Dottorando: Renzo VANNA Matricola: R08140

Total Page:16

File Type:pdf, Size:1020Kb

Dottorando: Renzo VANNA Matricola: R08140 Università degli Studi di Milano Scuola di Dottorato in Medicina Molecolare Dipartimento di Scienze e Tecnologie Biomediche Curriculum di Genomica, Proteomica e Tecnologie correlate Ciclo XXIV Anno Accademico 2010/2011 Dottorando: Renzo VANNA Matricola: R08140 CARATTERIZZAZIONE DELL’ORGANELLO DI NEUROMELANINA DELLA SUBSTANTIA NIGRA UMANA CON APPROCCIO PROTEOMICO Direttore della Scuola: Ch.mo Prof. Mario Clerici Tutore: Prof.ssa Cecilia GELFI Correlatore: Dott. Luigi ZECCA II SOMMARIO La substantia nigra umana è l’area del cervello principalmente colpita dalla malattia di Parkinson. La caratteristica più evidente della substantia nigra è la presenza di neuromelanina (NM), un particolare pigmento melanico che si accumula nei neuroni all’interno di organelli circondati da membrana e ricchi di lipidi (dolicoli). La singolare presenza di elevate quantità di organelli di NM all’interno dell’area cerebrale più vulnerabile alla malattia di Parkinson è fonte di molto interesse. Ad oggi, non è stato chiarito in che modo la presenza di organelli di NM possa interferire con la vulnerabilità dei neuroni durante l’invecchiamento. D’altra parte, negli ultimi anni sta emergendo una forte correlazione tra invecchiamento e neurodegenerazione, e l’accumulo di materiale intracellulare difficilmente degradabile (proteine danneggiate, corpi di inclusione, lipofuscine, ecc.). L’accumulo di materiale intracellulare può infatti essere fonte di stress cellulare e fattore di rischio per la neurodegenerazione. In questo lavoro di tesi sono stati preparati campioni di organelli di NM (integri e trattati con shock termico per la rimozione delle membrane) e di pigmento di NM, isolati da tessuto umano (substantia nigra) da soggetti sani post-mortem. I campioni sono stati analizzati in replicato per la definizione del profiling proteomico attraverso tecnologia proteomica MudPIT. Il profiling consiste in 1142 proteine totali delle quali 48 sono state definite con buona confidenza come rappresentative dei campioni. Alcune proteine sono state localizzare nelle diverse regioni dell’organello (pigmento, membrane e parte solubile) grazie al confronto tra i campioni. Dall’analisi proteomica emerge il carattere lisosomiale dell’organello di NM: tra le 48 proteine rappresentative, più di 20 sono di origine lisosomiale. Vengono identificate anche proteine coinvolte nel folding proteico (alpha-crystallin), nella degradazione di proteine (ubiquitin), nell’omeostasi del ferro (ferritin L), nei meccanismi antiossidanti e nella formazione di aggregati intracellulari. Sono state osservate anche proteine di accumulo (mitochindrial subunit c, saposin) tipiche di malattie lisosomiali. Dalle analisi non risulta però né la presenza di enzimi per la sintesi di lipidi né la presenza di proteine potenzialmente coinvolte nella biosintesi di composti melanici. L’organello di NM possiede quindi le caratteristiche di un organello di origine lisosomiale/autofagica caratterizzato anche dall’accumulo di materiale indegradabile e da una probabile perdita di efficienza degradativa. I dati ottenuti sono in accordo con recenti ipotesi secondo le quali l’organello si formerebbe attraverso il sequestro di NM e di altre molecole potenzialmente tossiche per il neurone (proteine e lipidi danneggiati, metalli). Dai dati di proteomica sembra che questo meccanismo protettivo, con il passare del tempo, porti all’accumulo di materiale difficilmente degradabili e questo implicherebbe una probabile diminuzione della capacità degradativa della cellula. L’organello di NM potrebbe quindi avere un ruolo protettivo ma allo steso tempo potrebbe aumentare la vulnerabilità del neurone durante l’invecchiamento. III ABSTRACT Substantia nigra is the most affected brain region in Parkinson's disease. Substantia nigra is characterized by strong pigmentation derived by the presence of neuromelanin (NM), a particular melanic pigment that accumulates during aging in neurons in typical membrane-bounded organelles with high levels of lipids (dolichols). The occurrence of an elevated number of NM organelles in the most vulnerable brain region during Parkinson’s disease is of special interest. It is not clear if NM organelles may interfere with the vulnerability of neurons during aging. Nevertheless, many evidences support the correlation between aging and neurodegeneration, and the accumulation of intracellular indigestible materials (damaged proteins, inclusion bodies and lipofuscins). The accumulation of indigestible materials inside the cell may increase cellular stress