary E. Gray, Thomas W. Speitel, Thanh Truc T. Nguyen, and Francis M. Pottenger III Curriculum Research & Development Group College of Education University of Hawai‘i at Mānoa Honolulu, Hawai‘i May 2007 This is the final report of a project funded by the National Science Foundation (Grant No. REC0228158), Paul R. Brandon, Principal Investigator (PI), Donald B. Young, co-PI, and Alice K. H. Taum, Project Manager. Paul Brandon oversaw the project, with Donald Young’s assistance, and was in charge of developing the teacher questionnaire and the instrument for judging program quality. In addition to managing the project, Alice Taum was in charge of developing the observation coding protocol. Carlos Ayala of Sonoma State University developed the student assessment. Thomas Speitel and Mary Gray oversaw the development of the alternative version of professional development (PD) that is described in the study. Thanh Truc Nguyen contributed significantly to the development of the multimedia DVD-ROM that was developed as part of the alternative PD package. Francis M. Pottenger served as a representative, with Donald Young, of the developers of Foundational Approaches in Science Teaching program. Any opinions, findings, and conclusions or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the National Science Foundation. An electronic copy of the report, given in one file for the body of the report and another for the appendixes, is available at http://www.hawaii. edu/crdg/programs/pre/scup.html . CONTENTS Tables.......................................................................v Figures..................................................................... vi Acknowledgments ........................................................... vii Executive Summary........................................................... ix Chapter I. Purpose, Rationale, Background, and Theoretical Model ......................1 Purpose...................................................................1 Rationale for the Project .....................................................2 The Duration of PD......................................................3 Background ...............................................................4 Inquiry Learning in Science Education .......................................4 Overview of FAST.......................................................6 The Theoretical Model Underlying the Instrument Development Component of the Project ............................................................13 Program Implementation.................................................15 Teacher Variables ......................................................18 School and Community Variables ..........................................18 Chapter II. Development and Trial of FASTPro, the Alternative Version of FAST Professional Development...................................................19 Comparison of Traditional FAST PD and FASTPro...............................19 Development of FASTPro ..................................................22 Development of FASTStart...............................................22 Development of FASTeR ................................................23 Chapter III. Development of the Inquiry Science Implementation and Outcome Measures ....28 Development of the Inquiry Science Observation Code Sheet .......................28 Rationale and Focus.....................................................29 Collecting Observation Data on Videotape...................................30 ISOCS Development....................................................30 Development of the Inquiry Science Teacher Questionnaire ........................33 Preparing a Draft List of the Variables That Address Teaching Science with Inquiry Methods ...........................................................34 Identifying the Variables That Address the Context Within Which Inquiry Science Is Taught ............................................................34 Item Selection, Item Development, and Cognitive Interviews ....................37 Development of the Inquiry Science Questioning Quality Method ...................39 Development of the Description of the Criteria ...............................40 Preparation of the Facilities, Equipment, Materials, and Procedures ...............40 iii Development of the Inquiry Science Student Assessment ..........................41 Content Knowledge-Type and Science Inquiry Frameworks .....................42 Content Knowledge and Science Inquiry Outcome Measures Development .........44 Student Attitudinal Measures Development ..................................50 Chapter IV. Validity Analyses of Data Collected With the Implementation and Outcome Measures ................................................................55 Inquiry Science Observation Code Sheet Validity Study ...........................55 Data Collection ........................................................55 Validity Analyses.......................................................57 Inquiry Science Teacher Questionnaire Validity Study ............................62 Data Collection ........................................................62 Validity Analyses.......................................................66 Inquiry Science Questioning Quality Method Validity Study ........................75 Data Collection ........................................................75 