Designing AI-Based Systems for Qualitative Data Collection and Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Designing AI-Based Systems for Qualitative Data Collection and Analysis Designing AI-Based Systems for Qualitative Data Collection and Analysis Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften ( Dr. rer. pol. ) von der KIT-Fakultät für Wirtschaftswissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Tim Rietz, M.Sc. ______________________________________________________________ Tag der mündlichen Prüfung: 01.07.2021 Referent: Prof. Dr. Alexander Mädche Korreferent: Prof. Dr. Paola Spoletini Karlsruhe Mai 2021 Acknowledgments Having started my PhD studies in December 2017, I remember the past three and a half years as a series of ups and downs, which probably goes for everything in life. Looking back at this exciting, inspiring, and challenging time, I distinctly remember many ups, while the downs seem almost forgotten. To a large extent, I attribute this to the wonderful people that I got to meet along the way, who never failed to make my time as a PhD student and as an IT consultant fun. Certainly, I want to thank my mentor and PhD supervisor Prof. Dr. Alexander M¨adche, for his guidance, inspiration, and feedback throughout my studies. While I did not know what to expect when I started my position at the institute, I quickly learned how lucky I was with my choice of a supervisor. Alexander always had an open door for my questions, ideas, and concerns. He also actively seeked updates on my process and encourage me to submit my research to prestigious outlets. I am incredibly grateful for your support. On that note, I also want to thank Prof. Dr. Paola Spoletini, Prof. Dr. Hagen Lindst¨adt, and Prof. Dr. Wolf Fichtner for taking the time to serve on my PhD committee. I enjoyed discussing my research with you! Special thanks go to Paola, for welcoming me into the Requirements Engineering community on Jeju Island in 2019 and helping me to establish a network in RE! I want to express my gratitude to my colleagues at the Institute of Information Systems and Marketing (IISM) and at the research group for Information Systems and Service Design (ISSD) in particular. Thank you for always helping with pre-tests, for providing valuable feedback during our research meetings, for the numerous coffee breaks, for laughing together about the weird intricacies of publication processes, and for several highly entertaining social events. Naturally, there are some colleagues whom I had the chance to spend more time with, while I met others only occasionally. Regardless, I always felt that we acted as a team, celebrating successes and learning from failures together. For that, I am grateful. Besides my research at the IISM, I completed four projects as business analyst as part of the IT consultancy Senacor. In fact, my first workday after finishing my Masters was to receive my Senacor laptop and phone, as well as an introduction at the Senacor headquarters in Nurnberg.¨ Afterwards, I jumped on a train to Frankfurt for the Senacor Christmas Party. Not a bad start! Thank you to all the great colleagues that I had the chance to meet during my introduction to Senacor, the team events, and of course, the projects. Thanks to your support and guidance, I learned much about IT projects, architectures, stakeholder management, and, naturally, great Powerpoint slide design. I am convinced that the insights I gained helped me with speaking the RE language in my research. I am immensely grateful and just happy to always have had the backup of my friends! While I am glad for the ties that continue to hold firm from my school days, I want to i especially mention our Kiwiwi group, who are companions and best friends since the first days of my university education. Florian Engel, Lukas R¨oring, Sophie Lucas, and Melanie & Alexis Guttstadt. Thank you for the great times, for your support, and for being there (now quite literally in or around Karlsruhe). I know that I can always count on you! My heartfelt gratitude also goes to my parents and my family. I dedicate this dissertation to my mother, Sabine, and to my father, Joachim Rietz. I am eternally thankful for your endless and unconditional love and support and for your profound belief in my abilities. Thank you for sharing this journey with me. Finally, a very special thank you to my partner and best friend, Lena Annabell Straub, for being by my side every step of the way. Thinking back to the ups and downs of the dissertation, you deserve the biggest credit for celebrating even the tiniest ups with me, as well as guiding me through the downs. Thank you for your love, support, patience, and care. Thank you for being there for me when I needed it, for believing in me, and for a lot of excitement! I am immeasurably grateful to have you in my life. Tim Rietz Karlsruhe, Germany July 2021 ii