A Guide to MPEG Fundamentals and Protocol Analysis and Protocol to MPEG Fundamentals a Guide

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to MPEG Fundamentals and Protocol Analysis and Protocol to MPEG Fundamentals a Guide MPEG Tutorial A Guide to MPEG Fundamentals and Protocol Analysis (Including DVB and ATSC) A Guide to MPEG Fundamentals and Protocol Analysis (Including DVB and ATSC) A Guide to MPEG Fundamentals and Protocol Analysis ii www.tektronix.com/video_audio/ A Guide to MPEG Fundamentals and Protocol Analysis A Guide to MPEG Fundamentals and Protocol Analysis Contents Section 1 – Introduction to MPEG · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1.1 Convergence · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1.2 Why Compression is Needed · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1.3 Applications of Compression · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1.4 Introduction to Video Compression · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 1.5 Introduction to Audio Compression · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 1.6 MPEG Signals · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 1.7 Need for Monitoring and Analysis · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5 1.8 Pitfalls of Compression · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 Section 2 – Compression in Video · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 2.1 Spatial or Temporal Coding? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 2.2 Spatial Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 2.3 Weighting · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9 2.4 Scanning · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 2.5 Entropy Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 2.6 A Spatial Coder · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11 2.7 Temporal Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 2.8 Motion Compensation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13 2.9 Bidirectional Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2.10 I, P, and B Pictures · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2.11 An MPEG Compressor · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17 2.12 Preprocessing · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20 2.13 Profiles and Levels · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21 2.14 Wavelets · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 22 Section 3 – Audio Compression · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23 3.1 The Hearing Mechanism · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23 3.2 Subband Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 24 3.3 MPEG Layer 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25 3.4 MPEG Layer 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26 3.5 Transform Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26 3.6 MPEG Layer 3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27 3.7 AC-3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27 Section 4 – Elementary Streams· · · · · · · · · · · · · · · · · · · · · · · · · · · · 29 4.1 Video Elementary Stream Syntax · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29 4.2 Audio Elementary Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30 www.tektronix.com/video_audio/ iii A Guide to MPEG Fundamentals and Protocol Analysis Section 5 – Packetized Elementary Streams (PES) · · · · · · · · · · · · · · 31 5.1 PES Packets · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31 5.2 Time Stamps · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31 5.3 PTS/DTS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31 Section 6 – Program Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33 6.1 Recording vs. Transmission · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33 6.2 Introduction to Program Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33 Section 7 – Transport Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 35 7.1 The Job of a Transport Stream · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 35 7.2 Packets · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 36 7.3 Program Clock Reference (PCR) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 36 7.4 Packet Identification (PID) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 37 7.5 Program Specific Information (PSI) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 37 Section 8 – Introduction to DVB/ATSC · · · · · · · · · · · · · · · · · · · · · · · 39 8.1 An Overall View · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 39 8.2 Remultiplexing · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 8.3 Service Information (SI) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 8.4 Error Correction · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 8.5 Channel Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41 8.6 Inner Coding · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 43 8.7 Transmitting Digits · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 Section 9 – MPEG Testing · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45 9.1 Testing Requirements · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45 9.2 Analyzing a Transport Stream · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45 9.3 Hierarchic View · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 46 9.4 Interpreted View · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 48 9.5 Syntax and CRC Analysis · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 48 9.6 Filtering · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 49 9.7 Timing Analysis · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 49 9.8 Elementary Stream Testing · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 9.9 Sarnoff Compliant Bit Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 9.10 Elementary Stream Analysis · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 52 9.11 Creating a Transport Stream · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 52 9.12 Jitter Generation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 53 9.13 DVB Tests · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 53 Glossary · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 iv www.tektronix.com/video_audio/ A Guide to MPEG Fundamentals and Protocol Analysis Section 1 – Introduction to MPEG MPEG is one of the most popular audio/video compression techniques because 1.2 Why Compression is.