Validity Analyses.......................................................81 Inquiry Science Student Assessment Validity Study ...............................85 Data Collection ........................................................85 Validity Analyses.......................................................86 References..................................................................90 Appendix A. Summary of Nine Studies Examining the Effects of the Foundational Approaches in Science Teaching Program .....................................103 Appendix B. Inquiry Science Observation Guide ...................................111 Appendix C. Variables Covered on the Inquiry Science Teacher Questionnaire, Inquiry Science Observation Code Sheet, and Inquiry Science Student Assessment and the Items Addressing the Variables .......................................129 Appendix D. Inquiry Science Teacher Questionnaire ................................149 Appendix E. Tables of Results on the Inquiry Science Teacher Questionnaire Items .......167 Appendix F. Inquiry Science Student Assessment ..................................189 iv TABLES I-1. Schedule of Traditional Two-Week FAST Professional Development Institute ..........9 II-1. Professional Development Features That Are Identified in the Literature and How They Are Addressed in Traditional FAST Professional Development and in FASTPro ...20 II-2. How Traditional FAST Professional Development (PD) and FastPro Address the National Science Education Standards (NSES) for Professional Development (PD) in Science Inquiry, Grades 5–8. .......................................................21 II-3. Schedule for FastStart, the One-Week FAST Professional Development Institute ......22 II-4. Numbers of Videos and Slide Shows Developed for FASTeR Student Investigations, by Investigation Phase (Introduction, Procedures, Data Collection and Analysis, and Summary) . 26 II-5. Teachers’ (N = 25) Responses to Five Likert-scale Items about the Usefulness of FASTeR.................................................................27 III-1. Variables Addressed on the Inquiry Science Teacher Questionnaire, the Type of Variable (Adherence, Exposure, or Context) Addressed by the Variables, and Corresponding Item Numbers in Appendix C ....................................................37 III-2. Partial List of Assessment Targets Identified During First Review of FAST 1 Materials by Potential Assessment Method ................................................46 III-3. Student Assessment Content Knowledge Test ..................................47 III-4. The Evidence Explanation Continuum Transformations and Reformulation and the Conceptual, Epistemic and Social Process Domains...............................49 III-5. Motivation Constructs and Sample Items Addressing Them .......................51 III-6. Nature of Science Domains and Sample Items .................................54 IV-1. Population of 100%-Usable Videotaped FAST Physical Science Investigations and the Sample (Shaded) Examined in Validity Studies ..................................56 IV-2. Number of Reconciled Codes for Each Code and Percentage on Which the Two Coders Agreed on Their First Coding ................................................58 IV-3. Comparison of ISTQ Sample with K–12 Teachers Nationwide ....................63 IV-4. Principal Component Analysis Results for the Collaboration Frequency Scale ........68 IV-5. Principal Component
Recommended publications
  • Current Issues in Qualitative Data Analysis Software (QDAS): a User and Developer Perspective
    The Qualitative Report Volume 23 Number 13 Article 5 3-6-2018 Current Issues in Qualitative Data Analysis Software (QDAS): A User and Developer Perspective Jeanine C. Evers Erasmus University of Rotterdam, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/tqr Part of the Law Commons, Quantitative, Qualitative, Comparative, and Historical Methodologies Commons, and the Social Statistics Commons Recommended APA Citation Evers, J. C. (2018). Current Issues in Qualitative Data Analysis Software (QDAS): A User and Developer Perspective. The Qualitative Report, 23(13), 61-73. https://doi.org/10.46743/2160-3715/2018.3205 This Article is brought to you for free and open access by the The Qualitative Report at NSUWorks. It has been accepted for inclusion in The Qualitative Report by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Current Issues in Qualitative Data Analysis Software (QDAS): A User and Developer Perspective Abstract This paper describes recent issues and developments in Qualitative Data Analysis Software (QDAS) as presented in the opening plenary at the KWALON 2016 conference. From a user perspective, it reflects current features and functionality, including the use of artificial intelligence and machine learning; implications of the cloud; user friendliness; the role of digital archives; and the development of a common exchange format. This user perspective is complemented with the views of software developers who took part in the “Rotterdam Exchange Format Initiative,” an outcome of the conference. Keywords Qualitative Data Analysis Software, QDAS, Artificial Intelligence, Machine Learning, TLA AS.ti, Cassandre, Dedoose, f4analyse, MAXQDA, NVivo, QDA Miner, Quirkos, Transana, Exchange format, Interoperability, Qualitative Data Analysis, Learning Curve QDAS, Textual Data Mining, Cloud services.
