Apoer2/VLDL Receptor and Dab1 in the Rostral Migratory Stream Function in Postnatal Neuronal Migration Independently of Reelin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cortical Layer V Neurons in the Auditory and Visual Cortices of Normal, Reeler, and Yotari Mice
Kobe J. Med. Sci., Vol. 56, No. 2, pp. E50-E59, 2010 Cortical Layer V Neurons in the Auditory and Visual Cortices of Normal, reeler, and yotari Mice YASUO YOSHIHARA1, 2, TOMIYOSHI SETSU2, YU KATSUYAMA2, SATOSHI KIKKAWA2, TOSHIO TERASHIMA2*, and KIYOSHI MAEDA1 1Division of Psychiatry, 2Division of Anatomy and Developmental Neurobiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan Received 19 January 2010/ Accepted 19 January 2010 Key Words: reeler, yotari, cortex, superior colliculus, inferior colliculus ABSTRACT Both in the Reelin-deficient reeler and Dab1-deficient yotari mice, layer V corticospinal tract neurons in the sensory-motor cortex are radially spread instead of being confined to a single cortical layer. In the present study, we examined distribution pattern of cortical layer V neurons in the visual and auditory cortices of reeler and yotari mice with the injection of HRP into the superior and inferior colliculi of the adult animals, respectively. After the injection of HRP into the superior colliculus of the normal mouse, retrogradely labeled cells were distributed in layer V of the visual cortex, while the similar injection of HRP in the reeler and yotari mice produced radial dispersion of retrograde labeling through all of the depths of the visual cortex of these mutant mice. Next, we injected HRP into the inferior colliculus of the normal, reeler and yotari mice. Retrogradely labeled neurons were distributed in layer V of the normal auditory cortex, whereas they were again radially scattered in the auditory cortex of the reeler and yotari mice. Taken together with the previous and present findings, layer V cortical efferent neurons are radially scattered in the sensory-motor, visual and auditory cortices of the reeler and yotari mice. -
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
Reelin Is Preferentially Expressed in Neurons Synthesizing ␥-Aminobutyric Acid in Cortex and Hippocampus of Adult Rats
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 3221–3226, March 1998 Neurobiology Reelin is preferentially expressed in neurons synthesizing g-aminobutyric acid in cortex and hippocampus of adult rats C. PESOLD*†,F.IMPAGNATIELLO*, M. G. PISU*, D. P. UZUNOV*, E. COSTA*, A. GUIDOTTI*, AND H. J. CARUNCHO*‡ *Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; and ‡Department of Morphological Sciences, University of Santiango de Compostela School of Medicine, 15705 Santiago de Compostela, Spain Contributed by Erminio Costa, December 24,1997 ABSTRACT During embryonic development of brain lam- sion, prevent Reelin transcription or secretion (4, 12, 14). In inated structures, the protein Reelin, secreted into the extracel- the cortex and hippocampus of rat embryos, Reelin begins to lular matrix of the cortex and hippocampus by Cajal–Retzius be synthesized in Cajal–Retzius (CR) cells from embryonic day (CR) cells located in the marginal zone, contributes to the 13 to the second postnatal week, and in the cerebellum Reelin regulation of migration and positioning of cortical and hip- is expressed first in the external granule cell layer (EGL) pocampal neurons that do not synthesize Reelin. Soon after before the granule cell migration to the internal granule cell birth, the CR cells decrease, and they virtually disappear during layer (IGL) (2, 15–17). When the CR50 antibody is added to the following 3 weeks. Despite their disappearance, we can embryonic preparations expressing normal histogenetic pat- quantify Reelin mRNA (approximately 200 amolymg of total terns of lamination, it induces typical histogenetic abnormal- RNA) and visualize it by in situ hybridization, and we detect the ities of the Relnrl phenotype (7, 9, 10, 17). -
The VLDL Receptor Regulates Membrane Progesterone Receptor
© 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs212522. doi:10.1242/jcs.212522 RESEARCH ARTICLE The VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling Nancy Nader, Maya Dib, Raphael Courjaret, Rawad Hodeify, Raya Machaca, Johannes Graumann and Khaled Machaca* ABSTRACT the plasma membrane and interact with the classical P4 receptor, is Progesterone mediates its physiological functions through activation of nonetheless effective at mediating non-genomic P4 signaling both transcription-coupled nuclear receptors and seven-pass- (Bandyopadhyay et al., 1998; Dressing et al., 2011; Peluso et al., transmembrane progesterone receptors (mPRs), which transduce 2002). These results argued for the presence of membrane P4 the rapid non-genomic actions of progesterone by coupling to various receptors that are distinct from the nuclear P4 receptors. In 2003, the signaling modules. However, the immediate mechanisms of action Thomas laboratory identified a family of membrane progesterone downstream of mPRs remain in question. Herein, we use an untargeted receptors (mPRs) from fish ovaries (Zhu et al., 2003a,b) that belong quantitative proteomics approach to identify mPR interactors to better to the progestin and adiponectin (AdipoQ) receptor family (also define progesterone non-genomic signaling. Surprisingly, we identify named PAQ receptors). However, the signal transduction cascade the very-low-density lipoprotein receptor (VLDLR) as an mPRβ downstream of mPRs that mediates the non-genomic actions of P4 (PAQR8) partner that is required for mPRβ plasma membrane remains unclear. localization. Knocking down VLDLR abolishes non-genomic The non-genomic action of mPR and the ensuing signaling progesterone signaling, which is rescued by overexpressing VLDLR. -
Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases. -
The Reeler Mouse: a Translational Model of Human 3 Neurological Conditions Or Simply a Good Tool for 4 Better Understanding Neurodevelopment?