Abstract With the continuously increasing impact of information systems (IS) on private and professional life, it has become crucial to integrate users in the IS development process. One of the critical reasons for failed IS projects is the inability to accurately meet user requirements, resulting from an incomplete or inaccurate collection of requirements during the requirements elicitation (RE) phase. While interviews are the most effective RE technique, they face several challenges that make them a questionable fit for the numerous, heterogeneous, and geographically distributed users of contemporary IS. Three significant challenges limit the involvement of a large number of users in IS devel- opment processes today. Firstly, there is a lack of tool support to conduct interviews with a wide audience. While initial studies show promising results in utilizing text-based conversational agents (chatbots) as interviewer substitutes, we lack design knowledge for designing AI-based chatbots that leverage established interviewing techniques in the context of RE. By successfully applying chatbot-based interviewing, vast amounts of qualitative data can be collected. Secondly, there is a need to provide tool support enabling the analysis of large amounts of qualitative interview data. Once again, while modern technologies, such as machine learning (ML), promise remedy, concrete implementations of automated analysis for unstructured qualitative data lag behind the promise. There is a need to design interactive ML (IML) systems for supporting the coding process of qualitative data, which centers around simple interaction formats to teach the ML system, and transparent and understandable suggestions to support data analysis. Thirdly, while organizations rely on online feedback to inform requirements without explicitly conducting RE interviews (e.g., from app stores), we know little about the demographics of who is giving feedback and what motivates them to do so. Using online feedback as requirement source risks including solely the concerns and desires of vocal user groups. With this thesis, I tackle these three challenges in two parts. In part I, I address the first and the second challenge by presenting and evaluating two innovative AI-based systems, a chatbot for requirements elicitation and an IML system to semi-automate qualitative coding. In part II, I address the third challenge by presenting results from a large-scale study on IS feedback engagement. With both parts, I contribute with prescriptive knowledge for designing AI-based qualitative data collection and analysis systems and help to establish a deeper understanding of the coverage of existing data collected from online sources. Besides providing concrete artifacts, architectures, and evaluations, I demonstrate the application of a chatbot interviewer to understand user values in smartphones and provide guidance for extending feedback coverage from underrepresented IS user groups. iii Contents Abstract iii List of Figures vii List of Tables viii List of Abbreviations ix 1 Introduction1 1.1 Motivation . .1 1.2 Research Gaps and Research Questions . .5 1.3 Thesis Structure . .9 2 Foundations 12 2.1 The Role of Qualitative Data in IS Development and Research . 13 2.2 Qualitative Data Collection . 17 2.2.1 Laddering Interview Technique . 17 2.2.2 User Feedback in Online Channels . 20 2.3 Qualitative Data Analysis . 22 2.3.1 Coding in Qualitative Data Analysis . 22 2.3.2 Qualitative Data Analysis Systems . 22 2.4 AI-based Technology for Qualitative Data Collection and Analysis . 24 2.4.1 AI-based Technology for Qualitative Data Collection . 24 2.4.2 AI-based Technology for Qualitative Data Analysis . 25 3 Part I: AI-based Qualitative Data Collection & Analysis in IS Development 28 3.1 Study 1: Ladderbot - A Requirements Self-Elicitation System . 28 3.1.1 Introduction . 28 3.1.2 Designing a Laddering Interview Chatbot for RE . 29 3.1.2.1 Common Issues of RE Interviews with Novice Users . 29 3.1.2.2 Chatbot Structure for Laddering Interviews . 32 3.1.2.3 Interview Visualization . 35 3.1.3 Conclusion . 35 3.2 Study 2: Re-Evaluating User Values of Smartphones - a Wide Audience Study 37 3.2.1 Introduction . 37 3.2.2 Background . 39 3.2.2.1 Value-Oriented Research . 39 3.2.2.2 User Perspectives on Smartphone Usage . 39 iv Contents 3.2.3 Methodology . 42 3.2.3.1 Design and Procedure . 42 3.2.3.2 Participants . 42 3.2.3.3 Treatments . 43 3.2.3.4 Quantitative Response Analysis . 44 3.2.3.5 Coding . 45 3.2.3.6 Generating the Hierarchical Goal Structure . 46 3.2.4 Results . 48 3.2.4.1 Descriptive Analysis . 48 3.2.4.2 Quantitative Response Analysis . 49 3.2.4.3 Interviewee Perception Analysis . 51 3.2.4.4 Content Analysis . 51 3.2.4.5 Differences between Survey- and Chatbot-based Laddering 57 3.2.5 Discussion . 58 3.2.5.1 Implications for Research . 58 3.2.5.2 Implications for Practice .
