The Gnomonic Projection

Total Page:16

File Type:pdf, Size:1020Kb

The Gnomonic Projection Gnomonic Projections onto Various Polyhedra By Brian Stonelake Table of Contents Abstract ................................................................................................................................................... 3 The Gnomonic Projection .................................................................................................................. 4 The Polyhedra ....................................................................................................................................... 5 The Icosahedron ............................................................................................................................................. 5 The Dodecahedron ......................................................................................................................................... 5 Pentakis Dodecahedron ............................................................................................................................... 5 Modified Pentakis Dodecahedron ............................................................................................................. 6 Equilateral Pentakis Dodecahedron ........................................................................................................ 6 Triakis Icosahedron ....................................................................................................................................... 6 Modified Triakis Icosahedron .................................................................................................................... 7 Equilateral Triakis Icosahedron ................................................................................................................ 7 Mapping a Polyhedron ....................................................................................................................... 8 Icosahedral Great Circles ............................................................................................................................. 8 Icosahedral Great Circle Type A ............................................................................................................................... 8 Icosahedral Great Circle Type B ................................................................................................................................ 9 Icosahedral Great Circle Type C ................................................................................................................................ 9 LCD Triangles ................................................................................................................................................. 11 LCD Classification ......................................................................................................................................................... 11 Values that Define the Projections ............................................................................................... 13 Exact Values for Relevant Angles ............................................................................................................ 13 Exact Values for LCD Vertices ................................................................................................................... 15 Exact Values for Centers of Projection .................................................................................................. 18 Icosahedron and Dodecahderon ............................................................................................................................ 18 Center of Projection formulas ................................................................................................................................. 18 Modifications of Dodecahedron and Icosahedron ......................................................................................... 21 Distortion .............................................................................................................................................. 25 Entire LCD triangle ....................................................................................................................................... 28 Modifications of the Dodecahedron and Icosahedron ................................................................................. 31 LCD sampling .................................................................................................................................................. 32 Continuous measure .................................................................................................................................... 33 Density Plots ................................................................................................................................................................... 35 Summary of distortion ................................................................................................................................ 39 Remaining Questions ........................................................................................................................ 41 Calculations .......................................................................................................................................... 42 Exact Coordinates for M 2.8 Calculations ............................................................................................... 43 Exact Coordinates for C2.7.8 Calculations .............................................................................................. 45 Pentakis Dodecahedron Center of Projection Calculations ........................................................... 47 Modified Pentakis Dodecahedron Center of Projection Calculations ......................................... 48 Equilateral Pentakis Dodecahedron Center of Projection Calculations .................................... 49 Triakis Icosahedron Center of Projection Calculations ................................................................... 50 Modified Triakis Icosahedron Center of Projection Calculations ................................................ 51 Equilateral Triakis Icosahedron Center of Projection Calculations ............................................ 52 Height of Pyramid Caps for Optimal Triakis Icosahedron .............................................................. 