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2019 doi:10.20944/preprints201910.0120.v1 Peer-reviewed version available at J. Clin. Med. 2019, 8, 2088; doi:10.3390/jcm8122088 1 Review 2 The Reeler Mouse: A Translational Model of Human 3 Neurological Conditions or Simply a Good Tool for 4 Better Understanding Neurodevelopment? 5 6 7 Laura Lossi 1, Claudia Castagna2, Alberto Granato3*, and Adalberto Merighi4* 8 1 Department of Veterinary Sciences, University of Turin, Grugliasco (TO) I-10095, Italy. [email protected] 9 2 Department of Veterinary Sciences, University of Turin, Grugliasco (TO) I-10095, Italy. 10 [email protected] 11 3 Department of Psychology, Catholic University of the Sacred Heart, Milano (MI) I-20123, Italy. 12 [email protected] 13 4 Department of Veterinary Sciences, University of Turin, Grugliasco (TO) I-10095, Italy. 14 [email protected] 15 16 * Correspondence: [email protected], Tel ++39. 02.7234.8588; [email protected] , Tel.: 17 ++39.011.670.9118 18 19 Abstract: 20 The Reeler mutation was described in mouse more than fifty years ago. Later, its causative gene 21 (reln) was discovered in mouse, and its human orthologue (RELN) was demonstrated to be 22 causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral 23 temporal epilepsy (ADLTE). In both human and mice the gene encodes for a glycoprotein referred 24 to as Reelin (Reln) that plays a primary role in neuronal migration during development and 25 synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for 26 the proteins of the Reln intracellular cascade have been associated more or less substantially to 27 other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar 28 hypoplasia, PAFAH1B1-associated lissencephaly, autism and schizophrenia. -
EGF-Induced Expansion of Migratory Cells in the Rostral Migratory Stream
EGF-Induced Expansion of Migratory Cells in the Rostral Migratory Stream Olle R. Lindberg.,A˚ sa Persson., Anke Brederlau, Aidin Shabro, Hans Georg Kuhn* Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Abstract The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/ Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. -
Genotype-Phenotype Correlations in RP1-Associated Retinal Dystrophies: a Multi-Center Cohort Study in JAPAN
Journal of Clinical Medicine Article Genotype-Phenotype Correlations in RP1-Associated Retinal Dystrophies: A Multi-Center Cohort Study in JAPAN Kei Mizobuchi 1,* , Takaaki Hayashi 1,2 , Noriko Oishi 3, Daiki Kubota 3, Shuhei Kameya 3, Koichiro Higasa 4, Takuma Futami 5, Hiroyuki Kondo 5 , Katsuhiro Hosono 6, Kentaro Kurata 6, Yoshihiro Hotta 6 , Kazutoshi Yoshitake 7, Takeshi Iwata 7 , Tomokazu Matsuura 8 and Tadashi Nakano 1 1 Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; [email protected] (T.H.); [email protected] (T.N.) 2 Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan 3 Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; [email protected] (N.O.); [email protected] (D.K.); [email protected] (S.K.) 4 Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan; [email protected] 5 Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; [email protected] (T.F.); [email protected] (H.K.) 6 Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; [email protected] (K.H.); [email protected] (K.K.); [email protected] (Y.H.) 7 Citation: Mizobuchi, K.; Hayashi, T.; National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Oishi, N.; Kubota, D.; Kameya, S.; 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; [email protected] (K.Y.); [email protected] (T.I.) Higasa, K.; Futami, T.; Kondo, H.; 8 Department of Laboratory Medicine, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Hosono, K.; Kurata, K.; et al. -
Mechanisms and Disturbances of Neuronal Migration the Developing Nervous System: a Series of Review Articles
0031-3998/00/4806-0725 PEDIATRIC RESEARCH Vol. 48, No. 6, 2000 Copyright © 2000 International Pediatric Research Foundation, Inc. Printed in U.S.A. The Developing Nervous System: A Series of Review Articles The following article is the first in an important series of review articles which discuss the developmental biology of the nervous system and its relation to diseases and disorders that are found in new born infants and children. This review, by Pierre Gressens, describes neuronal migration in the developing brain and abnormalities in humans resulting from aberrations in neuronal migration. Alvin Zipursky Editor-in-Chief Mechanisms and Disturbances of Neuronal Migration PIERRE GRESSENS Service de Neurologie Pédiatrique and INSERM E 9935, Hôpital Robert-Debré, F-75019 Paris, France ABSTRACT Neuronal migration appears as a complex ontogenic step of migration of neurons destined to the neocortex. New insights occurring early during embryonic and fetal development. Control gained from the analysis of animal models as well