Recommended publications
  • Audiovisual Media Annotation Using Qualitative Data Analysis Software: a Comparative Analysis
    The Qualitative Report Volume 23 Number 13 Article 4 3-6-2018 Audiovisual Media Annotation Using Qualitative Data Analysis Software: A Comparative Analysis Liliana Melgar Estrada University of Amsterdam, [email protected] Marijn Koolen Huygens ING, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/tqr Part of the Library and Information Science Commons, and the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons Recommended APA Citation Melgar Estrada, L., & Koolen, M. (2018). Audiovisual Media Annotation Using Qualitative Data Analysis Software: A Comparative Analysis. The Qualitative Report, 23(13), 40-60. https://doi.org/10.46743/ 2160-3715/2018.3035 This Article is brought to you for free and open access by the The Qualitative Report at NSUWorks. It has been accepted for inclusion in The Qualitative Report by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Audiovisual Media Annotation Using Qualitative Data Analysis Software: A Comparative Analysis Abstract The variety of specialized tools designed to facilitate analysis of audio-visual (AV) media are useful not only to media scholars and oral historians but to other researchers as well. Both Qualitative Data Analysis Software (QDAS) packages and dedicated systems created for specific disciplines, such as linguistics, can be used for this purpose. Software proliferation challenges researchers to make informed choices about which package will be most useful for their project. This paper aims to present an information science perspective of the scholarly use of tools in qualitative research of audio-visual sources. It provides a baseline of affordances based on functionalities with the goal of making the types of research tasks that they support more explicit (e.g., transcribing, segmenting, coding, linking, and commenting on data).
    [Show full text]
  • Nvivo 8 Help Using the Software
    NVivo 8 Help Using the Software This is a printable version of the NVivo 8 help that is built into the software. The help is divided into two sections - Using the Software and Working with Your Data. This section of the help contains step-by-step instructions and provides the fundamental information you need to work with the software. To electronically navigate through this help and link to other topics, go to the NVivo Help under the Help menu in your NVivo 8 software. Click a button for related instructions or concepts. Produced November 2008. Copyright © 2008 QSR International Pty Ltd ABN 47 006 357 213. All rights reserved. NVivo and QSR words and logos are trademarks or registered trademarks of QSR International Pty Ltd. Patent pending. Microsoft, .NET, SQL Server, Windows, XP, Vista, Windows Media Player, Word, PowerPoint and Excel are trademarks or registered trademarks of the Microsoft Corporation in the United States and/or other countries. Adobe, .pdf and Flash Player are trademarks or registered trademarks of Adobe Systems Integrated in the United States and/or other countries. QuickTime and the QuickTime logo are trademarks or registered trademarks of Apple Computer, Inc., used under license there from. Crystal Reports is a trademark or registered trademark of Business Objects SA. This information is subject to change without notice. NVivo 8 Help - Using the Software Contents Introduction ............................................................................................................................................................
    [Show full text]
  • Introduction for Conducting Social Science Research Michael C. Gizzi, Ph.D. Stage 1
    Harnessing the power of MAXQDA for conducting social science research Michael C. Gizzi, Ph.D. Professor of Criminal Justice, Illinois State University Introduction Stage 3 & 4 – The Art of Data Analysis MAXQDA is a professional qualitative software designed for content analysis and mixed methods research. This poster provides an overview of MAXQDA describes itself with the tag line “The Art of Data Analysis.” These the “Four Stages of Research,” a conceptual model I’ve developed for words capture the heart of the Four Stages of Research. Stage 3 and 4 conducting a qualitative research project. This was designed as tool for involves reading, coding, writing memos (taking notes), looking for patterns effectively using MAXQDA to conduct qualitative legal research, but can be and themes, and then engaging in a thematic analysis of cases. applied to almost any social science qualitative project. MAXQDA has transformed how I conduct my research on the impact and implementation Once the initial content analysis completed, you can begin the creative and of judicial policies by lower courts. often emergent process of analysis: summarizing the data, looking for patterns, quantifying them, identifying core examples, and then further refining The Four Stages of Research provides a conceptual model for thinking the data and findings. MAXQDA also has a full set of statistical tools that you through a research project: can use for mixed methods analysis. As this process unfolds, you are ready to write your final product. • Identify the research questions and conceptual framework of the research design. • Collect the data and create a workspace and analytical process to evaluate it in MAXQDA.