53 References: ........................................................................................................................................... 54 Image Credits: ................................................................................................................................................ 54 Abstract In this paper, I’ll attempt to build upon work done by RW Gray exploring gnomonic projections onto various polyhedra. Much of his work appears to be motivated by Buckminster Fuller, though many pioneers are recognized in the field. While this work was motivated by the practical application of geographic mapping, this paper will focus on the mathematics involved, rather than its applications. Finding closed form representations for relevant Quantities, for example, will be far more interesting to me than their decimal approximations. After a brief introduction on the method of mapping that I will use and the polyhedra onto which I will project, I’ll discuss the base unit with which I will tile the sphere. These units, termed “LCD triangles” are referenced in Fuller’s Synergetics and expanded upon beautifully by Gray. My contributions will be to develop a logical coding convention for these units and to derive closed form notation for the coordinates of the vertices and their images, relative to a specific orientation. I’ll also derive closed-form notation for other points necessary to explicitly define the projection, as well as functions allowing others to find relevant points for modifications of my polyhedra. Finally, I’ll offer several Quantifications of the distortion associated with these mappings. The goal here is more an exploration of the distortion that a search for an ideal polyhedron. The Gnomonic Projection A gnomonic projection (GP) is a bijection from the surface of a hemisphere (open) to a plane. It has the useful property that it maps great circle arcs to straight lines. This map can be visualized by letting a sphere sit atop an image plane. If we imagine the sphere as our globe and associate the point of tangency on the sphere with the South Pole, any point in the southern hemisphere is in the domain of this map. With this picture in mind, the image of a point in the southern hemisphere is just the intersection of the image plane and a ray from the sphere’s center through the point in Question. Figure 1: The Gnomonic Projection To see that great circle arcs are mapped to straight lines, one only needs to know that a great circle is, by definition, the intersection of a sphere and a plane defined by any two points on the sphere and the sphere’s center. Thus the ray that defines the GP for any point on the great circle arc lies on this plane, so the image is the intersection of two planes; a straight line (see figure 1). Figure 1 not only shows that the GP takes all great circle arcs to straight lines, but can be used to show the converse; that any straight line is the images of a great circle arc. To prove the latter, consider an arbitrary line in the image plane and two distinct points on that line. We can define a plane using these two points and the sphere’s center, and note that the intersection of this plane and the
Recommended publications
  • Volume Estimates for Equiangular Hyperbolic Coxeter Polyhedra
    Algebraic & Geometric Topology 9 (2009) 1225–1254 1225 Volume estimates for equiangular hyperbolic Coxeter polyhedra CHRISTOPHER KATKINSON An equiangular hyperbolic Coxeter polyhedron is a hyperbolic polyhedron where all dihedral angles are equal to =n for some fixed n Z, n 2. It is a consequence of 2 Andreev’s theorem that either n 3 and the polyhedron has all ideal vertices or that D n 2. Volume estimates are given for all equiangular hyperbolic Coxeter polyhedra. D 57M50; 30F40 1 Introduction An orientable 3–orbifold, Q, is determined by an underlying 3–manifold, XQ and a trivalent graph, †Q , labeled by integers. If Q carries a hyperbolic structure then it is unique by Mostow rigidity, so the hyperbolic volume of Q is an invariant of Q. Therefore, for hyperbolic orbifolds with a fixed underlying manifold, the volume is a function of the labeled graph †. In this paper, methods for estimating the volume of orbifolds of a restricted type in terms of this labeled graph will be described. The orbifolds studied in this paper are quotients of H3 by reflection groups generated by reflections in hyperbolic Coxeter polyhedra. A Coxeter polyhedron is one where each dihedral angle is of the form =n for some n Z, n 2. Given a hyperbolic 2 Coxeter polyhedron P , consider the group generated by reflections through the geodesic planes determined by its faces, .P/. Then .P/ is a Kleinian group which acts on H3 with fundamental domain P . The quotient, O H3= .P/, is a nonorientable D orbifold with singular locus P.2/ , the 2–skeleton of P .
    [Show full text]
  • Notes on Projections Part II - Common Projections James R
    Notes on Projections Part II - Common Projections James R. Clynch 2003 I. Common Projections There are several areas where maps are commonly used and a few projections dominate these fields. An extensive list is given at the end of the Introduction Chapter in Snyder. Here just a few will be given. Whole World Mercator Most common world projection. Cylindrical Robinson Less distortion than Mercator. Pseudocylindrical Goode Interrupted map. Common for thematic maps. Navigation Charts UTM Common for ocean charts. Part of military map system. UPS For polar regions. Part of military map system. Lambert Lambert Conformal Conic standard in Air Navigation Charts Topographic Maps Polyconic US Geological Survey Standard. UTM coordinates on margins. Surveying / Land Use / General Adlers Equal Area (Conic) Transverse Mercator For areas mainly North-South Lambert For areas mainly East-West A discussion of these and a few others follows. For an extensive list see Snyder. The two maps that form the military grid reference system (MGRS) the UTM and UPS are discussed in detail in a separate note. II. Azimuthal or Planar Projections I you project a globe on a plane that is tangent or symmetric about the polar axis the azimuths to the center point are all true. This leads to the name Azimuthal for projections on a plane. There are 4 common projections that use a plane as the projection surface. Three are perspective. The fourth is the simple polar plot that has the official name equidistant azimuthal projection. The three perspective azimuthal projections are shown below. They differ in the location of the perspective or projection point.