and neurodegeneration. In this study, samples of NM organelles (whole and without membranes) and NM pigment were isolated from human post-mortem tissue (substantia nigra) of healthy subjects. Samples were analysed in duplicate to obtaining the proteomic profile of the NM organelle using MudPIT proteomic technology. A total of 1142 proteins were identified, of which 48 were observed with high confidence as representative of samples. Comparing results from different samples, some proteins were assigned to different regions of the NM organelle (NM pigment, membrane, soluble portion). From the proteomic profile emerges the lysosomal nature of the NM organelle: among the 48 representative proteins, more than 20 are lysosomal proteins. In addition, other groups of proteins were identified: proteins involved in protein folding (alpha-crystallin) and degradation (ubiquitin), proteins important to iron homeostasis (ferritin L), antioxidant proteins and proteins involved in intracellular aggregates formation. Furthermore, typical biomarkers of lysosomal storage disease are observed (mitochondrial subunit c, saposins). On the other hand, any enzyme potentially involved in the melanogenic process and any lipids biosynthetic enzyme were identified. This study demonstrates that the NM organelle has the features of both a lysosomal/autophagic organelle and an aged and damaged lysosome accumulating indigestible material. These data are in agreement with recent hypothesis suggesting that the NM organelle formation originate by sequestration of NM and other potentially toxic molecules as damaged proteins, damaged lipids and metals. Our data suggest that this protective mechanism, during aging, may induce accumulation of indigestible material inside the NM organelles and, as consequence, a decreased degradative function of the cell. In summary, e suggest that NM organelle could confer protection to neurons and, at the same time, could increase cellular vulnerability in aging conditions. IV INDICE SOMMARIO............................................................................................................. III ABSTRACT ............................................................................................................. IV INDICE...................................................................................................................... V LISTA DELLE ABBREVIAZIONI ............................................................................ IX 1 INTRODUZIONE ........................................................................................... 1 1.1 INVECCHIAMENTO: CARATTERISTICHE E MECCANISMI COINVOLTI .................... 1 1.1.1 Caratteristiche dell’invecchiamento ...................................................... 2 1.1.2 Accumulo di proteine e meccanismi degradativi ................................. 2 1.1.2.1 Sistema ubiquitina/proteasoma e invecchiamento ....................................... 2 1.1.2.2 Lisosomi e invecchiamento........................................................................... 2 1.1.2.3 Autofagia e invecchiamento.......................................................................... 3 1.2 LA MALATTIA DI PARKINSON......................................................................... 5 1.2.1 Cenni storici............................................................................................. 5 1.2.2 Sintomatologia......................................................................................... 5 1.2.3 Neurochimica e neuropatologia del PD................................................. 5 1.2.4 Eziologia del PD....................................................................................... 9 1.2.4.1 Cause genetiche per comprendere la patogenesi del PD............................ 9 1.2.4.2 Fattori ambientali.........................................................................................13 1.2.5 Ipotesi recenti sulla patogenesi del PD ............................................... 15 1.2.5.1 Stress ossidativo.........................................................................................17 1.2.5.2 Difunzione mitocondriale.............................................................................17 1.2.5.3 Omeostasi delle proteine: proteasoma, lisosomi e autofagia.....................17 1.2.5.4 Infiammazione e microglia ..........................................................................18 1.3 MELANINE ................................................................................................. 19 1.3.1 Principali studi sulle melanine ............................................................. 19 1.3.2 Principali funzioni delle melanine ........................................................ 21 1.3.3 La biogenesi dei melanosomi............................................................... 21 1.3.4 Proteine del melanosoma ..................................................................... 22 1.4 NEUROMELANINA......................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Leveraging Whole Genome Sequences to Compare Mutational Mechanism and Identify Medically Relevant Variation in African Versus Non-African Descend Populations