    [Show full text]
  • Designing AI-Based Systems for Qualitative Data Collection and Analysis
    Designing AI-Based Systems for Qualitative Data Collection and Analysis Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften ( Dr. rer. pol. ) von der KIT-Fakultät für Wirtschaftswissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Tim Rietz, M.Sc. ______________________________________________________________ Tag der mündlichen Prüfung: 01.07.2021 Referent: Prof. Dr. Alexander Mädche Korreferent: Prof. Dr. Paola Spoletini Karlsruhe Mai 2021 Acknowledgments Having started my PhD studies in December 2017, I remember the past three and a half years as a series of ups and downs, which probably goes for everything in life. Looking back at this exciting, inspiring, and challenging time, I distinctly remember many ups, while the downs seem almost forgotten. To a large extent, I attribute this to the wonderful people that I got to meet along the way, who never failed to make my time as a PhD student and as an IT consultant fun. Certainly, I want to thank my mentor and PhD supervisor Prof. Dr. Alexander M¨adche, for his guidance, inspiration, and feedback throughout my studies. While I did not know what to expect when I started my position at the institute, I quickly learned how lucky I was with my choice of a supervisor. Alexander always had an open door for my questions, ideas, and concerns. He also actively seeked updates on my process and encourage me to submit my research to prestigious outlets. I am incredibly grateful for your support. On that note, I also want to thank Prof. Dr. Paola Spoletini, Prof. Dr. Hagen Lindst¨adt, and Prof. Dr.
    [Show full text]
  • Ethnography As an Inquiry Process in Social Science
    ETHNOGRAPHY AS AN INQUIRY PROCESS IN SOCIAL SCIENCE RESEARCH Ganga Ram Gautam ABSTRACT This article is an attempt to present the concept of ethnography as a qualitative inquiry process in social science research. The paper begins with the introduction to ethnography followed by the discussion of ethnography both as an approach and a research method. It then illustrates how ethnographic research is carried out using various ethnographic methods that include participant observation, interviewing and collection of the documents and artifacts. Highlighting the different ways of organizing, analyzing and writing ethnographic data, the article suggests ways of writing the ethnographic research. THE INQUIRY PROCESS Inquiry process begins consciously and/or subconsciously along with the beginning of human life. The complex nature of our life, problems and challenges that we encounter both in personal and professional lives and the several unanswered questions around us make us think and engage in the inquiry process. Depending upon the nature of the work that one does and the circumstances around them, people choose the inquiry process that fits into their inquiry framework that is built upon the context they are engaged in. This inquiry process in education is termed as research and research in education has several dimensions. The inquiry process in education is also context dependent and it is driven by the nature of the inquiry questions that one wants to answer. UNDERSTANDING ETHNOGRAPHY Ethnography, as a form of qualitative research, has now emerged as one of the powerful means to study human life and social behavior across the globe. Over the past fifteen years there has been an upsurge of ethnographic work in British educational research, making ethnography the most commonly practiced qualitative research method.
    [Show full text]
  • Content Analysis with Stata
    Content Analysis with Stata M. Escobar([email protected]) y J.L. Alonso Berrocal([email protected]) Universidad de Salamanca 8th Spanish Stata Users Group meeting Madrid, 22th October-2015 Modesto Escobar & J.L. A. Berrocal (USAL) Content Analysis 22th October 2015 1 / 54 Table of Contents Overview Background Content analysis Social network analysis Coincidence analysis Stata users-written commands The command precoin Multiple variables Thesaurus strings Words The command coin Next steps Modesto Escobar & J.L. A. Berrocal (USAL) Content Analysis 22th October 2015 2 / 54 Background Content Analysis Content Analysis Definitions Content analysis is a technique used in the social sciences for the systematic study of the contents of the communication. \A systematic, replicable technique for compressing many words of text into fewer content categories based on explicit rules of coding" [Berelson, 1952]. \Any technique for making inferences by objectively and systematically identifying specified characteristics of messages" [Holsti, 1969]. \Content analysis is a research technique for making replicable and valid inferences from data to their context" [Krippendorff, 1980]. Modesto Escobar & J.L. A. Berrocal (USAL) Content Analysis 22th October 2015 3 / 54 Background Programs for content analysis Software for content analysis Programs Qualitative analyzers Nvivo Atlas-ti QDA miner Statistical analyzers WordStat TextAnalyst LIWC Modesto Escobar & J.L. A. Berrocal (USAL) Content Analysis 22th October 2015 4 / 54 Background Qualitative analysis programs Qualitative analysis programs Nvivo Modesto Escobar & J.L. A. Berrocal (USAL) Content Analysis 22th October 2015 5 / 54 Background Qualitative analysis programs Qualitative analysis programs Atlas-ti Modesto Escobar & J.L. A. Berrocal (USAL) Content Analysis 22th October 2015 6 / 54 Background Statistical analyzers Statistical analysts WordStat for QDA (and for Stata) Modesto Escobar & J.L.