    [Show full text]
  • Can Every Face of a Polyhedron Have Many Sides ?
    Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1.
    [Show full text]
  • Hyperbolic Geometry, Surfaces, and 3-Manifolds Bruno Martelli
    Hyperbolic geometry, surfaces, and 3-manifolds Bruno Martelli Dipartimento di Matematica \Tonelli", Largo Pontecorvo 5, 56127 Pisa, Italy E-mail address: martelli at dm dot unipi dot it version: december 18, 2013 Contents Introduction 1 Copyright notices 1 Chapter 1. Preliminaries 3 1. Differential topology 3 1.1. Differentiable manifolds 3 1.2. Tangent space 4 1.3. Differentiable submanifolds 6 1.4. Fiber bundles 6 1.5. Tangent and normal bundle 6 1.6. Immersion and embedding 7 1.7. Homotopy and isotopy 7 1.8. Tubolar neighborhood 7 1.9. Manifolds with boundary 8 1.10. Cut and paste 8 1.11. Transversality 9 2. Riemannian geometry 9 2.1. Metric tensor 9 2.2. Distance, geodesics, volume. 10 2.3. Exponential map 11 2.4. Injectivity radius 12 2.5. Completeness 13 2.6. Curvature 13 2.7. Isometries 15 2.8. Isometry group 15 2.9. Riemannian manifolds with boundary 16 2.10. Local isometries 16 3. Measure theory 17 3.1. Borel measure 17 3.2. Topology on the measure space 18 3.3. Lie groups 19 3.4. Haar measures 19 4. Algebraic topology 19 4.1. Group actions 19 4.2. Coverings 20 4.3. Discrete groups of isometries 20 v vi CONTENTS 4.4. Cell complexes 21 4.5. Aspherical cell-complexes 22 Chapter 2. Hyperbolic space 25 1. The models of hyperbolic space 25 1.1. Hyperboloid 25 1.2. Isometries of the hyperboloid 26 1.3. Subspaces 27 1.4. The Poincar´edisc 29 1.5. The half-space model 31 1.6.
    [Show full text]
  • Comparison of Spherical Cube Map Projections Used in Planet-Sized Terrain Rendering
    FACTA UNIVERSITATIS (NIS)ˇ Ser. Math. Inform. Vol. 31, No 2 (2016), 259–297 COMPARISON OF SPHERICAL CUBE MAP PROJECTIONS USED IN PLANET-SIZED TERRAIN RENDERING Aleksandar M. Dimitrijevi´c, Martin Lambers and Dejan D. Ranˇci´c Abstract. A wide variety of projections from a planet surface to a two-dimensional map are known, and the correct choice of a particular projection for a given application area depends on many factors. In the computer graphics domain, in particular in the field of planet rendering systems, the importance of that choice has been neglected so far and inadequate criteria have been used to select a projection. In this paper, we derive evaluation criteria, based on texture distortion, suitable for this application domain, and apply them to a comprehensive list of spherical cube map projections to demonstrate their properties. Keywords: Map projection, spherical cube, distortion, texturing, graphics 1. Introduction Map projections have been used for centuries to represent the curved surface of the Earth with a two-dimensional map. A wide variety of map projections have been proposed, each with different properties. Of particular interest are scale variations and angular distortions introduced by map projections – since the spheroidal surface is not developable, a projection onto a plane cannot be both conformal (angle- preserving) and equal-area (constant-scale) at the same time. These two properties are usually analyzed using Tissot’s indicatrix. An overview of map projections and an introduction to Tissot’s indicatrix are given by Snyder [24]. In computer graphics, a map projection is a central part of systems that render planets or similar celestial bodies: the surface properties (photos, digital elevation models, radar imagery, thermal measurements, etc.) are stored in a map hierarchy in different resolutions.
