Some Glances at Topos Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A First Introduction to the Algebra of Sentences
A First Introduction to the Algebra of Sentences Silvio Ghilardi Dipartimento di Scienze dell'Informazione, Universit`adegli Studi di Milano September 2000 These notes cover the content of a basic course in propositional alge- braic logic given by the author at the italian School of Logic held in Cesena, September 18-23, 2000. They are addressed to people having few background in Symbolic Logic and they are mostly intended to develop algebraic methods for establishing basic metamathematical results (like representation theory and completeness, ¯nite model property, disjunction property, Beth de¯n- ability and Craig interpolation). For the sake of simplicity, only the case of propositional intuitionistic logic is covered, although the methods we are explaining apply to other logics (e.g. modal) with minor modi¯cations. The purity and the conceptual clarity of such methods is our main concern; for these reasons we shall feel free to apply basic mathematical tools from cate- gory theory. The choice of the material and the presentation style for a basic course are always motivated by the occasion and by the lecturer's taste (that's the only reason why they might be stimulating) and these notes follow such a rule. They are expecially intended to provide an introduction to category theoretic methods, by applying them to topics suggested by propositional logic. Unfortunately, time was not su±cient to the author to include all material he planned to include; for this reason, important and interesting develope- ments are mentioned in the ¯nal Section of these notes, where the reader can however only ¯nd suggestions for further readings. -
Regular Categories and Regular Logic Basic Research in Computer Science
BRICS Basic Research in Computer Science BRICS LS-98-2 C. Butz: Regular Categories and Regular Logic Regular Categories and Regular Logic Carsten Butz BRICS Lecture Series LS-98-2 ISSN 1395-2048 October 1998 Copyright c 1998, BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Lecture Series publica- tions. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK–8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory LS/98/2/ Regular Categories and Regular Logic Carsten Butz Carsten Butz [email protected] BRICS1 Department of Computer Science University of Aarhus Ny Munkegade DK-8000 Aarhus C, Denmark October 1998 1Basic Research In Computer Science, Centre of the Danish National Research Foundation. Preface Notes handed out to students attending the course on Category Theory at the Department of Computer Science in Aarhus, Spring 1998. These notes were supposed to give more detailed information about the relationship between regular categories and regular logic than is contained in Jaap van Oosten’s script on category theory (BRICS Lectures Series LS-95-1). Regular logic is there called coherent logic. -
A Few Points in Topos Theory
A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces. -
Basic Category Theory and Topos Theory
Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object . -
A Small Complete Category
Annals of Pure and Applied Logic 40 (1988) 135-165 135 North-Holland A SMALL COMPLETE CATEGORY J.M.E. HYLAND Department of Pure Mathematics and Mathematical Statktics, 16 Mill Lane, Cambridge CB2 ISB, England Communicated by D. van Dalen Received 14 October 1987 0. Introduction This paper is concerned with a remarkable fact. The effective topos contains a small complete subcategory, essentially the familiar category of partial equiv- alence realtions. This is in contrast to the category of sets (indeed to all Grothendieck toposes) where any small complete category is equivalent to a (complete) poset. Note at once that the phrase ‘a small complete subcategory of a topos’ is misleading. It is not the subcategory but the internal (small) category which matters. Indeed for any ordinary subcategory of a topos there may be a number of internal categories with global sections equivalent to the given subcategory. The appropriate notion of subcategory is an indexed (or better fibred) one, see 0.1. Another point that needs attention is the definition of completeness (see 0.2). In my talk at the Church’s Thesis meeting, and in the first draft of this paper, I claimed too strong a form of completeness for the internal category. (The elementary oversight is described in 2.7.) Fortunately during the writing of [13] my collaborators Edmund Robinson and Giuseppe Rosolini noticed the mistake. Again one needs to pay careful attention to the ideas of indexed (or fibred) categories. The idea that small (sufficiently) complete categories in toposes might exist, and would provide the right setting in which to discuss models for strong polymorphism (quantification over types), was suggested to me by Eugenio Moggi. -
The Hecke Bicategory