    [Show full text]
  • NNT : 2017SACLC077 Interfaces : Approches Interdisciplinaires
    NNT : 2017SACLC077 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A L’ECOLE CENTRALESUPELEC ECOLE DOCTORALE N° 573 Interfaces : approches interdisciplinaires / fondements, applications et innovation Spécialité de doctorat : Sciences et technologies industrielles Par Mme Sonia Ben Hamida Innovate by Designing for Value – Towards a Design-to-Value Methodology in Early Design Stages Thèse présentée et soutenue à l’école CentraleSupélec, université Paris-Saclay, le 14/12/2017 : Composition du Jury : Mme Claudia Eckert, Professeur en Conception, Open University, Présidente M. Olivier de Weck, Professeur d’Aéronautique, d’Astronautique et d’Ingénierie Système, MIT, Rapporteur M. Benoît Eynard, Directeur Innovation & Partenariats et de l'Institut de Mécatronique, UTC, Rapporteur M. Yves Pigneur, Professeur en Business Model, Design et Innovation, HEC UNIL, Examinateur M. Bernard Yannou, Directeur du Laboratoire de Génie Industriel, CentraleSupélec, Examinateur M. Alain Huet, Chef du service Architecture de Systèmes Complexes, ArianeGroup, Examinateur M. Jean-Claude Bocquet, Professeur en Conception, CentraleSupélec, Directeur de thèse Mme Marija Jankovic, Maître de Conférences en Conception, CentraleSupélec, Co-directrice de thèse Acknowledgments I am reaching the end of this exciting, inspiring, and unforgettable journey which was only possible thanks to the wonderful people who accompanied me along the way. I would like to take the opportunity to express my sincerest gratitude to my academic advisors Prof. Dr. Marija Jankovic and Prof. Dr. Jean-Claude Bocquet for the time they spent with me to frame and shape this research project as well as for the guidance and continuous encouragement throughout the years, and to my colleagues at Airbus Safran Launchers for the feedback and inspiration they gave me.
    [Show full text]
  • Note Caqdas | Cmw
    NOTE CAQDAS | CMW NOTE D’AIDE A LA DECISION EN VUE D’ÉQUIPER LE CMW DE CAQDAS1 POUR L’ANALYSE QUALITATIVE Thibaut Rioufreyt (MCF en science politique, Université Lyon 2 / Triangle)2 A la demande et en collaboration avec Muriel Pommier (IE en sociologie, ENS de Lyon / CMW) 03/11/2020 1 Computer Assisted Qualitative Data Analysis : Logiciel d’aide à l’analyse qualitative 2 NOTE CAQDAS | CMW INTRODUCTION Cette note vise à présenter les différentes options techniques et financières disponibles en vue d’équiper le Centre Max Weber en logiciels d’aide à l’analyse qualitative de type CAQDAS (Computer Assisted Qualitative Data Analysis). Sa rédaction s’inscrit dans une démarche engagée depuis fin 2018 par Muriel Pommier afin de recenser les besoins des doctorant.e.s, ingénieur.e.s, chercheur.se.s et enseignant.e.s-chercheur.se.s du Centre Max Weber en matière d’analyse qualitative et de trouver comment y répondre. La consultation par voie de questionnaire (2019) montre que plus d'une trentaine de membres du CMW affirment l’intention d'utiliser un outil d’aide à l’analyse qualitative pour leur activité de recherche, à la condition d'être formé.e.s à un logiciel en raison de la complexité technique perçue de ce type d'outil3. Par la suite, une formation interne au CMW intitulée « Les logiciels d’aide à l’analyse qualitative (CAQDAS). Prise en main et réflexivité méthodologique. Découvrir et s’initier aux logiciels d’aide à l’analyse qualitative » (d’une durée de 6 heures) assurée par Thibaut Rioufreyt a été organisée le 23 septembre 20204.