    [Show full text]
  • From Angled Triangulations to Hyperbolic Structures
    http://dx.doi.org/10.1090/conm/541/10683 Contemporary Mathematics Volume 541, 2011 From angled triangulations to hyperbolic structures David Futer and Fran¸cois Gu´eritaud Abstract. This survey paper contains an elementary exposition of Casson and Rivin’s technique for finding the hyperbolic metric on a 3–manifold M with toroidal boundary. We also survey a number of applications of this technique. The method involves subdividing M into ideal tetrahedra and solving a system of gluing equations to find hyperbolic shapes for the tetrahedra. The gluing equations decompose into a linear and non-linear part. The solutions to the linear equations form a convex polytope A. The solution to the non-linear part (unique if it exists) is a critical point of a certain volume functional on this polytope. The main contribution of this paper is an elementary proof of Rivin’s theorem that a critical point of the volume functional on A produces a complete hyperbolic structure on M. 1. Introduction Around 1980, William Thurston showed that “almost every” 3–manifold M, whether closed or bounded, admits a complete hyperbolic metric [31]. When the boundary of M consists of tori, this metric is unique up to isometry [20, 24]. Thurston introduced a method for finding this unique metric. The idea was to subdivide the interior of M into ideal tetrahedra (tetrahedra whose vertices are removed), and then give those tetrahedra hyperbolic shapes that glue up coherently in M. The shape of a hyperbolic ideal tetrahedron can be completely described by a single complex number, namely the cross–ratio of its four vertices on the sphere at infinity.
    [Show full text]
  • Novel Bottom-Up Sub-Micron Architectures for Advanced
    NOVEL BOTTOM-UP SUB-MICRON ARCHITECTURES FOR ADVANCED FUNCTIONAL DEVICES by CHIARA BUSA’ A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Supervisor: Dr Pola Goldberg-Oppenheimer Department of Chemical Engineering College of Engineering and Physical Sciences University of Birmingham May 2017 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This thesis illustrates two novel routes for fabricating hierarchical micro-to-nano structures with interesting optical and wetting properties. The co-presence of asperities spanning the two length scales enables the fabrication of miniaturised, tuneable surfaces exhibiting a high potential for applications in for instance, waterproof coatings and nanophotonic devices, while exploiting the intrinsic properties of the structuring materials. Firstly, scalable, superhydrophobic surfaces were produced via carbon nanotubes (CNT)-based electrohydrodynamic lithography, fabricating multiscale polymeric cones and nanohair-like architectures with various periodicities. CNT forests were used for manufacturing essential components for the electrohydrodynamic setup and producing controlled micro-to-nano features on a millimetre scale. The achieved high contact angles introduced switchable Rose- to-Lotus wetting regimes. Secondly, a cost-effective method was introduced as a route towards plasmonic bandgap metamaterials via electrochemical replication of three-dimensional (3D) DNA nanostructures as sacrificial templates.
    [Show full text]
  • Decomposing Deltahedra
    Decomposing Deltahedra Eva Knoll EK Design ([email protected]) Abstract Deltahedra are polyhedra with all equilateral triangular faces of the same size. We consider a class of we will call ‘regular’ deltahedra which possess the icosahedral rotational symmetry group and have either six or five triangles meeting at each vertex. Some, but not all of this class can be generated using operations of subdivision, stellation and truncation on the platonic solids. We develop a method of generating and classifying all deltahedra in this class using the idea of a generating vector on a triangular grid that is made into the net of the deltahedron. We observed and proved a geometric property of the length of these generating vectors and the surface area of the corresponding deltahedra. A consequence of this is that all deltahedra in our class have an integer multiple of 20 faces, starting with the icosahedron which has the minimum of 20 faces. Introduction The Japanese art of paper folding traditionally uses square or sometimes rectangular paper. The geometric styles such as modular Origami [4] reflect that paradigm in that the folds are determined by the geometry of the paper (the diagonals and bisectors of existing angles and lines). Using circular paper creates a completely different design structure. The fact that chords of radial length subdivide the circumference exactly 6 times allows the use of a 60 degree grid system [5]. This makes circular Origami a great tool to experiment with deltahedra (Deltahedra are polyhedra bound by equilateral triangles exclusively [3], [8]). After the barn-raising of an endo-pentakis icosi-dodecahedron (an 80 faced regular deltahedron) [Knoll & Morgan, 1999], an investigation of related deltahedra ensued.