Recommended publications
  • Mediakind RX8200
    MediaKind RX8200 The RX8200 offers the ultimate in compression efficiency. RX8200 now provides HEVC decode capability. And for satellite operators RX8200 offers up to 20% bandwidth efficiency gains through full support of the new DVB-S2X international open standard. Combined, these two new technologies offer a step-change in transmission efficiency enabling Operators to dramatically reduce operational costs or free-up bandwidth to launch new revenue generating services. The latest BISS CA security standard is an optional The RX8200 Advanced Modular Receiver is the world’s capability which enables simplistic but unsurpassed bestselling IRD. Now with DVB-S2X and HEVC encryption technology for live events. upgradeability it is also the most future-proof. Broadcasters need to deploy receivers for many different tasks in many different operational circumstances. MediaKind’s RX8200 receiver offers ultimate operational flexibility by providing capability for decoding of all video formats, all video compression formats and total connectivity for all transmission mediums via a comprehensive choice of options. 1 MediaKind RX8200 | 06-2021 v4 mediakind.com Product Overview Base Unit Features Ultimate Efficiency Chassis: (RX8200/BAS/C) The RX8200 Advanced Modular Receiver offers ultimate Base Value Pack: (RX8200/SWO/VP/BASE) bandwidth efficiency for satellite transmissions by incorporating the option for the new DVB-S2 Extensions • Easy to use Dashboard web interface (DVB-S2X) standard. DVB-S2X offers up to 20% bit rate efficiency for typical video applications. • 1x ASI input transport stream input • Frame Sync input Multi-format Decoding - Including HEVC • BISS, BISS 2, Common Interface & MediaKind Director As a true multi-format decoder, the RX8200 can offer descrambling MPEG-4 AVC 4:2:0 and 4:2:2 High Definition decoding in all industry-standard compression formats, including • MediaKind RAS descrambling HEVC.
    [Show full text]
  • Virtualization of Audio-Visual Services
    Software Defined Media: Virtualization of Audio-Visual Services Manabu Tsukada∗, Keiko, Ogaway, Masahiro Ikedaz, Takuro Sonez, Kenta Niwax, Shoichiro Saitox, Takashi Kasuya{, Hideki Sunaharay, and Hiroshi Esaki∗ ∗ Graduate School of Information Science and Technology, The University of Tokyo Email: [email protected], [email protected] yGraduate School of Media Design, Keio University / Email: [email protected], [email protected] zYamaha Corporation / Email: fmasahiro.ikeda, [email protected] xNTT Media Intelligence Laboratories / Email: fniwa.kenta, [email protected] {Takenaka Corporation / Email: [email protected] Abstract—Internet-native audio-visual services are witnessing We believe that innovative applications will emerge from rapid development. Among these services, object-based audio- the fusion of object-based audio and video systems, including visual services are gaining importance. In 2014, we established new interactive education systems and public viewing systems. the Software Defined Media (SDM) consortium to target new research areas and markets involving object-based digital media In 2014, we established the Software Defined Media (SDM) 1 and Internet-by-design audio-visual environments. In this paper, consortium to target new research areas and markets involving we introduce the SDM architecture that virtualizes networked object-based digital media and Internet-by-design audio-visual audio-visual services along with the development of smart build- environments. We design SDM along with the development ings and smart cities using Internet of Things (IoT) devices of smart buildings and smart cities using Internet of Things and smart building facilities. Moreover, we design the SDM architecture as a layered architecture to promote the development (IoT) devices and smart building facilities.