    [Show full text]
  • Current Issues in Qualitative Data Analysis Software (QDAS): a User and Developer Perspective
    The Qualitative Report Volume 23 Number 13 Article 5 3-6-2018 Current Issues in Qualitative Data Analysis Software (QDAS): A User and Developer Perspective Jeanine C. Evers Erasmus University of Rotterdam, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/tqr Part of the Law Commons, Quantitative, Qualitative, Comparative, and Historical Methodologies Commons, and the Social Statistics Commons Recommended APA Citation Evers, J. C. (2018). Current Issues in Qualitative Data Analysis Software (QDAS): A User and Developer Perspective. The Qualitative Report, 23(13), 61-73. https://doi.org/10.46743/2160-3715/2018.3205 This Article is brought to you for free and open access by the The Qualitative Report at NSUWorks. It has been accepted for inclusion in The Qualitative Report by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Current Issues in Qualitative Data Analysis Software (QDAS): A User and Developer Perspective Abstract This paper describes recent issues and developments in Qualitative Data Analysis Software (QDAS) as presented in the opening plenary at the KWALON 2016 conference. From a user perspective, it reflects current features and functionality, including the use of artificial intelligence and machine learning; implications of the cloud; user friendliness; the role of digital archives; and the development of a common exchange format. This user perspective is complemented with the views of software developers who took part in the “Rotterdam Exchange Format Initiative,” an outcome of the conference. Keywords Qualitative Data Analysis Software, QDAS, Artificial Intelligence, Machine Learning, TLA AS.ti, Cassandre, Dedoose, f4analyse, MAXQDA, NVivo, QDA Miner, Quirkos, Transana, Exchange format, Interoperability, Qualitative Data Analysis, Learning Curve QDAS, Textual Data Mining, Cloud services.
    [Show full text]
  • A Software-Assisted Qualitative Content Analysis of News Articles: Example and Reflections
    Volume 16, No. 2, Art. 8 May 2015 A Software-Assisted Qualitative Content Analysis of News Articles: Example and Reflections Florian Kaefer, Juliet Roper & Paresha Sinha Key words: Abstract: This article offers a step-by-step description of how qualitative data analysis software can qualitative content be used for a qualitative content analysis of newspaper articles. Using NVivo as an example, it analysis; method; illustrates how software tools can facilitate analytical flexibility and how they can enhance news articles; transparency and trustworthiness of the qualitative research process. Following a brief discussion NVivo software; of the key characteristics, advantages and limitations of qualitative data analysis software, the qualitative data article describes a qualitative content analysis of 230 newspaper articles, conducted to determine analysis software international media perceptions of New Zealand's environmental performance in connection with (QDAS); climate change and carbon emissions. The article proposes a multi-level coding approach during computer-assisted the analysis of news texts that combines quantitative and qualitative elements, allowing the qualitative data researcher to move back and forth in coding and between analytical levels. The article concludes analysis that while qualitative data analysis software, such as NVivo, will not do the analysis for the (CAQDAS) researcher, it can make the analytical process more flexible, transparent and ultimately more trustworthy. Table of Contents 1. Introduction 2. Literature Review 2.1 Qualitative content analysis (QCA) 2.2 Software-assisted qualitative data analysis 3. A Step-by-Step Approach to Software-Assisted Qualitative Content Analysis of News Articles 3.1 Step 1: Selecting and learning the software 3.1.1 Getting to know the software: Sample project, literature review 3.2 Step 2: Data import and preparation 3.3 Step 3: Multi-level coding 3.3.1 Coding: Inductive vs.
