Creating and Archiving Born Digital Video
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
XMP SPECIFICATION PART 3 STORAGE in FILES Copyright © 2016 Adobe Systems Incorporated
XMP SPECIFICATION PART 3 STORAGE IN FILES Copyright © 2016 Adobe Systems Incorporated. All rights reserved. Adobe XMP Specification Part 3: Storage in Files NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated. Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Flash, FrameMaker, InDesign, Illustrator, Photoshop, PostScript, and the XMP logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Apple, Macintosh, Mac OS and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and other countries. UNIX is a trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their respective owners. This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights. Contents 1 Embedding XMP metadata in application files . -
(A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format. -
Game Audio Via Openal
Game Audio via OpenAL Summary In the Graphics For Games module, you learnt how to use OpenGL to create complex graphical scenes, improving your programming skills along the way, and learning about data structures such as scene graphs. In this workshop, you'll see how to add sounds to your game worlds using the OpenAL sound library. New Concepts Sound in games, OpenAL, PCM audio, binary file formats, FourCC codes, WAV files, limited resource management Introduction Audio has played an important part in gaming almost as long as there have been games to play - even Pong back in 1972 had simple sound effects. We've moved a long way from then; the 80s brought dedicated audio hardware such as the Commodore 64's SID chip that could play 3 simultaneous syn- thesised sounds, and later the Amiga brought the ability to play audio samples to the home gaming market. In modern gaming hardware, we can expect to hear many simultaneous sounds and music tracks, often in surround sound. Game developers now employ dedicated sound engineers that will carefully adjust the sounds in each game release to create an immersive aural experience - making sure that each individual sound is uniquely identifiable and correctly equalised, and that every music track suits the situation they will be played in. At the heart of a game's audio experience is the code that plays back the game sounds, and cal- culates which speakers they should use - the sound system. Although we can't hope to compete with the complex sound systems of AAA games, we should still be able to make a robust, simple system for the addition of sound in our 3D games, and that's what this workshop will assist you in creating. -
Randomized Lempel-Ziv Compression for Anti-Compression Side-Channel Attacks
Randomized Lempel-Ziv Compression for Anti-Compression Side-Channel Attacks by Meng Yang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2018 c Meng Yang 2018 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Security experts confront new attacks on TLS/SSL every year. Ever since the compres- sion side-channel attacks CRIME and BREACH were presented during security conferences in 2012 and 2013, online users connecting to HTTP servers that run TLS version 1.2 are susceptible of being impersonated. We set up three Randomized Lempel-Ziv Models, which are built on Lempel-Ziv77, to confront this attack. Our three models change the determin- istic characteristic of the compression algorithm: each compression with the same input gives output of different lengths. We implemented SSL/TLS protocol and the Lempel- Ziv77 compression algorithm, and used them as a base for our simulations of compression side-channel attack. After performing the simulations, all three models successfully pre- vented the attack. However, we demonstrate that our randomized models can still be broken by a stronger version of compression side-channel attack that we created. But this latter attack has a greater time complexity and is easily detectable. Finally, from the results, we conclude that our models couldn't compress as well as Lempel-Ziv77, but they can be used against compression side-channel attacks. -
Conversion Principles and Circuits
Interfacing Analog and Digital Worlds: Conversion Principles and Circuits Nimal Skandhakumar Faculty of Technology University of Sri Jayewardenepura 2019 1 From Analog to Digital to Analog 2 Analog Signal ● A continuous signal that contains 1. Continuous time-varying quantities, such as 2. Infinite range of values temperature or speed, with infinite 3. More exact values, but more possible values in between difficult to work with ● Can be used to measure changes in some physical phenomena, such as light, sound, pressure, or temperature. 3 Analog Signal ● Advantages: 1. Major advantages of the analog signal is infinite amount of data. 2. Density is much higher. 3. Easy processing. ● Disadvantages: 1. Unwanted noise in recording. 2. If we transmit data at long distance then unwanted disturbance is there. 3. Generation loss is also a big con of analog signals. 4 Digital Signal ● A type of signal that can take on a 1. Discrete set of discrete values (a quantized 2. Finite range of values signal) 3. Not as exact as analog, but easier ● Can represent a discrete set of to work with values using any discrete set of waveforms; and we can represent it like (0 or 1), (on or off) 5 Difference between analog and digital signals Analog Digital Signalling Continuous signal Discrete time signal Data Subjected to deterioration by noise during Can be noise-immune without deterioration transmissions transmission and write/read cycle. during transmission and write/read cycle. Bandwidth Analog signal processing can be done in There is no guarantee that digital signal real time and consumes less bandwidth. processing can be done in real time and consumes more bandwidth to carry out the same information. -