    [Show full text]
  • DVD850 DVD Video Player with Jog/Shuttle Remote
    DVD Video Player DVD850 DVD Video Player with Jog/Shuttle Remote • DVD-Video,Video CD, and Audio CD Compatible • Advanced DVD-Video technology, including 10-bit video DAC and 24-bit audio DAC • Dual-lens optical pickup for optimum signal readout from both CD and DVD • Built-in Dolby Digital™ audio decoder with delay and balance controls • Digital output for Dolby Digital™ (AC-3), DTS, and PCM • 6-channel analog output for Dolby Digital™, Dolby Pro Logic™, and stereo • Choice of up to 8 audio languages • Choice of up to 32 subtitle languages • 3-dimensional virtual surround sound • Multiangle • Digital zoom (play & still) DVD850RC Remote Control • Graphic bit rate display • Remote Locator™ DVD Video Player Feature Highlights: DVD850 Component Video Out In addition to supporting traditional TV formats, Philips Magnavox DVD Technical Specifications: supports the latest high resolution TVs. Component video output offers superb color purity, crisp color detail, and reduced color noise– Playback System surpassing even that of S-Video! Today’s DVD is already prepared to DVD Video work with tomorrow’s technology. Video CD CD Gold-Plated Digital Coaxial Cables DVD-R These gold-plated cables provide the clearest connection possible with TV Standard high data capacity delivering maximum transmission efficiency. Number of Lines : 525 Playback : NTSC/60Hz Digital Optical Video Format For optimum flexibility, DVD offers digital optical connection which deliv- Signal : Digital er better, more dynamic sound reproduction. Signal Handling : Components Digital Compression : MPEG2 for DVD Analog 6-Channel Built-in AC3 Decoder : MPEG1 for VCD Dolby® Digital Sound (AC3) gives you dynamic theater-quality sound DVD while sharply filtering coding noise and reducing data consumption.
    [Show full text]
  • An Introduction to MPEG Transport Streams
    An introduction to MPEG-TS all you should know before using TSDuck Version 8 Topics 2 • MPEG transport streams • packets, sections, tables, PES, demux • DVB SimulCrypt • architecture, synchronization, ECM, EMM, scrambling • Standards • MPEG, DVB, others Transport streams packets and packetization Standard key terms 4 • Service / Program • DVB term : service • MPEG term : program • TV channel (video and / or audio) • data service (software download, application data) • Transport stream • aka. « TS », « multiplex », « transponder » • continuous bitstream • modulated and transmitted using one given frequency • aggregate several services • Signalization • set of data structures in a transport stream • describes the structure of transport streams and services MPEG-2 transport stream 5 • Structure of MPEG-2 TS defined in ISO/IEC 13818-1 • One operator uses several TS • TS = synchronous stream of 188-byte TS packets • 4-byte header • optional « adaptation field », a kind of extended header • payload, up to 184 bytes • Multiplex of up to 8192 independent elementary streams (ES) • each ES is identified by a Packet Identifier (PID) • each TS packet belongs to a PID, 13-bit PID in packet header • smooth muxing is complex, demuxing is trivial • Two types of ES content • PES, Packetized Elementary Stream : audio, video, subtitles, teletext • sections : data structures Multiplex of elementary streams 6 • A transport stream is a multiplex of elementary streams • elementary stream = sequence of TS packets with same PID value in header • one set of elementary
    [Show full text]
  • Video Basics ---Major Ref
    Video Basics ---major ref. From Ch.5 of textbook 2 ■ Introduction ---- video industry ■ Video Imaging ---- video scan, aspect ratio ■ Color and Composite & component systems ■ From Analog To Digital Video ■ Spatial Conversions ---- video formats ■ Temporal Conversions ■ Mixing And Keying @NTUEE 1 DSP/IC Lab Video Environments Satellite DVB-S downstream(max 90 Mbps) DSS Cable Modem Cable Network DVB-C downstream(max 40 Mbps) OpenCable Home Connection DSTB IEEE 1394 / USB Ethernet 10 Mbps….. Terrestrial DVB-T/ ATSC (Plug&Play , high-data-rate) Interaction Channel DTV set DirecPC/ DirecDuo (1-way / 2-way)1. Satellite( fast PSTN/ ISDN 2. Cable Modem ( QPSK, TCP / IP for PSTN/ ISDN modem 3. SDSL / ADSL / VDSL ….. @NTUEE 2 DSP/IC Lab 1 Video Service Environments Service Provision HFC POTS Wireless Cable DVB-S DVB-C (Full Service (xDSL access) (MMDS) DVB-T (high speed BB) (Cable Modem) Network) TCP / IP Hybrid Services DSTB Residential LAN (IR, RF, Wired) @NTUEE 3 DSP/IC Lab F ãñìµ@ûì > r Gï=.1 *<ÎPU½ÿ½CD *¶1nñG *ÐÍV PC ;^éuu *ñ<uïÚí Internet w7Home SpoppingHome Banking…. *PPV 2âSaDO"H2<_G.