Intermediate Steps of Loline Alkaloid Biosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Intermediate Steps of Loline Alkaloid Biosynthesis University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS Jerome Ralph Faulkner University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Faulkner, Jerome Ralph, "INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS" (2011). University of Kentucky Doctoral Dissertations. 209. https://uknowledge.uky.edu/gradschool_diss/209 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION JEROME RALPH FAULKNER THE GRADUATE SCHOOL UNIVERSITY OF KENTUCKY 2011 INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS DISSERTATION A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Jerome Ralph Faulkner Lexington, Kentucky Director: Dr. Christopher L. Schardl, Professor Plant Pathology Lexington, Kentucky 2011 Copyright © Jerome Ralph Faulkner 2011 ABSTRACT OF DISSERTATION INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS Epichloë species and their anamorphs, Neotyphodium species, are fungal endophytes that inhabit cool-season grasses and often produce bioprotective alkaloids. These alkaloids include lolines, which are insecticidal and insect feeding deterrents. Lolines are exo-1- aminopyrrolizidines with an oxygen bridge between carbons 2 and 7, and are usually methylated and formylated or acetylated on the 1-amine. In previously published studies lolines were shown to be derived from the amino acids L-proline and L-homoserine. In addition the gene cluster involved in loline-alkaloid biosynthesis has also been characterized. In this dissertation a survey of plant-endophyte symbioses revealed a phenotype with only N-acetylnorloline. This phenotype provided insights into loline alkaloid production. This dissertation focuses on determining the steps to loline biosynthesis after the amino acid precursors. The study involves feeding isotopically labeled potential precursors to loline-alkaloid-producing cultures of Neotyphodium uncinatum, as well as RNA interference (RNAi) of N. uncinatum genes for steps in the pathway. Synthesized deuterated compounds were fed to loline-alkaloid-producing cultures of N. uncinatum to test their possible roles as precursors or intermediates in the loline-alkaloid pathway. N-Formylloline was extracted from the cultures and assayed by GCMS for incorporation of the deuterium label. The results indicated that N-(3-amino, 3-carboxy)propylproline and exo-1-aminopyrrolizidine are intermediates in the loline- alkaloid biosynthetic pathway. Plasmids were also designed for expression of double- stranded RNA homologous to loline-alkaloid biosynthesis genes, and introduced by transformation into N. uncinatum. This RNAi strategy resulted in fungal transformants altered in loline-alkaloid profiles. The RNAi results indicated that N-acetyl-1- aminopyrrolizidine is the intermediate before oxygen bridge formation. Based on the results of this study and the likely roles of the loline-alkaloid biosynthesis genes inferred from signature sequences of their predicted protein products, I propose a pathway of bond formation steps in loline-alkaloid biosynthesis. KEYWORDS: Loline, endophyte, Epichloë, biosynthesis, pyrrolizidine Jerome Ralph Faulkner ___________________________________ Student’s Signature August 16, 2011 ___________________________________ Date INTERMEDIATE STEPS OF LOLINE ALKALOID BIOSYNTHESIS By Jerome Ralph Faulkner Christopher L. Schardl _______________________________ Director of Dissertation Lisa Vaillancourt _______________________________ Director of Graduate Studies August 16, 2011 _______________________________ Date RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date ABSTRACT OF DISSERTATION JEROME RALPH FAULKNER THE GRADUATE SCHOOL UNIVERSITY OF KENTUCKY 2011 ACKNOWLEDGEMENTS I would first like to thank my Lord and Savior Jesus Christ because without His grace I would not be the person that was able to do this work. I would like to sincerely thank my major professor and supervisor Christopher Schardl. Thank you for your guidance before, during and after this work. I am positive that your helpful suggestions, assistance and knowledge are the sole reasons that I was able to accomplish this feat. Your kind leadership, encouraging words, and keen research mind has always impressed me and I hope that I take some of those traits along with me in my personal and professional life. I would like to thank the members of my graduate committee Lisa Vaillancourt, Pradeep Kachroo and Robert Grossman for their assistance in this process and for helping to keep me on the right track to reach this final goal. I would also like to thank George Wagner for being my outside examiner and remaining keeping this commitment. I would like to express my gratitude and thanks to my family. Thank you Carol, Cameron and Jordan for being there for me and giving me the support I needed. I would like to thank my mom and sister for helping me throughout my college years. I am not good at expressing my feelings but to all of my family thank you for believing and supporting me. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................... iii LIST OF TABLES ................................................................................................. vi LIST OF FIGURES .............................................................................................. vii LIST OF FILES ..................................................................................................... ix CHAPTER 1: INTRODUCTION Endophytes of Grasses .................................................................................1 Alkaloids of grass-endophyte symbiosis .....................................................2 Loline alkaloid history .................................................................................3 Loline alkaloid effects..................................................................................6 Loline production in culture.........................................................................7 Genetic analysis of LOL cluster ...................................................................9 CHAPTER 2: LOLINE COMPOSITION IN SELECTED ENDOPHYTES INTRODUCTION .................................................................................................15 MATERIALS AND METHODS ...........................................................................17 Plant Material .............................................................................................17 Tissue print immunoblot assay ..................................................................18 Loline alkaloid analysis .............................................................................18 Gas chromatography mass spectrometry ...................................................19 Isolation of endophytes ..............................................................................20 Fungal DNA extraction ..............................................................................20 PCR primers and conditions ......................................................................21 PCR product sequencing ............................................................................21 Sequence analysis ......................................................................................22 RESULTS ..............................................................................................................23 Tissue print immunoblot (TPIB) results ....................................................23 Loline alkaloids in plant material ..............................................................23 LOL cluster genes PCR results ..................................................................24 Phylogenetic analysis of lolC.....................................................................25 DISCUSSION ........................................................................................................26 CHAPTER 3: INCORPORATION OF POTENTIAL BIOSYNTHETIC INTERMEDIATES IN LOLINE ALKALOID-PRODUCING CULTURES INTRODUCTION .................................................................................................43 MATERIALS AND METHODS ...........................................................................47 Deuterated compounds...............................................................................47 Fungal culture conditions and application of labeled compounds .............47
Recommended publications
  • 1 Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus
    Genetics: Published Articles Ahead of Print, published on January 16, 2005 as 10.1534/genetics.104.035972 1 1 Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus 2 Neotyphodium uncinatum 3 4 Martin J. Spiering*, Christina D. Moon*1, Heather H. Wilkinson† and Christopher L. 5 Schardl* 6 7 *Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546- 8 0312 9 10 †Department of Plant Pathology and Microbiology, Texas A&M University, College 11 Station, Texas 77843-2132 12 13 1Present address: Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, 14 United Kingdom 15 16 Sequence data from this article have been deposited with the GenBank database under 17 accession nos. AY723749, AY723750 and AY724686. 18 2 18 Running title: Loline alkaloid gene clusters 19 20 Key words: alkaloids, biosynthesis genes, pyrrolizidines, RNA-interference, symbiosis 21 22 Corresponding author: Christopher L. Schardl, Department of Plant Pathology, 23 University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, 24 KY 40546-0312, USA. Email [email protected]; Tel 859-257-7445 ext 80730; Fax 859- 25 323-1961 26 3 26 ABSTRACT 27 Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and protect 28 the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium 29 uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline- 30 alkaloid production. Nine genes were identified in a 25-kb region of LOL-1, and 31 designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and 32 lolE-1.
    [Show full text]
  • Notes from Grasses Workshop
    NATIVE GRASSES OF THE MELBOURNE AREA WORKSHOP AT BRIMBANK PARK March 25, 1988 For the Melbourne and Metropolitan Board of Works By Paget and Shim m en Bushland Seeds (14 Seascape Close, FTG 3156. PH:758.5416) INTRODUCTION: Native Grasses covers a wide range of grass species, of wkich there are . species suital~le for a variety of uses, induding erosion control, lawns, parklands, coastal sand dune stabilization, and low fire-hazard plantings. Most grasslands in Victoria are now exotic pastures, co m posed of grasses which have been bred for high l~iomass product5on so they produce Large a mounts of feed for stock, and these grasses are usually winter-growing and die-back severely over sum m er. These sa m e grasses do not necessarily have the rn ost desired characteristics for those orher uses. In lawns, for example, high biomass production means regular mowing, and growing in winter m cans they browning off during summer. Many of our native grasses are not as vigorous and grow over sum mcr, so do not grow so fast as to require constant mowing, and do not brown off over summer. ATTRIBUTES: The above introduction is a broad generalization, and it is important Lo study the charactemcs of each grass species to determine both its suitabtkity for any use, and the manage rn cnt it: requires. The most important attribute to contider is that of the grass's growth period. The table below ouflines the growth periods of the major native grass species: COMMON NAME BOTANICAL NAME GROWS COMMON WHEAT-GRASS A gropyron scabru m Winter COMMON BLOWN GRASS
    [Show full text]
  • Flora and Fauna
    ENVIRONMENTAL ASSESSMENT Volume 2 Technical Papers MUNMORAH GAS TURBINE FACILITY MUNMORAH POWER STATION.indd 3 21/12/05 2:27:29 PM Contents Technical Papers (Volume 2) Technical Paper No.1 Flora and Fauna Assessment Technical Paper No.2 Heritage Assessment Technical Paper No.3 Noise Assessment Technical Paper No.4 Air Quality Impact Assessment Technical Paper No 5 Photochemical Pollution Assessment Technical Paper No 6 Preliminary Hazard Analysis FLORA AND FAUNA ASSESSMENT TECHNICAL PAPER DIVIDERS.indd 30 121/12/05 3:44:33 PM Technical Paper 1 Flora and Fauna Assessment of Munmorah Gas Turbine Facility December 2005 Delta Electricity Parsons Brinckerhoff Australia Pty Limited ACN 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Limited ACN 006 475 056 trading as Parsons Brinckerhoff ABN 84 797 323 433 Level 27 Ernst & Young Centre 680 George Street Sydney NSW 2000 GPO Box 5394 Australia Telephone +61 2 9272 5100 Facsimile +61 2 9272 5101 Email [email protected] ABN 84 797 323 433 NCSI Certified Quality System ISO 9001 2116541A Parsons Brinckerhoff supports the Environment by PR_2467.doc printing on 100per cent A4 recycled paper ©Parsons Brinckerhoff Australia Pty Limited and Parsons Brinckerhoff International (Australia) Pty Limited trading as Parsons Brinckerhoff (“PB”). [2005] Copyright in the drawings, information and data recorded in this document (“the information”) is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PB.