    [Show full text]
  • The Value of CAQDAS for Systematising Literature Reviews
    BY DR. CHRISTINA SILVER, [email protected] RESEARCH FELLOW, UNIVERSITY OF SURREY The value of CAQDAS for systematising literature reviews Software designed to facilitate qualitative and mixed methods research is collectively known as CAQDAS Undertaking a literature review is similar to con- (Computer Assisted Qualitative Data AnalysiS). ducting a qualitative data analysis (QDA) in terms Available since the 1980s it provides tools designed of the analytic activities involved (Table 2.). Specific to support a range of analytic activities across disci- analytic requirements should drive the way tools are plines and sectors. Using references from bibliographic used rather than the availability of product features software (e.g. Endnote, Zotero, Mendeley) enables systematic literature reviewing, integrated with data Table 2. analysis. This article outlines some possibilities, high- Analytic activities supported by CAQDAS lighting considerations in planning a literature review for librarians and others. Integration revy revy • Bring together all relevant material into one “workspace” • Quantify qualitative data / qualify quantitative data 01 2016 01 What CAQDAS packages “do”? Organisation The acronym “CAQDAS” is misleading because • Manage facts about data (metadata, socio-demo- these programs do not “do” analysis; users remain in graphics etc.) control of and responsible for everything. It’s there- • Represent ideas that form the basis of analysis fore better to think of them as project management tools. Harnessing CAQDAS powerfully involves their Exploration use from start to finish, whether for an academic • Familiarise with data study, service evaluation, public consultation, liter- • Access and mark inherent structure ature review, or anything else. Each program has a suite of features, too many to list here.
    [Show full text]
  • The Coding Manual for Qualitative Researchers for Manual Coding The
    2E Second Edition The Coding Manual for Qualitative Researchers ‘This book fills a major gap in qualitative research methods courses. Saldaña has accomplished what has not been done before - creating a text that clearly identifies the many choices one has in coding their data. I wish I had this book when I started conducting qualitative research. It should be required reading for all.’ Mark Winton, Criminal Justice Instructor, University of Central Florida ‘An excellent handbook that helps demystify the coding process with a comprehensive assessment of different coding types, examples and exercises. As such it is a valuable teaching resource and it will also be of use to anyone undertaking qualitative analysis.’ Kevin Meethan, Associate Professor in Sociology, Plymouth University The ‘The Coding Manual describes the qualitative coding process with clarity and expertise. Its wide array of strategies, from the more straightforward to the more complex, are skillfully explained and exemplified. This extremely usable manual is a must-have resource for qualitative researchers at all levels.’ Coding Manual for Tara M. Brown, Assistant Professor of Education, Brandeis University The second edition of Johnny Saldaña’s international bestseller provides an in-depth guide to the Qualitative Researchers multiple approaches available for coding qualitative data. Fully up-to-date, it includes new chapters, more coding techniques and an additional glossary. Clear, practical and authoritative, the book: • Describes how coding initiates qualitative data analysis • Demonstrates the writing of analytic memos • Discusses available analytic software • Suggests how best to use The Coding Manual for Qualitative Researchers for particular studies In total, 32 coding methods are profiled that can be applied to a range of research genres from grounded theory to phenomenology to narrative inquiry.