(VOD)ÛÚí ö^éGï=. *ö7GïA2Uf÷ ß[1nЯrn1<t *>1ʺ=.²ÁÞ+Gï STBw¯Gï=.1Æ *"Gï=.²2òGï STB Þ1äh¼oZÐõ1"2¤ Gï STB aöÞ^éGï=.> * õ1n<tñ)ËàÁréï=éC 4 *Gï>h Úü¶Êº=.AÓ-I FMMedium Wave ¤µÚí1 / R *Gï>Áä÷1 transm ittersÇt1ä÷ *Gï>r1ñ² ô<Gï=.> *Î BBC aGï=.Ú7ÂbÍÈzéúrp¾câ> DTT > *BDB 2£< 30! DTT nÚí *­~£U>;HÞr> HDTV/SDTV > *BSkyB ~£ 6 ´[uSr> 200 !nGïá#Úí *TCIComcastÛUÀ MSOb 1997 £¦¬[àGï Cable Úí *Flextech $} BBC >Ë1Gïn(å UKFM) ö´^éGï=.> *1994 £¦­Gï DBS I 1996 £¦[JGïá#r> *1997£¦Gï Cable Úír> *1998 £­Î DTT r>ʺ=.²ñhk¶ 12ß 15£1´t Ngñ·ëæJUJT702::9 @NTUEE 4 DSP/IC Lab 2 Applications of Digital Video ¸®ñ *Î]]XÇæ *Internetÿñ *ñ'$7Åg e-mailì½WWW..
    [Show full text]
  • Implementing Object-Based Audio in Radio Broadcasting
    Object-based Audio in Radio Broadcast Implementing Object-based audio in radio broadcasting Diplomarbeit Ausgeführt zum Zweck der Erlangung des akademischen Grades Dipl.-Ing. für technisch-wissenschaftliche Berufe am Masterstudiengang Digitale Medientechnologien and der Fachhochschule St. Pölten, Masterkalsse Audio Design von: Baran Vlad DM161567 Betreuer/in und Erstbegutachter/in: FH-Prof. Dipl.-Ing Franz Zotlöterer Zweitbegutacher/in:FH Lektor. Dipl.-Ing Stefan Lainer [Wien, 09.09.2019] I Ehrenwörtliche Erklärung Ich versichere, dass - ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe. - ich dieses Thema bisher weder im Inland noch im Ausland einem Begutachter/einer Begutachterin zur Beurteilung oder in irgendeiner Form als Prüfungsarbeit vorgelegt habe. Diese Arbeit stimmt mit der vom Begutachter bzw. der Begutachterin beurteilten Arbeit überein. .................................................. ................................................ Ort, Datum Unterschrift II Kurzfassung Die Wissenschaft der objektbasierten Tonherstellung befasst sich mit einer neuen Art der Übermittlung von räumlichen Informationen, die sich von kanalbasierten Systemen wegbewegen, hin zu einem Ansatz, der Ton unabhängig von dem Gerät verarbeitet, auf dem es gerendert wird. Diese objektbasierten Systeme behandeln Tonelemente als Objekte, die mit Metadaten verknüpft sind, welche ihr Verhalten beschreiben. Bisher wurde diese Forschungen vorwiegend
    [Show full text]
  • BDP9100/05 Philips Blu-Ray Disc Player
    Philips Blu-ray Disc player BDP9100 True cinema experience in 21:9 ultra-widescreen The perfect companion for the Cinema 21:9 TV. Unlike normal Blu-ray players, the BDP9100 is the only Blu-ray player allowing you to shift subtitles in the 21:9 screen aspect ratio, to retain the subtitles without the black bars. See more • 21:9 movie aspect ratio, no black bars bottom and top • Blu-ray Disc playback for sharp images in full HD 1080p • 1080p at 24 fps for cinema-like images • DVD video upscaling to 1080p via HDMI for near-HD images • DivX® Ultra for enhanced playback of DivX® media files • x.v.Colour brings more natural colours to HD camcorder videos Hear more • Dolby TrueHD and DTS-HD MA for HD 7.1 surround sound Engage more • BD-Live (Profile 2.0) to enjoy online Blu-ray bonus content • AVC HD to enjoy high definition camcorder recordings on DVD • Hi-Speed USB 2.0 Link plays video/music from USB flash drives • Enjoy all your movies and music from CDs and DVDs • EasyLink controls all EasyLink products with a single remote Blu-ray Disc player BDP9100/05 Highlights 21:9 movie aspect ratio BD-Live (Profile 2.0) resolution - ensuring more details and more true-to-life pictures. Progressive Scan (represented by "p" in "1080p') eliminates the line structure prevalent on TV screens, again ensuring relentlessly sharp images. To top it off, HDMI makes a direct digital connection that can carry uncompressed digital HD video as well as digital multi-channel audio, without conversions to analogue - delivering perfect picture and sound quality, completely free Be blown away by movies the way they are BD-Live opens up your world of high definition from noise.