    [Show full text]
  • Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants
    molecules Review Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants Sebastian Schramm, Nikolai Köhler and Wilfried Rozhon * Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany; [email protected] (S.S.); [email protected] (N.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2023 Academic Editor: John C. D’Auria Received: 20 December 2018; Accepted: 29 January 2019; Published: 30 January 2019 Abstract: Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals.
    [Show full text]
  • New England Peppermint (Eucalyptus Nova-Anglica) Grassy
    Advice to the Minister for Sustainability, Environment, Water, Population and Communities from the Threatened Species Scientific Committee on an Amendment to the List of Threatened Ecological Communities under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name of the ecological community New England Peppermint (Eucalyptus nova-anglica) Grassy Woodlands This advice follows the assessment of two public nominations to list the ‘New England Peppermint (Eucalyptus nova-anglica) Woodlands on Sediment on the Northern Tablelands’ and the ‘New England Peppermint (Eucalyptus nova-anglica) Woodlands on Basalt on the Northern Tablelands’ as threatened ecological communities under the EPBC Act. The Threatened Species Scientific Committee (the Committee) recommends that the national ecological community be renamed New England Peppermint (Eucalyptus nova-anglica) Grassy Woodlands. The name reflects the fact that the definition of the ecological community has been expanded to include all grassy woodlands dominated or co-dominated by Eucalyptus nova-anglica (New England Peppermint), in New South Wales and Queensland. Also the occurrence of the ecological community extends beyond the New England Tableland Bioregion, into adjacent areas of the New South Wales North Coast and the Nandewar bioregions. Part of the national ecological community is listed as endangered in New South Wales, as ‘New England Peppermint (Eucalyptus nova-anglica) Woodland on Basalts and Sediments in the New England Tableland Bioregion’ (NSW Scientific Committee, 2003); and, as an endangered Regional Ecosystem in Queensland ‘RE 13.3.2 Eucalyptus nova-anglica ± E. dalrympleana subsp. heptantha open-forest or woodland’ (Qld Herbarium, 2009). 2. Public Consultation A technical workshop with experts on the ecological community was held in 2005.
    [Show full text]
  • The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation.
    [Show full text]
  • Supporting Information
    Supporting Information Christin et al. 10.1073/pnas.1216777110 SI Materials and Methods blades were then embedded in resin (JB-4; Polysciences), Phylogenetic Inference. A previously published 545-taxa dataset of following the manufacturer’s instructions. Five-micrometer the grasses based on the plastid markers rbcL, ndhF,andtrnK-matK thick cross-sections of the embedded leaf fragments were cut (1) was expanded and used for phylogenetic inference. For species with a microtome and stained with saturated cresyl violet sampled for anatomical cross-sections but not included in the acetate (CVA). Some samples were fixed in formalin-pro- published dataset, the markers ndhF and/or trnK-matK were either pionic acid-alcohol (FPA), embedded in paraffin, sectioned at retrieved from GenBank when available or were newly sequenced 10 μm, and stained with a safranin O-orange G series (11) as from extracted genomic DNA with the method and primers de- described in (12). All slides were made permanent and are scribed previously (1, 2). These new sequences were aligned to the available on request. dataset, excluding the regions that were too variable as described previously (1). The final dataset totaled 604 taxa and was used for Anatomical Measurements. All C3 grasses possess a double BS, with “ phylogenetic inference as implemented in the software Bayesian the outer layer derived from ground meristem to form a paren- ” Evolutionary Analysis by Sampling Trees (BEAST) (3). chyma sheath, and the internal layer derived from the vascular “ ” The phylogenetic tree was inferred under a general time-re- procambium to form a mestome sheath (13). Many C4 grasses versible substitution model with a gamma-shape parameter and also possess these two BS layers, with one of them specialized in “ ” a proportion of invariants (GTR+G+I).