Codec Is a Portmanteau of Either
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format. -
8 Video Compression Codecs
ARTICLE VIDEO COMPRESSION CODECS: A SURVIVAL GUIDE Iain E. Richardson, Vcodex Ltd., UK 1. Introduction Not another video codec! Since the frst commercially viable video codec formats appeared in the early 1990s, we have seen the emergence of a plethora of compressed digital video formats, from MPEG-1 and MPEG-2 to recent codecs such as HEVC and VP9. Each new format offers certain advantages over its predecessors. However, the increasing variety of codec formats poses many questions for anyone involved in collecting, archiving and delivering digital video content, such as: ■■ Which codec format (if any) is best? ■■ What is a suitable acquisition protocol for digital video? ■■ Is it possible to ensure that early ‘born digital’ material will still be playable in future decades? ■■ What are the advantages and disadvantages of converting (transcoding) older formats into newer standards? ■■ What is the best way to deliver video content to end-users? In this article I explain how a video compression codec works and consider some of the practi- cal concerns relating to choosing and controlling a codec. I discuss the motivations behind the continued development of new codec standards and suggest practical measures to help deal with the questions listed above. 2. Codecs and compression 2.1 What is a video codec? ‘Codec’ is a contraction of ‘encoder and decoder’. A video encoder converts ‘raw’ or uncom- pressed digital video data into a compressed form which is suitable for storage or transmission. A video decoder extracts digital video data from a compressed fle, converting it into a display- able, uncompressed form. -
FLV File Format
Video File Format Specification Version 10 Copyright © 2008 Adobe Systems Incorporated. All rights reserved. This manual may not be copied, photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or in part without written approval from Adobe Systems Incorporated. Notwithstanding the foregoing, a person obtaining an electronic version of this manual from Adobe may print out one copy of this manual provided that no part of this manual may be printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation, commercial purposes, such as selling copies of this documentation or providing paid-for support services. Trademarks Adobe, ActionScript, Flash, Flash Media Server, XMP, and Flash Player are either registered trademarks or trademarks of Adobe Systems Incorporated and may be registered in the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within this publication may be trademarks, service marks, or trade names of Adobe Systems Incorporated or other entities and may be registered in certain jurisdictions including internationally. No right or license is granted to any Adobe trademark. Third-Party Information This guide contains links to third-party websites that are not under the control of Adobe Systems Incorporated, and Adobe Systems Incorporated is not responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your own risk. Adobe Systems Incorporated provides these links only as a convenience, and the inclusion of the link does not imply that Adobe Systems Incorporated endorses or accepts any responsibility for the content on those third- party sites. -
Nevion Virtuoso
datasheet Virtuoso Media Function Nevion Virtuoso JPEG 2000 Encoding and Decoding The Virtuoso JPEG 2000 Media Function provides visually lossless compressed Applications transport of SD and HD signals with ultra- • Professional broadcast contribution low latency, using only 10% of the bandwidth • Live sports and event contribution required for uncompressed video. • Studio-to-studio media exchange • Managed video services over IP Nevion Virtuoso can run multiple instances of the JPEG 2000 Media Function on a single Key features platform with built-in network aggregation • Multi-channel JPEG 2000 encoding or decoding to 10G Ethernet. • Visually lossless VQ and low multi-generation loss • Transport of SD, HD and 3G-SDI over IP/ GigE The JPEG 2000 Media Function requires the HBR Accelerator, which supports SD/HD/3G-SDI input, • Interoperability with 3rd party through VSF TR-01 for encoding or decoding of up to four JPEG 2000 • Very low end-to-end latency, 3-4 frames with TR01 channels per Accelerator. • Option for ultra-low latency (sub-frame) The VSF TR-01 compliant TS over IP encapsulation • Supports FEC, SIPS / SMPTE 2022-7 and Launch ensures perfectly synchronized transport of video, Delay Offset (LDO) IP protection mechanisms audio and ancillary data, as well as interoperability • Integrated frame synchronization on decoder with 3rd party equipment • User-friendly web GUI for monitoring and control The Nevion Virtuoso JPEG 2000 Media Function, • Thumbnails for input/output confidence monitoring combined with Nevion’s advanced protection • Built-in TS monitoring (ETSI TR 101 290 Priority 1) of mechanisms, enables broadcasters to utilize encoder output and decoder input, with option for cost-efficient IP links for the real-time transport of Pri 2 and Pri 3 monitoring including PCR validation professional media with low bandwidth utilization, • Software license approach ensures easy and combined with extremely high quality and availability. -