    [Show full text]
  • Comprehensive Video/Audio Analysis to Reduce Debug Cycle
    VEGA H264 Content Readiness - From Creation to Distribution Comprehensive Video/Audio Analysis to Reduce Debug Cycle New Addressing the needs of media professionals to debug and optimize digital video products, Interra’s Vega H264 provides detailed analysis of video and audio streams. • Multicore support for video Reducing development time and costs, and increasing productivity, Vega H264 enables media professionals to quickly bring to market high quality, standard-compliant digital video products. stream analysis Vega H264 is an ideal tool for media professionals who need to: • Hierarchial view of SVC Layers • Verify a stream’s compliance with the defined standard • Audio Video synchronization • Debug an encoded stream, or optimize a stream's buffer requirements check • Evaluate and compare the performance and quality of video compression/decompression • Additional standard support: tools - H.264 SVC, AVS, ISDB-T, Teletext, • Optimize and refine video compression CODEC Subtitles, Close Captions, PCAP, HDV, • Check interoperability issues MJPEG 2000, and more... Standards Supported Video H.264, H.264 SVC, H.263, H.263+, MPEG-4, MPEG-2, MPEG-1, AVS Key Product Benefits Audio AAC, Dolby AC-3, Dolby Digital Plus, AMR, MP3, PCM, LPCM, • Extensible architecture to support MPEG-1/MPEG-2 Audio other audio, video, and system System Streams MPEG-2 Transport, MPEG-2 Program/DVD VOB, QuickTime, formats MPEG-1 Systems, MP4, 3GPP/3GPP2, AVC, AVI, HDV • Powerful debug capabilities to Broadcast Standards ATSC, DVB, DVB-T/DVB-H, TR 101 290 Priority 1,2
    [Show full text]
  • Randomized Lempel-Ziv Compression for Anti-Compression Side-Channel Attacks
    Randomized Lempel-Ziv Compression for Anti-Compression Side-Channel Attacks by Meng Yang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2018 c Meng Yang 2018 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Security experts confront new attacks on TLS/SSL every year. Ever since the compres- sion side-channel attacks CRIME and BREACH were presented during security conferences in 2012 and 2013, online users connecting to HTTP servers that run TLS version 1.2 are susceptible of being impersonated. We set up three Randomized Lempel-Ziv Models, which are built on Lempel-Ziv77, to confront this attack. Our three models change the determin- istic characteristic of the compression algorithm: each compression with the same input gives output of different lengths. We implemented SSL/TLS protocol and the Lempel- Ziv77 compression algorithm, and used them as a base for our simulations of compression side-channel attack. After performing the simulations, all three models successfully pre- vented the attack. However, we demonstrate that our randomized models can still be broken by a stronger version of compression side-channel attack that we created. But this latter attack has a greater time complexity and is easily detectable. Finally, from the results, we conclude that our models couldn't compress as well as Lempel-Ziv77, but they can be used against compression side-channel attacks.