    [Show full text]
  • Benefits to Qualitative Data Quality with Multiple Coders: Two Case Studies in Multi-Coder Data Analysis." Journal of Rural Social Sciences, 34(1): Article 2
    Journal of Rural Social Sciences Volume 34 Issue 1 Volume 34, Issue 1 Article 2 8-9-2019 Benefits ot Qualitative Data Quality with Multiple Coders: Two Case Studies in Multi-coder Data Analysis Sarah P. Church Montana State University, [email protected] Michael Dunn Centre for Ecosystems, Society and Biosecurity, Forest Research, Northern Research Station (UK), [email protected] Linda S. Prokopy Purdue University, [email protected] Follow this and additional works at: https://egrove.olemiss.edu/jrss Part of the Demography, Population, and Ecology Commons, and the Rural Sociology Commons Recommended Citation Church, Sarah, Michael Dunn, and Linda Prokopy. 2019. "Benefits to Qualitative Data Quality with Multiple Coders: Two Case Studies in Multi-coder Data Analysis." Journal of Rural Social Sciences, 34(1): Article 2. Available At: https://egrove.olemiss.edu/jrss/vol34/iss1/2 This Research Note is brought to you for free and open access by the Center for Population Studies at eGrove. It has been accepted for inclusion in Journal of Rural Social Sciences by an authorized editor of eGrove. For more information, please contact [email protected]. Benefits ot Qualitative Data Quality with Multiple Coders: Two Case Studies in Multi-coder Data Analysis Cover Page Footnote Please address all correspondence to Dr. Sarah Church ([email protected]). This research note is available in Journal of Rural Social Sciences: https://egrove.olemiss.edu/jrss/vol34/iss1/2 Church et al.: Benefits to Qualitative Data Quality with Multiple Coders Benefits to Qualitative Data Quality with Multiple Coders: Two Case Studies in Multi-coder Data Analysis Sarah P.
    [Show full text]
  • Thematic Content Analysis: Is There a Difference Between the Support Provided by the MAXQDA® and Nvivo® Software
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304805386 Thematic Content Analysis: Is There a Difference Between the Support Provided by the MAXQDA® and NVivo® Software... Article · November 2015 DOI: 10.5902/1983465911213 CITATION READS 1 57 4 authors: Mírian Oliveira Claudia Bitencourt Pontifícia Universidade Católica do Rio Gran… Universidade do Vale do Rio dos Sinos 62 PUBLICATIONS 139 CITATIONS 67 PUBLICATIONS 108 CITATIONS SEE PROFILE SEE PROFILE Ana Clarissa Santos Eduardo Kunzel Teixeira Pontifícia Universidade Católica do Rio Gran… Pontifícia Universidade Católica do Rio Gran… 2 PUBLICATIONS 1 CITATION 8 PUBLICATIONS 6 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Cognitive proximity and innovation in science parks View project Economia Compartilhada: O Consumo Colaborativo sob as lentes da Economia de Valor View project All content following this page was uploaded by Eduardo Kunzel Teixeira on 15 September 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. DOI: 10.5902/19834659 11213 ANÁLISE DE CONTEÚDO TEMÁTIca: HÁ UMA DIFERENÇA NA UTILIZAÇÃO E NAS VANTAGENS OFERECIDAS PELOS SOFTWARES MAXQDA® E NVIVO®? Thematic Content Analysis: Is There a Difference Between the Support Provided by the MAXQDA® and NVivo® Software Packages? Data de submissão: 28-10-2013 Aceite: 19-07-2014 Mirian Oliveira1 Claudia Cristina Bitencourt2 Ana Clarissa Matte Zanardo dos Santos3 Eduardo Kunzel Teixeira4 ABSTRACT Content analysis is widely used in qualitative research.
    [Show full text]
  • Using Nvivo to Analyze Qualitative Classroom Data on Constructivist Learning Environments
    The Qualitative Report Volume 9 Number 4 Article 2 12-1-2004 Using NVivo to Analyze Qualitative Classroom Data on Constructivist Learning Environments Betul C. Ozkan University of West Georgia, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/tqr Part of the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons, and the Social Statistics Commons Recommended APA Citation Ozkan, B. C. (2004). Using NVivo to Analyze Qualitative Classroom Data on Constructivist Learning Environments. The Qualitative Report, 9(4), 589-603. https://doi.org/10.46743/2160-3715/2004.1905 This Article is brought to you for free and open access by the The Qualitative Report at NSUWorks. It has been accepted for inclusion in The Qualitative Report by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Using NVivo to Analyze Qualitative Classroom Data on Constructivist Learning Environments Abstract This article describes how a qualitative data analysis package, NVivo, was used in a study of authentic and constructivist learning and teaching in the classroom. The paper starts with a summary of the research study in which NVivo was used to analyze the data and overviews the methodology that was adopted in this study. It, then, describes how NVivo was used in the analysis of observational (video) data, interviews and field notes. Keywords Computer Based Qualitative Data Analysis, Qualitative Data Analysis, Computer Based Data Analysis, NVivo, and Constructivist Learning Environments Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. This article is available in The Qualitative Report: https://nsuworks.nova.edu/tqr/vol9/iss4/2 The Qualitative Report Volume 9 Number 4 December 2004 589-603 http://www.nova.edu/ssss/QR.QR9-4/ozkan.pdf Using NVivo to Analyze Qualitative Classroom Data on Constructivist Learning Environments Betul C.