    [Show full text]
  • Laadullisen Aineiston Analyysiohjelmistot: Atlas.Ti
    LAADULLISEN AINEISTON ANALYYSIOHJELMISTOT: ATLAS.TI Sanna Herkama & Anne Laajalahti Metodifestivaalit, Tampere 27.8.2019 SANNA HERKAMA ANNE LAAJALAHTI Erikoistutkija, FT Koulutus- ja kehittämisjohtaja, FT INVEST-tutkimushanke, www.invest.utu.fi Infor, www.infor.fi Psykologian ja logopedian laitos Prologos ry, puheenjohtaja Turun yliopisto Mevi ry, varapuheenjohtaja ProCom ry, Tiede- ja teoriajaos, puheenjohtaja TOPICS & Laajalahti 2019 Herkama • Technologies in qualitative analysis • What can you and can’t do with ATLAS.ti? • ATLAS.ti in practice Laajalahti, A. & Herkama, S. (2018). Laadullinen analyysi ATLAS.ti-ohjelmistolla. • Utilising ATLAS.ti – pitfalls and benefits In R. Valli (Ed.), Ikkunoita • Closing remarks tutkimusmetodeihin 2. 5th edition. Jyväskylä: PS-kustannus, 106–133. TECHNOLOGIES SHAPE OUR THINKING Medium is the 1 Conducting research has always been intertwined with the usage of message! various aids, tools, and technologies. Also, various software have assisted ~ Marshall McLuhan researchers for long. 2 Even such choices as the utilisation of A4 paper size (Järpvall 2016) and PowerPoint slides (Adams 2006) guide the way we process information, i.e. how we produce, reproduce, use, and share information! Herkama & Laajalahti 2019 TRADITIONAL OR COMPUTER ASSISTED Computer ANALYSIS? Assisted/Aided Qualitative 1 Traditional analysis: Should I go for a traditional way of analysing Data research material? Paper prints and coloring, copy-paste procedures, Analysis hanging papers on the wall, post-it tags etc.? Software 2 Computer assisted analysis: Should I use Computer Assisted/Aided Qualitative Data Analysis Software (CAQDAS)? Storing data in one place, checking up things quickly, handling text and audiovisual material parallel, creating summaries in seconds… Herkama & Laajalahti 2019 CAQDAS – RESTRICTING OR EXPANDING THINKING? 1 Technologies shape our thinking – whether we want it or not (Laajalahti & Herkama 2018).
    [Show full text]
  • Diaporama Conf CAQDAS 201
    Que permet de faire un CAQDAS ? Stéphanie Abrial & Thibaut Rioufreyt (CNRS-Pacte) (Labex Comod/Triangle) Contacts : [email protected] - [email protected] ANF Quali-SHS, Mardi 8 octobre 2019 -Oléron Recherche en sciences sociales et CAQDAS ● Fin des années 1980, recherche quali anglo-saxonne : Contexte d’apparition des logiciels CAQDAS (Kelle, 1995) ● CAQDAS : Computer-assisted qualitative data analysis software (Finding, Lee, 1991) ● Des outils d’aide à l’analyse plutôt que des outils d’analyse ● Grounded Theory 2 13 Programme LaLa Grounded Grounded Theory Theory Données QUALI Nvivo10 Données & Corpus Codage & Codes Caractéristiques Requêtes Apparaît aux USA Principe Méthodologie à la fin des années 1960 • « Au lieu de « forcer » • Préciser l’objet de des théories « sur » les recherche, formuler des données empiriques pour hypothèses mais… pas de • Enraciner l’analyse dans les interpréter, le cadre théorique a priori. les données de terrain. chercheur s’ouvre à l’émergence d’éléments • S’inscrire dans une • En réaction aux de théorisation ou de démarche inductive de approches déductives. concepts qui sont va-et-vient entre le suggérés par les données terrain et l’analyse. • Glaser & Strauss : The de terrain et ce, tout au Discovery of Grounded long de la démarche analytique. » • Ne pas présupposer par Theory, 1967. avance des catégories 4 1 (Guillemette , 2006). 0 2 d’analyse. L - A I R B A e i n a h p é t S © 3 Apports des CAQDAS Données qualitatives : textes, images, sons, web, vidéos, tableaux... ● CORPUS → Construire un projet et gérer des sources de nature différente. « Création par le logiciel d’une structure « réceptacle » des données propres à un projet qui héberge à la fois les données brutes et l’ensemble des fichiers résultat » (Brugidou, Leroux, 2005) ● CODAGE → Condenser, décontextualiser, découper les données en unités d’analyse.