    Leveraging Whole Genome Sequences to Compare Mutational Mechanism and Identify Medically Relevant Variation in African versus Non-African Descend Populations By Shatha Mobarak Alosaimi ALSSHA003 Town Dissertation submitted to the University of Cape Town in fulfilment of the requirements for the degree of Master of Science (MSc) in Human Genetics. Cape of Faculty of Health Sciences UniversityUniversity of Cape Twon Date of Submission: 10/02/2020 Supervised by: Assoc/Prof. Emile R. Chimusa Division of Human genetics Department of Pathology University of Cape Town, SA The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Shatha Alosaimi, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever Signature: Date: 01/02/2020. i Publications I confirm that I have been granted permission by the University of Cape Town's Master's Degrees Board to include the following publications in my thesis, and where co-authorships are involved, my co-authors have agreed that I may include the publications.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Mechanisms Regulating Interindividual Epigenetic Variability at Transposable Elements
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446659; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Mechanisms regulating interindividual epigenetic variability at transposable elements Kevin R. Costello1,2, Amy Leung1, Candi Trac1, Michael Lee1,2, Mudasar Basam1, J. Andrew Pospisilik3 and Dustin E. Schones1,2* 1Department of Diabetes Complications and Metabolism, Beckman Research Institute 2Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010 3Van Andel Research Institute, Grand Rapids, MI, 49503, USA. Abstract Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the vast majority of these elements are epigenetically silenced in somatic cells. However, some TEs in the mouse genome, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. While recent work has identified that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here we report that sequence divergence and genomic context influence the likelihood that IAPs become variably methylated. IAPs that have diverged from the consensus IAP sequence have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in a euchromatic environment.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Identification of Genomic Alterations in Castration Resistant Prostate Cancer Using Next Generation Sequencing
    Identification of Genomic Alterations in Castration Resistant Prostate Cancer using Next Generation Sequencing Thesis Submitted for a Doctoral Degree in Natural Sciences (Dr. rer. nat) Faculty of Mathematics and Natural Sciences Rheinische Friedrich-Wilhelms- Submitted by Roopika Menon from Chandigarh, India Bonn 2013 Prepared with the consent of the Faculty of Mathematics and Natural Sciences at the Rheinische Friedrich-Wilhelms- 1. Reviewer: Prof. Dr. Sven Perner 2. Reviewer: Prof. Dr. Hubert Schorle Date of examination: 19 November 2013 Year of Publication: 2014 Declaration I solemnly declare that the work submitted here is the result of my own investigation, except where otherwise stated. This work has not been submitted to any other University or Institute towards the partial fulfillment of any degree. ____________________________________________________________________ Roopika Menon; Author Acknowledgements This thesis would not have been possible without the help and support of many people. I would like to dedicate this thesis to all the people who have helped make this dream a reality. This thesis would have not been possible without the patience, support and guidance of my supervisor, Prof. Dr. Sven Perner. It has truly been an honor to be his first PhD student. He has both consciously and unconsciously made me into the researcher that I am today. My PhD experience has truly been the ‘best’ because of his time, ideas, funding and most importantly his incredible sense of humor. He encouraged and gave me the opportunity to travel around the world to develop as a scientist. I cannot thank him enough for this immense opportunity, which stands as a stepping-stone to my career in science.