Axioms 2012, 1, 291-323; doi:10.3390/axioms1030291 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Communication The Hecke Bicategory Alexander E. Hoffnung Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, PA 19122, USA; E-Mail: [email protected]; Tel.: +215-204-7841; Fax: +215-204-6433 Received: 19 July 2012; in revised form: 4 September 2012 / Accepted: 5 September 2012 / Published: 9 October 2012 Abstract: We present an application of the program of groupoidification leading up to a sketch of a categorification of the Hecke algebroid—the category of permutation representations of a finite group. As an immediate consequence, we obtain a categorification of the Hecke algebra. We suggest an explicit connection to new higher isomorphisms arising from incidence geometries, which are solutions of the Zamolodchikov tetrahedron equation. This paper is expository in style and is meant as a companion to Higher Dimensional Algebra VII: Groupoidification and an exploration of structures arising in the work in progress, Higher Dimensional Algebra VIII: The Hecke Bicategory, which introduces the Hecke bicategory in detail. Keywords: Hecke algebras; categorification; groupoidification; Yang–Baxter equations; Zamalodchikov tetrahedron equations; spans; enriched bicategories; buildings; incidence geometries 1. Introduction Categorification is, in part, the attempt to shed new light on familiar mathematical notions by replacing a set-theoretic interpretation with a category-theoretic analogue. Loosely speaking, categorification replaces sets, or more generally n-categories, with categories, or more generally (n + 1)-categories, and functions with functors. By replacing interesting equations by isomorphisms, or more generally equivalences, this process often brings to light a new layer of structure previously hidden from view. -
Distribution Algebras and Duality
Advances in Mathematics 156, 133155 (2000) doi:10.1006Âaima.2000.1947, available online at http:ÂÂwww.idealibrary.com on Distribution Algebras and Duality Marta Bunge Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6 Jonathon Funk Department of Mathematics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6 Mamuka Jibladze CORE Metadata, citation and similar papers at core.ac.uk Provided by ElsevierDepartement - Publisher Connector de Mathematique , Louvain-la-Neuve, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium; and Institute of Mathematics, Georgian Academy of Sciences, M. Alexidze Street 1, Tbilisi 380093, Republic of Georgia and Thomas Streicher Fachbereich 4 Mathematik, TU Darmstadt, Schlo;gartenstrasse 7, 64289 Darmstadt, Germany Communicated by Ross Street Received May 20, 2000; accepted May 20, 2000 0. INTRODUCTION Since being introduced by F. W. Lawvere in 1983, considerable progress has been made in the study of distributions on toposes from a variety of viewpoints [59, 12, 15, 19, 24]. However, much work still remains to be done in this area. The purpose of this paper is to deepen our understanding of topos distributions by exploring a (dual) lattice-theoretic notion of dis- tribution algebra. We characterize the distribution algebras in E relative to S as the S-bicomplete S-atomic Heyting algebras in E. As an illustration, we employ distribution algebras explicitly in order to give an alternative description of the display locale (complete spread) of a distribution [7, 10, 12]. 133 0001-8708Â00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved. -
SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter. -
Notes Towards Homology in Characteristic One
Notes Towards Homology in Characteristic One David Jaz Myers Abstract In their paper Homological Algebra in Characteristic One, Connes and Consani develop techniques of Grandis to do homological calculations with boolean modules { commutative idempotent monoids. This is a writeup of notes taken during a course given by Consani in Fall of 2017 explaining some of these ideas. This note is in flux, use at your own peril. Though the integers Z are the initial ring, they are rather complex. Their Krull dimension is 1, suggesting that they are the functions on a curve; but each of the epimorphisms out of them has a different characteristic, so they are not a curve over any single field. This basic observation, and many more interesting and less basic observations, leads one to wonder about other possible bases for the algebraic geometry of the integers. Could there be an \absolute base", a field over which all other fields lie? What could such a “field” be? As a first approach, let's consider the characteristic of this would-be absolute base field. Since it must lie under the finite fields, it should also be finite, and therefore its characteristic must divide the order of all finite fields. There is only one number which divides all prime powers (and also divides 0): the number 1 itself. Therefore, we are looking for a “field of characteristic one". Now, the axioms of a ring are too restrictive to allow for such an object. Let's free ourselves up by considering semirings, also known as rigs { rings without negatives. -