    [Show full text]
  • Conversion Principles and Circuits
    Interfacing Analog and Digital Worlds: Conversion Principles and Circuits Nimal Skandhakumar Faculty of Technology University of Sri Jayewardenepura 2019 1 From Analog to Digital to Analog 2 Analog Signal ● A continuous signal that contains 1. Continuous time-varying quantities, such as 2. Infinite range of values temperature or speed, with infinite 3. More exact values, but more possible values in between difficult to work with ● Can be used to measure changes in some physical phenomena, such as light, sound, pressure, or temperature. 3 Analog Signal ● Advantages: 1. Major advantages of the analog signal is infinite amount of data. 2. Density is much higher. 3. Easy processing. ● Disadvantages: 1. Unwanted noise in recording. 2. If we transmit data at long distance then unwanted disturbance is there. 3. Generation loss is also a big con of analog signals. 4 Digital Signal ● A type of signal that can take on a 1. Discrete set of discrete values (a quantized 2. Finite range of values signal) 3. Not as exact as analog, but easier ● Can represent a discrete set of to work with values using any discrete set of waveforms; and we can represent it like (0 or 1), (on or off) 5 Difference between analog and digital signals Analog Digital Signalling Continuous signal Discrete time signal Data Subjected to deterioration by noise during Can be noise-immune without deterioration transmissions transmission and write/read cycle. during transmission and write/read cycle. Bandwidth Analog signal processing can be done in There is no guarantee that digital signal real time and consumes less bandwidth. processing can be done in real time and consumes more bandwidth to carry out the same information.
    [Show full text]
  • Transport Stream Playout System for MPEG-TS Using Program Clock
    International Journal of Computer Applications (0975 – 8887) Volume 117 – No. 16, May 2015 Transport Stream Playout System for MPEG-TS using Program Clock Reference Anali D Shah Sudhir Agrawal Kapil Sharma Ganpat University, Kherva, Space Applications Centre, Space Applications Centre, ISRO, Ahmedabad ISRO, Ahmedabad ABSTRACT The player gets its source information from the local storage This paper presents the working and implementation of and transports to the receiver with controlling the packets streaming rate control mechanism in real time video streaming which is in TS format. In this paper streaming rate control over IP for Digital Video Broadcasting using PCR (Program mechanism is given using PCR. PCR is a clock reference Clock Reference). DVB (Digital Video Broadcasting) which is generated in TS packets in specific period of time. supports MPEG-TS mode of transmission such that videos are TS streaming can conceptually be thought to consist of the encoded in transport streams. Moving video images must be following steps [3]: delivered in real time and with a consistent rate of 1. Playing out the transport stream at the right flow presentation in order to preserve the illusion of motion. The PCR is a time reference that is sequentially transmitted with 2. Getting the transport stream into a format that receiver can each program of a transport stream. PCR refers to the timing understand information for proper synchronization of audio and video With controlled streaming rate, one TS file is transmitted from which simultaneously control the rate of the packet sender to the receiver in TS format. After streaming of single transmitted.
    [Show full text]
  • 8 Video Compression Codecs
    ARTICLE VIDEO COMPRESSION CODECS: A SURVIVAL GUIDE Iain E. Richardson, Vcodex Ltd., UK 1. Introduction Not another video codec! Since the frst commercially viable video codec formats appeared in the early 1990s, we have seen the emergence of a plethora of compressed digital video formats, from MPEG-1 and MPEG-2 to recent codecs such as HEVC and VP9. Each new format offers certain advantages over its predecessors. However, the increasing variety of codec formats poses many questions for anyone involved in collecting, archiving and delivering digital video content, such as: ■■ Which codec format (if any) is best? ■■ What is a suitable acquisition protocol for digital video? ■■ Is it possible to ensure that early ‘born digital’ material will still be playable in future decades? ■■ What are the advantages and disadvantages of converting (transcoding) older formats into newer standards? ■■ What is the best way to deliver video content to end-users? In this article I explain how a video compression codec works and consider some of the practi- cal concerns relating to choosing and controlling a codec. I discuss the motivations behind the continued development of new codec standards and suggest practical measures to help deal with the questions listed above. 2. Codecs and compression 2.1 What is a video codec? ‘Codec’ is a contraction of ‘encoder and decoder’. A video encoder converts ‘raw’ or uncom- pressed digital video data into a compressed form which is suitable for storage or transmission. A video decoder extracts digital video data from a compressed fle, converting it into a display- able, uncompressed form.
    [Show full text]