as from the of neuronal migration involves different cell populations includ- study of human diseases will be included. (Pediatr Res 48: ing Cajal-Retzius neurons, subplate neurons, neuronal precursors 725–730, 2000) or radial glia. The integrity of multiple molecular mechanisms, such as cell cycle control, cell-cell adhesion, interaction with extracellular matrix protein, neurotransmitter release, growth Abbreviations: factor availability, platelet-activating factor degradation or trans- BDNF, brain-derived neurotrophic factor duction pathways seems to be critical for normal neuronal mi- EGF, epidermal growth factor gration. The complexity and the multiplicity of these mecha- NMDA, N-methyl-D-aspartate nisms probably explain the clinical, radiologic and genetic NT, neurotrophin heterogeneity of human disorders of neuronal migration. -
Neuronal Precursor Cells with Dopaminergic Commitment in The
www.nature.com/scientificreports OPEN Neuronal precursor cells with dopaminergic commitment in the rostral migratory stream of the Received: 7 January 2019 Accepted: 29 August 2019 mouse Published: xx xx xxxx Kerstin Schweyer1,2, Corinna Rüschof-Steiner3,4, Oscar Arias-Carrión3,5, Wolfgang H. Oertel3, Thomas W. Rösler1,2 & Günter U. Höglinger 1,2,3,6 Neuroblasts born in the subventricular zone of adult mammals migrate via the rostral migratory stream into the granular cell layer or periglomerular layer of the olfactory bulb to diferentiate into interneurons. To analyze if new neurons in the granular cell layer or periglomerular layer have diferent origins, we inserted a physical barrier into the rostral migratory stream, depleted cell proliferation with cytarabine infusions, labeled newborn cells with bromodeoxyuridine, and sacrifced mice after short-term (0, 2, or 14 days) or long-term (55 or 105 days) intervals. After short-term survival, the subventricular zone and rostral migratory stream rapidly repopulated with bromodeoxyuridine+ cells after cytarabine-induced depletion. Nestin, glial fbrillary acidic protein and the PAX6 were expressed in bromodeoxyuridine+ cells within the rostral migratory stream downstream of the physical barrier. After long-term survival after physical barrier implantation, bromodeoxyuridine+ neurons were signifcantly reduced in the granular cell layer, but bromodeoxyuridine+ and dopaminergic neurons in the periglomerular layer remained unafected by the physical barrier. Thus, newborn neurons for the granular cell layer are mainly recruited from neural stem cells located in the subventricular zone, but new neurons for the periglomerular layer with dopaminergic predisposition can rise as well from neuronal stem or precursor cells in the rostral migratory stream. -
Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings
G C A T T A C G G C A T genes Article Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings Jasleen Dhaliwal 1 , Ying Qiao 1,2, Kristina Calli 1,2, Sally Martell 1,2, Simone Race 3,4,5, Chieko Chijiwa 1,5, Armansa Glodjo 3,5, Steven Jones 1,6 , Evica Rajcan-Separovic 2,7, Stephen W. Scherer 4 and Suzanne Lewis 1,2,5,* 1 Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; [email protected] (J.D.); [email protected] (Y.Q.); [email protected] (K.C.); [email protected] (S.M.); [email protected] (C.C.); [email protected] (S.J.) 2 BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada; [email protected] 3 Department of Pediatrics, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada; [email protected] (S.R.); [email protected] (A.G.) 4 The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada; [email protected] 5 BC Children’s and Women’s Health Center, Vancouver, BC V6H 3N1, Canada 6 Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada 7 Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada * Correspondence: [email protected] Abstract: Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in Citation: Dhaliwal, J.; Qiao, Y.; Calli, children and shows high heritability. -
Doublecortin (Dcx) Family Proteins Regulate Filamentous Actin Structure in Developing Neurons
The Journal of Neuroscience, January 9, 2013 • 33(2):709–721 • 709 Cellular/Molecular Doublecortin (Dcx) Family Proteins Regulate Filamentous Actin Structure in Developing Neurons Xiaoqin Fu,1 Kristy J. Brown,2 Chan Choo Yap,3 Bettina Winckler,3 Jyoti K. Jaiswal,2 and Judy S. Liu1 1Center for Neuroscience Research and 2Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC 20010, and 3Department of Neuroscience, University of Virginia Medical School, Charlottesville, Virginia 22908 Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semi- quantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differ- ences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins ␣-actinin-1 and ␣-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through ␣-actinin-4 or Arp3.