    [Show full text]
  • Sociology Name of Module: Computer Application in Qualitative Data Analysis
    Module Detail and its Structure Subject Name Sociology Paper Name Methodology of Research in Sociology Module Name/Title Computer Application in Qualitative Data Analysis Module Id RMS 30 Pre-requisites Knowledge of social science data and data collection techniques. Theory and qualitative research. Knowledge of computer platform and software for qualitative data analysis. Social scientific application of qualitative presentation Objectives To introduce learner to the uses of computer application in qualitative data analysis. This would include introduction to the basic concepts and strategies of the theoretical guidelines in field data collection technique, qualitative data analysis and their organization. Scope and limitations of computer applications in qualitative data structure Keywords Qualitative research, Grounded theory method, Coding, Software application Role in Content Name Affiliation Development Principal Investigator Prof. Sujata Patel Dept. of Sociology, University of Hyderabad Paper Co-ordinator Prof. Biswajit Ghosh Professor, Department of Sociology, The University of Burdwan, Burdwan 713104 Email: [email protected] Ph. M +91 9002769014 Content Writer Subhasis Bandyopadhyay Assistant Professor, IIEST-S Email: [email protected] M: 9836945013 Content Reviewer (CR) Prof. Biswajit Ghosh Professor, Department of Sociology, and Language Editor The University of Burdwan, (LE) Burdwan 713104 1 Name of Paper: Methodology of Research in Sociology Sociology Name of Module: Computer Application in Qualitative Data Analysis Contents 1. Introduction 3 2. Learning Outcome 3 3. Use of computer software for analysis of qualitative data 3 4. Data processing in qualitative analysis 4 Self-Check Exercise 1 5 5. Grounded theory 5 6. Semiotics 6 7. Coding process 7 8. Concept mapping 7 9.
    [Show full text]
  • Softwares Livres Para Análise De Dados Qualitativos
    https://periodicos.utfpr.edu.br/rbect Softwares livres para análise de dados qualitativos RESUMO Diego Fabricio Schlosser As análises qualitativas abrigam um conjunto complexo de dados. Dessa forma, existem [email protected] 0000-0002-2493-6474 inúmeros softwares que podem facilitar os procedimentos de análise, otimizando tempo e Universidade Tecnológica Federal gerando análises mais ricas. Neste contexto, o presente estudo objetivou a apresentação do Paraná, PPGCET Ponta Grossa – Paraná de diversas ferramentas de apoio ao pesquisador para realização de análises qualitativas. Trata-se de uma revisão bibliográfica, baseada na literatura especializada por meio da Antonio Carlos Frasson [email protected] consulta a artigos científicos selecionados e sites dos softwares livres (SL) propriamente 0000-0002-1229-9009 ditos. Foram apresentados oito SL capazes de auxiliar na análise qualitativa bem como suas Universidade Tecnológica Federal do Paraná, PPGCET Ponta Grossa respectivas funções. – Paraná PALAVRAS-CHAVE: Análise qualitativa. Metodologia aplicada. Softwares livres. José Roberto Herrera Cantorani [email protected] 0000-0003-1792-0383 Universidade Tecnológica Federal do Paraná, PPGCET Ponta Grossa – Paraná Página | 539 R. bras. Ens. Ci. Tecnol., Ponta Grossa, v. 12, n. 1, p. 539-550, jan./abr. 2019. 1. INTRODUÇÃO Conforme retratado por Gil (2008), até a segunda metade do século XIX o estudo do homem e da sociedade esteve com os teólogos e filósofos; e, a partir desse período, com motivação tanto política quanto pelo avanço tecnológico, os estudos acerca do homem e da sociedade aproximaram-se do delineamento utilizado nas ciências da natureza. A partir dessa concepção científica, fundamentada no Positivismo, o conhecimento científico, tanto da natureza quanto da sociedade, segue um delineamento quantitativo, que é objetivo, que não pode ser influenciado pelo pesquisador, que repousa na experimentação e que supõe a existência de leis que determinam a ocorrência dos fatos.