Video Quality Measurement for 3G Handset
University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2007 Video Quality Measurement for 3G Handset Zeeshan http://hdl.handle.net/10026.2/509 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Video Quality Measurement for 3G Handset by Zeeshan Dissertation submitted in partial fulfilment of the requirements for the award of Master of Research in Communications Engineering and Signal Processing in School of Computing, Communication and Electronics University of Plymouth January 2007 Supervisors Professor Emmanuel C. Ifeachor Dr. Lingfen Sun Mr. Zhuoqun Li © Zeeshan 2007 University of Plymouth Library Item no. „ . ^ „ Declaration This is to certify that the candidate, Mr. Zeeshan, carried out the work submitted herewith Candidate's Signature: Mr. Zeeshan KJ(. 'X&_.XJ<t^ Date: 25/01/2007 Supervisor's Signature: Dr. Lingfen Sun /^i^-^^^^f^ » P^^^. 25/01/2007 Second Supervisor's Signature: Mr. Zhuoqun Li / Date: 25/01/2007 Copyright & Legal Notice This copy of the dissertation has been supplied on the condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no part of this dissertation and information derived from it may be published without the author's prior written consent. -
1 Introduction
HELSINKI UNIVERSITY OF TECHNOLOGY Faculty of Electronics, Communications, and Automation Department of Communications and Networking Le Wang Evaluation of Compression for Energy-aware Communication in Wireless Networks Master’s Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology. Espoo, May 11, 2009 Supervisor: Professor Jukka Manner Instructor: Sebastian Siikavirta 2 HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS Author: Le Wang Title: Evaluation of Compression for Energy-aware Communication in Wireless Networks Number of pages: 75 p. Date: 11th May 2009 Faculty: Faculty of Electronics, Communications, and Automation Department: Department of Communications and Networks Code: S-38 Supervisor: Professor Jukka Manner Instructor: Sebastian Siikavirta Abstract In accordance with the development of ICT-based communication, energy efficient communication in wireless networks is being required for reducing energy consumption, cutting down greenhouse emissions and improving business competitiveness. Due to significant energy consumption of transmitting data over wireless networks, data compression techniques can be used to trade the overhead of compression/decompression for less communication energy. Careless and blind compression in wireless networks not only causes an expansion of file sizes, but also wastes energy. This study aims to investigate the usages of data compression to reduce the energy consumption in a hand-held device. By con- ducting experiments as the methodologies, the impacts of transmission on energy consumption are explored on wireless interfaces. Then, 9 lossless compression algo- rithms are examined on popular Internet traffic in the view of compression ratio, speed and consumed energy. Additionally, energy consumption of uplink, downlink and overall system is investigated to achieve a comprehensive understanding of compression in wireless networks. -
Data Compression in Solid State Storage
Data Compression in Solid State Storage John Fryar [email protected] Santa Clara, CA August 2013 1 Acknowledgements This presentation would not have been possible without the counsel, hard work and graciousness of the following individuals and/or organizations: Raymond Savarda Sandgate Technologies Santa Clara, CA August 2013 2 Disclaimers The opinions expressed herein are those of the author and do not necessarily represent those of any other organization or individual unless specifically cited. A thorough attempt to acknowledge all sources has been made. That said, we’re all human… Santa Clara, CA August 2013 3 Learning Objectives At the conclusion of this tutorial the audience will have been exposed to: • The different types of Data Compression • Common Data Compression Algorithms • The Deflate/Inflate (GZIP/GUNZIP) algorithms in detail • Implementation Options (Software/Hardware) • Impacts of design parameters in Performance • SSD benefits and challenges • Resources for Further Study Santa Clara, CA August 2013 4 Agenda • Background, Definitions, & Context • Data Compression Overview • Data Compression Algorithm Survey • Deflate/Inflate (GZIP/GUNZIP) in depth • Software Implementations • HW Implementations • Tradeoffs & Advanced Topics • SSD Benefits and Challenges • Conclusions Santa Clara, CA August 2013 5 Definitions Item Description Comments Open A system which will compress Must strictly adhere to standards System data for use by other entities. on compress / decompress I.E. the compressed data will algorithms exit the system Interoperability among vendors mandated for Open Systems Closed A system which utilizes Can support a limited, optimized System compressed data internally but subset of standard. does not expose compressed Also allows custom algorithms data to the outside world No Interoperability req’d.