    [Show full text]
  • Enzymes from Fungal and Plant Origin Required For
    University of Kentucky UKnowledge Chemistry Faculty Publications Chemistry 12-22-2014 Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota Juan Pan University of Kentucky, [email protected] Minakshi Bhardwaj University of Kentucky, [email protected] Padmaja Nagabhyru University of Kentucky, [email protected] Robert B. Grossman University of Kentucky, [email protected] Christopher L. Schardl University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub Part of the Chemistry Commons Repository Citation Pan, Juan; Bhardwaj, Minakshi; Nagabhyru, Padmaja; Grossman, Robert B.; and Schardl, Christopher L., "Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota" (2014). Chemistry Faculty Publications. 59. https://uknowledge.uky.edu/chemistry_facpub/59 This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota Notes/Citation Information Published in PLOS One, v. 9, no. 12, article e115590, p. 1-19. © 2014 Pan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • The Effect of Fire and Grazing on the Cumberland Plain Woodlands Samantha Clarke University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2004 The effect of fire and grazing on the Cumberland Plain Woodlands Samantha Clarke University of Wollongong Recommended Citation Clarke, Samantha, The effect of fire and grazing on the Cumberland Plain Woodlands, Master of Science - Research thesis, School of Biological Sciences, University of Wollongong, 2004. http://ro.uow.edu.au/theses/2700 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The Effect of Fire and Grazing on the Cumberland Plain Woodlands A thesis submitted in partial fulfillment of the requirements for the award of the degree Master of Science (Research) from THE UNIVERSITY OF WOLLONGONG By SAMANTHA CLARKE Bachelor of Science (Biology) DEPARTMENT OF BIOLOGICAL SCIENCES 2004 CERTIFICATION I, Samantha Clarke, declare that this thesis, submitted in partial fulfillment of the requirements for the award of Master of Science (Research), in the Department of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Samantha Clarke 20 June 2004 ABSTRACT Temperate grassy woodlands throughout the world have suffered the effects of changed disturbance regimes, in particular, fire and grazing, due to human activities. Since European settlement fire and tree clearing has been used to modify grassy woodland vegetation for livestock grazing and agriculture. As a consequence some species, particularly shrubs and trees, have been reduced or eliminated and both native and introduced grasses have become more dominant.
    [Show full text]
  • Vegetation of Imbota and Yina Nature Reserves, Armidale, New South Wales
    Vegetation of Imbota and Yina Nature Reserves, Armidale, New South Wales John T. Hunter School of Behavioural, Cognative and Social Sciences, University of New England, Armidale, NSW 2351 AUSTRALIA Email: [email protected] Abstract: The vegetation of Imbota Nature Reserve (30° 35’S, 151° 45’E) (218 ha in area), 10 km south-east of Armidale, and Yina Nature Reserve (30° 29’S, 151° 45’E), (101 ha in area), 10 km east of Armidale, on the Northern Tablelands, NSW, is described. Based on classification analyses, air photo interpretation and ground-truthing, seven vegetation communities are described and mapped : 1. Eucalyptus caliginosa (Broad-leaved Stringybark) Grassy Forest and Woodland on deep soils at Imbota 2. Eucalyptus viminalis (Manna Gum) Grassy Forest and Woodland, Community 3. Eucalyptus caliginosa (Broad-leaved Stringybark) Grassy Forest and Woodland on shallow soils at Imbota 4. Eucalyptus caliginosa (Broad-leaved Stringybark) Grassy Forest and Woodland at Yina 5. Eucalyptus blakelyi (Blakely’s Red Gum) – Eucalyptus melliodora (Yellow Box) Woodland 6. Eucalyptus viminalis (Manna Gum) – Eucalyptus nova-anglica (New England Peppermint) Grassy Forest and Woodland 7. Riparian Herbfields 252 vascular plant taxa (from 59 families) were recorded from the two reserves, 179 species in Imbota NR, the larger reserve and 209 in Yina NR. The lower species richness at Imbota is likely to have resulted human disturbance rather than from overall habitat heterogeneity. Cunninghamia (2007) 10(2): 215–224 Introduction 1030 m. The eastern boundary is marked by Burying Ground Creek, a minor tributary of the Commissioners Waters, Imbota Nature Reserve (30° 35’S, 151° 45’E) and Yina that eventually flows into the Gara River and the eastern Nature Reserve (30° 29’S, 151° 45E’) lie 10 km to the fall of the Divide.
    [Show full text]
  • Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
    bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species).
    [Show full text]
  • Loline Alkaloid Production by Fungal Endophytes of Fescue Species Select for Particular Epiphytic Bacterial Microflora
    The ISME Journal (2014) 8, 359–368 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora Elizabeth Roberts and Steven Lindow Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloe¨ sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria,
    [Show full text]