    [Show full text]
  • Download Download
    FORUM: QUALITATIVE Volume 12, No. 1, Art. 24 SOCIAL RESEARCH January 2011 SOZIALFORSCHUNG From Normal Business to Financial Crisis ... and Back Again. An Illustration of the Benefits of Cassandre for Qualitative Analysis Christophe Lejeune Key words: Abstract: Cassandre is a free open source text analysis software tool. It uses semi-automatic Cassandre; coding, based on the identification of markers, grouped into registers, which represent analysis register; coding; categories. Studying the causes of the financial crisis makes it possible to construct a series of bounce technique; registers (responsibility, negligence, domino effect, change and return to normal). Cross- free software; referencing these registers reveals contrasting views (positive and negative) of the economic, KWIC; notional political and financial spheres. These conceptions vary both according to how they explain the family; phenomenon and the measures that they advocate (ranging from the development of new methods interpretation to "getting back to normal"). The example of the financial crisis is an opportunity to discuss the benefits of semi-automatic coding and determine the limitations that are likely to impact negatively on the analysis. Table of Contents 1. Introduction 2. The CAQDAS Landscape 3. The Hypertopic Platform 4. Benefits of Cassandre's Semi-Automatic Coding Features 4.1 Markers and concordances 4.2 Registers and the bounce technique 4.3 Semi-automatic coding 5. Registers for the Financial Crisis 5.1 Causes, responsibilities and accusations 5.2 Solutions, change and getting back to normal 6. The Limitations of Coding by Register 6.1 Homography and polysemy 6.2 Is semi-automatic coding still qualitative? Acknowledgments Appendix: Registers and Respective Markers for the Financial Crisis References Author Citation © 2011 FQS http://www.qualitative-research.net/ Forum Qualitative Sozialforschung / Forum: Qualitative Social Research (ISSN 1438-5627) FQS 12(1), Art.
    [Show full text]
  • Designing Fast, Resilient and Heterogeneity-Aware Key-Value Storage on Modern HPC Clusters
    Designing Fast, Resilient and Heterogeneity-Aware Key-Value Storage on Modern HPC Clusters Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Dipti Shankar, B.E. Graduate Program in Department of Computer Science and Engineering The Ohio State University 2019 Dissertation Committee: Dhabaleswar K. Panda, Advisor Xiaoyi Lu, Co-Advisor Feng Qin Gagan Agrawal c Copyright by Dipti Shankar 2019 Abstract With the recent emergence of in-memory computing for Big Data analytics, memory- centric and distributed key-value storage has become vital to accelerating data processing workloads, in high-performance computing (HPC) and data center environments. This has led to several research works focusing on advanced key-value store designs with Remote- Direct-Memory-Access (RDMA) and hybrid ‘DRAM+NVM’ storage designs. However, these existing designs are constrained by the blocking store/retrieve semantics; incurring additional complexity with the introduction of high data availability and durability require- ments. To cater to the performance, scalability, durability and resilience needs of the diverse key-value store-based workloads (e.g., online transaction processing, offline data analytics, etc.), it is therefore vital to fully exploit resources on modern HPC systems. Moreover, to maximize server scalability and end-to-end performance, it is necessary to focus on designing an RDMA-aware communication engine that goes beyond optimizing the key-value store middleware for better client-side latencies. Towards addressing this, in this dissertation, we present a ‘holistic approach’ to design- ing high-performance, resilient and heterogeneity-aware key-value storage for HPC clus- ters, that encompasses: (1) RDMA-enabled networking, (2) high-speed NVMs, (3) emerg- ing byte-addressable persistent memory devices, and, (4) SIMD-enabled multi-core CPU compute capabilities.
    [Show full text]