    [Show full text]
  • A Tool for Researching Chronic Pelvic Pain Using Thematic Analysis
    QUALITATIVE RESEARCH: PRACTICES AND CHALLENGES USING RQDA IN QUALITATIVE DATA ANALYSIS: A TOOL FOR RESEARCHING CHRONIC PELVIC PAIN USING THEMATIC ANALYSIS Bruna Helena Mellado1, Catarina Brandão2, 3 , Taynara Louisi Pilger1 , Francisco José Candido dos Reis1 1Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Brazil. [email protected] [email protected]; [email protected] 2Faculty of Psychology and Educational Sciences of the University of Porto, Portugal. [email protected] 3 Psychology Center of the University of Porto, Portugal Abstract. Computer-assisted qualitative data analysis software (CAQDAS) provides tools that help researchers develop qualitative research projects. These software packages support users with tasks such as transcription analysis, text encoding and interpretation, writing and annotation, searching, recursive abstraction, and data mapping, enabling the use of different methods (e.g., grounded theory) and analysis techniques (e.g., content analysis or discourse analysis). The choice of CAQDAS is directly related to the researcher’s chosen methodological approach. The amount and variety of software available often makes the choice process difficult. In Brazil, the data on the use of CAQDAS is still scarce. Commercial software packages are more frequently cited. Open- source packages, like RQDA, are less popular. In this chapter, we present our experience with the use of RQDA to analyze the data from a qualitative study on chronic pelvic pain in women. Keywords: Computer-Assisted Qualitative Data Analysis Software, RQDA, Thematic Analysis, Pelvic Pain. 1. INTRODUCTION The field of qualitative research is characterized by different epistemological perspectives and methodological orientations, which often leads to intense academic debate (Ghedin & Franco, 2008; Merriam, 2007).
    [Show full text]
  • Multimodal Interaction Between a Mother and Her Twin Preterm Infants
    children Article Multimodal Interaction between a Mother and Her Twin Preterm Infants (Male and Female) in Maternal Speech and Humming during Kangaroo Care: A Microanalytical Case Study Eduarda Carvalho 1,* , Raul Rincon 1, João Justo 2 and Helena Rodrigues 1 1 CESEM-NOVA-FCSH, 1069-061 Lisbon, Portugal; [email protected] (R.R.); [email protected] (H.R.) 2 Faculty of Psychology, University of Lisbon, 1649-004 Lisbon, Portugal; [email protected] * Correspondence: [email protected] Abstract: The literature reports the benefits of multimodal interaction with the maternal voice for preterm dyads in kangaroo care. Little is known about multimodal interaction and vocal modulation between preterm mother–twin dyads. This study aims to deepen the knowledge about multimodal interaction (maternal touch, mother’s and infants’ vocalizations and infants’ gaze) between a mother and her twin preterm infants (twin 1 [female] and twin 2 [male]) during speech and humming in kangaroo care. A microanalytical case study was carried out using ELAN, PRAAT, and MAXQDA software (Version R20.4.0). Descriptive and comparative analysis was performed using SPSS software (Version V27). We observed: (1) significantly longer humming phrases to twin 2 than to twin 1 (p = 0.002), (2) significantly longer instances of maternal touch in humming than in speech to twin 1 (p = 0.000), (3) a significant increase in the pitch of maternal speech after twin 2 gazed (p = 0.002), Citation: Carvalho, E.; Rincon, R.; and (4) a significant increase of pitch in humming after twin 1 vocalized (p = 0.026). This exploratory Justo, J.; Rodrigues, H.
    [Show full text]