    [Show full text]
  • Plasticity for Axolotl Lens Regeneration Is Associated with Age‐
    RESEARCH ARTICLE Plasticity for axolotl lens regeneration is associated with age-related changes in gene expression Konstantinos Sousounis1, Antony T. Athippozhy2, S. Randal Voss2 & Panagiotis A. Tsonis1 1Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton OH, USA 2Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40503, USA Correspondence Abstract Panagiotis A. Tsonis, Department of Biology Mexican axolotls lose potential for lens regeneration 2 weeks after hatching. We and Center for Tissue Regeneration and used microarrays to identify differently expressed genes before and after this critical Engineering, University of Dayton, Day- time, using RNA isolated from iris. Over 3700 genes were identified as differentially ton, Ohio, United States of America. expressed in response to lentectomy between young (7 days post-hatching) and old Tel: 937 229 2579; Fax: 937 229 2021; E-mail: (3 months post-hatching) axolotl larvae. Strikingly, many of the genes were only [email protected] expressed in the early or late iris. Genes that were highly expressed in young Received: 6 June 2014; Revised: 10 August iris significantly enriched electron transport chain, transcription, metabolism, and 2014; Accepted: 3 September 2014 cell cycle gene ontologies, all of which are associated with lens regeneration. In contrast, genes associated with cellular differentiation and tissue maturation doi: 10.1002/reg2.25 were uniquely expressed in old iris. Many of these expression differences strongly suggest that young and old iris samples were collected before and after the spleen became developmentally competent to produce and secrete cells with humoral and innate immunity functions.
    [Show full text]
  • Download Special Issue
    Complexity Biomolecular Networks for Complex Diseases Guest Editors: Fang X. Wu, Jianxin Wang, Min Li, and Haiying Wang Biomolecular Networks for Complex Diseases Complexity Biomolecular Networks for Complex Diseases Guest Editors: Kazuo Toda, Jorge L. Zeredo, Sae Uchida, and Vitaly Napadow Copyright © 2018 Hindawi. All rights reserved. This is a special issue published in “Complexity.” All articles are open access articles distributed under the Creative Commons Attribu- tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board José Ángel Acosta, Spain Mattia Frasca, Italy Daniela Paolotti, Italy Rodrigo Aldecoa, USA Lucia Valentina Gambuzza, Italy Luis M. Rocha, USA Juan A. Almendral, Spain Carlos Gershenson, Mexico Miguel Romance, Spain David Arroyo, Spain Peter Giesl, UK Matilde Santos, Spain Arturo Buscarino, Italy Sergio Gómez, Spain Hiroki Sayama, USA Guido Caldarelli, Italy Sigurdur F. Hafstein, Iceland Michele Scarpiniti, Italy Danilo Comminiello, Italy Giacomo Innocenti, Italy Enzo Pasquale Scilingo, Italy Manlio De Domenico, Italy Jeffrey H. Johnson, UK Samuel Stanton, USA Pietro De Lellis, Italy Vittorio Loreto, Italy Roberto Tonelli, Italy Albert Diaz-Guilera, Spain Didier Maquin, France Shahadat Uddin, Australia Jordi Duch, Spain Eulalia Martínez, Spain Gaetano Valenza, Italy Joshua Epstein, USA Ch. P. Monterola, Philippines Dimitri Volchenkov, USA Thierry Floquet, France Roberto Natella, Italy Christos Volos, Greece Contents Biomolecular
    [Show full text]
  • X Chromosome Dosage Compensation and Gene Expression in the Sheep Kaleigh Flock [email protected]
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 8-29-2017 X Chromosome Dosage Compensation and Gene Expression in the Sheep Kaleigh Flock [email protected] Recommended Citation Flock, Kaleigh, "X Chromosome Dosage Compensation and Gene Expression in the Sheep" (2017). Master's Theses. 1144. https://opencommons.uconn.edu/gs_theses/1144 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. X Chromosome Dosage Compensation and Gene Expression in the Sheep Kaleigh Flock B.S., University of Connecticut, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science at the University of Connecticut 2017 i Copyright by Kaleigh Flock 2017 ii APPROVAL PAGE Masters of Science Thesis X Chromosome Dosage Compensation and Gene Expression in the Sheep Presented by Kaleigh Flock, B.S. Major Advisor___________________________________________________ Dr. Xiuchun (Cindy) Tian Associate Advisor_________________________________________________ Dr. David Magee Associate Advisor_________________________________________________ Dr. Sarah A. Reed Associate Advisor_________________________________________________ Dr. John Malone University of Connecticut 2017 iii Dedication This thesis is dedicated to my major advisor Dr. Xiuchun (Cindy) Tian, my lab mates Mingyuan Zhang and Ellie Duan, and my mother and father. This thesis would not be possible without your hard work, unwavering support, and guidance. Dr. Tian, I am so thankful for the opportunity to pursue a Master’s degree in your lab. The knowledge and technical skills that I have gained are invaluable and have opened many doors in my career as a scientist and future veterinarian.