    [Show full text]
  • New Perspectives on Polyhedral Molecules and Their Crystal Structures Santiago Alvarez, Jorge Echeverria
    New Perspectives on Polyhedral Molecules and their Crystal Structures Santiago Alvarez, Jorge Echeverria To cite this version: Santiago Alvarez, Jorge Echeverria. New Perspectives on Polyhedral Molecules and their Crystal Structures. Journal of Physical Organic Chemistry, Wiley, 2010, 23 (11), pp.1080. 10.1002/poc.1735. hal-00589441 HAL Id: hal-00589441 https://hal.archives-ouvertes.fr/hal-00589441 Submitted on 29 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Physical Organic Chemistry New Perspectives on Polyhedral Molecules and their Crystal Structures For Peer Review Journal: Journal of Physical Organic Chemistry Manuscript ID: POC-09-0305.R1 Wiley - Manuscript type: Research Article Date Submitted by the 06-Apr-2010 Author: Complete List of Authors: Alvarez, Santiago; Universitat de Barcelona, Departament de Quimica Inorganica Echeverria, Jorge; Universitat de Barcelona, Departament de Quimica Inorganica continuous shape measures, stereochemistry, shape maps, Keywords: polyhedranes http://mc.manuscriptcentral.com/poc Page 1 of 20 Journal of Physical Organic Chemistry 1 2 3 4 5 6 7 8 9 10 New Perspectives on Polyhedral Molecules and their Crystal Structures 11 12 Santiago Alvarez, Jorge Echeverría 13 14 15 Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, 16 Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain).
    [Show full text]
  • Bibliography of Map Projections
    AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOlOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis­ of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from • WASHINGTON, D.C.--Main Interior Bldg., 2600 corridor, 18th and C Sts., NW.
    [Show full text]
  • Map Projections
    Map Projections Chapter 4 Map Projections What is map projection? Why are map projections drawn? What are the different types of projections? Which projection is most suitably used for which area? In this chapter, we will seek the answers of such essential questions. MAP PROJECTION Map projection is the method of transferring the graticule of latitude and longitude on a plane surface. It can also be defined as the transformation of spherical network of parallels and meridians on a plane surface. As you know that, the earth on which we live in is not flat. It is geoid in shape like a sphere. A globe is the best model of the earth. Due to this property of the globe, the shape and sizes of the continents and oceans are accurately shown on it. It also shows the directions and distances very accurately. The globe is divided into various segments by the lines of latitude and longitude. The horizontal lines represent the parallels of latitude and the vertical lines represent the meridians of the longitude. The network of parallels and meridians is called graticule. This network facilitates drawing of maps. Drawing of the graticule on a flat surface is called projection. But a globe has many limitations. It is expensive. It can neither be carried everywhere easily nor can a minor detail be shown on it. Besides, on the globe the meridians are semi-circles and the parallels 35 are circles. When they are transferred on a plane surface, they become intersecting straight lines or curved lines. 2021-22 Practical Work in Geography NEED FOR MAP PROJECTION The need for a map projection mainly arises to have a detailed study of a 36 region, which is not possible to do from a globe.
    [Show full text]
  • Convex Polytopes and Tilings with Few Flag Orbits
    Convex Polytopes and Tilings with Few Flag Orbits by Nicholas Matteo B.A. in Mathematics, Miami University M.A. in Mathematics, Miami University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Abstract of Dissertation The amount of symmetry possessed by a convex polytope, or a tiling by convex polytopes, is reflected by the number of orbits of its flags under the action of the Euclidean isometries preserving the polytope. The convex polytopes with only one flag orbit have been classified since the work of Schläfli in the 19th century. In this dissertation, convex polytopes with up to three flag orbits are classified. Two-orbit convex polytopes exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, the rhombic dodecahedron, and the rhombic triacontahedron. Two-orbit face-to-face tilings by convex polytopes exist on E1, E2, and E3; the only ones which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral-octahedral honeycomb, and the rhombic dodecahedral honeycomb. Moreover, any combinatorially two-orbit convex polytope or tiling is isomorphic to one on the above list. Three-orbit convex polytopes exist in two through eight dimensions. There are infinitely many in three dimensions, including prisms over regular polygons, truncated Platonic solids, and their dual bipyramids and Kleetopes. There are infinitely many in four dimensions, comprising the rectified regular 4-polytopes, the p; p-duoprisms, the bitruncated 4-simplex, the bitruncated 24-cell, and their duals.
    [Show full text]