    [Show full text]
  • High Resolution X Chromosome-Specific Array-CGH Detects New Cnvs in Infertile Males
    High Resolution X Chromosome-Specific Array-CGH Detects New CNVs in Infertile Males Csilla Krausz1,2*, Claudia Giachini1, Deborah Lo Giacco2,3, Fabrice Daguin1, Chiara Chianese1, Elisabet Ars3, Eduard Ruiz-Castane2, Gianni Forti4, Elena Rossi5 1 Unit of Sexual Medicine and Andrology, Molecular Genetic Laboratory, Department of Clinical Physiopathology, University of Florence, Florence, Italy, 2 Andrology Service, Fundacio´ Puigvert, Barcelona, Spain, 3 Molecular Biology Laboratory, Fundacio´ Puigvert, Universitat Auto`noma de Barcelona, Barcelona, Spain, 4 Endocrinology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy, 5 Biology and Medical Genetics, University of Pavia, Pavia, Italy Abstract Context: The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. Objectives: In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. Results: We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.78561026) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.43561024).
    [Show full text]
  • Design of Gene Editing Assays
    ) ( (51) International Patent Classification: 92121 (US). MAHAJAN, Sudipta; 11Lowe Circle, Fram¬ C07D 403/12 (2006.01) A61K 31/5377 (2006.01) ingham, MA 01701 (US). C07D 413/12 (2006.01) A61K 31/5386 (2006.01) (74) Agent: ALI, Bashir, M. et al. ; Brinks Gilson & Lione, P.o. A61P 35/00 (2006.01) Cl 2N 15/10 (2006.01) Box 110285, Research Triangle Park, NC 27709 (US). A61K 31/506 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection av ailable) . AE, AG, AL, AM, PCT/US20 19/0 13783 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 16 January 2019 (16.01.2019) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (25) Filing Language: English KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/618,598 17 January 2018 (17.01.2018) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: VERTEX PHARMACEUTICALS INCOR¬ (84) Designated States (unless otherwise indicated, for every PORATED [US/US]; 50 Northern Avenue, Boston, MA kind of regional protection available) .
    [Show full text]
  • Evaluating the Biological Functions of the Prognostic Genes Identified by the Pathology Atlas in Bladder Cancer
    ONCOLOGY REPORTS 45: 191-201, 2021 Evaluating the biological functions of the prognostic genes identified by the Pathology Atlas in bladder cancer YUANBIN CHEN1*, TING XU2*, FEI XIE1, LIPING WANG1, ZHIJUAN LIANG1, DAN LI1, YE LIANG1, KAIDONG ZHAO1, XIANGJIE QI3, XUECHENG YANG1 and WEI JIAO1 1Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266003; 2Department of Geratology, The 971th Hospital of PLA Navy, Qingdao 266000; 3Department of Urology, People's Hospital of Linzi District, Zibo, Shandong 255400, P.R. China Received May 25, 2020; Accepted September 17, 2020 DOI: 10.3892/or.2020.7853 Abstract. The prognosis-associated genes of urinary bladder nodes compared with the primary tumors. Taken together, the cancer have been systematically investigated in the Pathology results of the present study suggest that the prognostic gene, Atlas project based on The Cancer Genome Atlas data. However, MITD1 may serve as a migration inhibitor, and be developed the biological functions of most genes in bladder cancer as a potential therapeutic target for improving the prognosis of remain unknown. The present study investigated the biological bladder cancer. function of 12 of the most significant survival-associated genes (ABRACL, MITD1, ZNF524, EMP1, HSPB6, CXorf38, Introduction TRIM38, ZNF182, ZNF195, SPRN, PTPN6 and LIPT1) in urothelial cancer reported by the Pathology Atlas project, with Urothelial cancer is derived from the urothelium of the pelvis, respect to cell proliferation and migration. In vitro, prolif- ureter, bladder and urethra (1). The vast majority of urothe- eration and migration analyses of T24 cells were performed lial cancer is bladder urothelial cancer, which accounts for following the transfection of the 12 prognostic genes.
    [Show full text]