Toposes Are Adhesive
Toposes are adhesive Stephen Lack1 and Pawe lSoboci´nski2? 1 School of Computing and Mathematics, University of Western Sydney, Australia 2 Computer Laboratory, University of Cambridge, United Kingdom Abstract. Adhesive categories have recently been proposed as a cate- gorical foundation for facets of the theory of graph transformation, and have also been used to study techniques from process algebra for reason- ing about concurrency. Here we continue our study of adhesive categories by showing that toposes are adhesive. The proof relies on exploiting the relationship between adhesive categories, Brown and Janelidze’s work on generalised van Kampen theorems as well as Grothendieck’s theory of descent. Introduction Adhesive categories [11,12] and their generalisations, quasiadhesive categories [11] and adhesive hlr categories [6], have recently begun to be used as a natural and relatively simple general foundation for aspects of the theory of graph transfor- mation, following on from previous work in this direction [5]. By covering several “graph-like” categories, they serve as a useful framework in which to prove struc- tural properties. They have also served as a bridge allowing the introduction of techniques from process algebra to the field of graph transformation [7, 13]. From a categorical point of view, the work follows in the footsteps of dis- tributive and extensive categories [4] in the sense that they study a particular relationship between certain finite limits and finite colimits. Indeed, whereas distributive categories are concerned with the distributivity of products over co- products and extensive categories with the relationship between coproducts and pullbacks, the various flavours of adhesive categories consider the relationship between certain pushouts and pullbacks. -
Topos Theory
Topos Theory Olivia Caramello Introduction Interpreting logic in categories First-order logic First-order languages First-order theories Categorical semantics Topos Theory Classes of ‘logical’ categories The interpretation of logic in categories The interpretation of formulae Examples Soundness and completeness Olivia Caramello Toposes as mathematical universes The internal language Kripke-Joyal semantics For further reading Topos Theory Interpreting first-order logic in categories Olivia Caramello Introduction • In Logic, first-order languages are a wide class of formal Interpreting logic in categories languages used for talking about mathematical structures of First-order logic any kind (where the restriction ‘first-order’ means that First-order languages quantification is allowed only over individuals rather than over First-order theories collections of individuals or higher-order constructions on Categorical semantics them). Classes of ‘logical’ categories • A first-order language contains sorts, which are meant to The interpretation of formulae represent different kinds of individuals, terms, which denote Examples individuals, and formulae, which make assertions about the Soundness and completeness individuals. Compound terms and formulae are formed by Toposes as mathematical using various logical operators. universes • It is well-known that first-order languages can always be The internal language interpreted in the context of (a given model of) set theory. In Kripke-Joyal semantics this lecture, we will show that these languages can also be For further reading meaningfully interpreted in a category, provided that the latter possesses enough categorical structure to allow the interpretation of the given fragment of logic. In fact, sorts will be interpreted as objects, terms as arrows and formulae as subobjects, in a way that respects the logical structure of compound expressions. -
FUNDAMENTAL PUSHOUT TOPOSES Introduction
Theory and Applications of Categories, Vol. 20, No. 9, 2008, pp. 186–214. FUNDAMENTAL PUSHOUT TOPOSES MARTA BUNGE Abstract. The author [2, 5] introduced and employed certain ‘fundamental pushout toposes’ in the construction of the coverings fundamental groupoid of a locally connected topos. Our main purpose in this paper is to generalize this construction without the local connectedness assumption. In the spirit of [16, 10, 8] we replace connected components by constructively complemented, or definable, monomorphisms [1]. Unlike the locally connected case, where the fundamental groupoid is localic prodiscrete and its classifying topos is a Galois topos, in the general case our version of the fundamental groupoid is a locally discrete progroupoid and there is no intrinsic Galois theory in the sense of [19]. We also discuss covering projections, locally trivial, and branched coverings without local connectedness by analogy with, but also necessarily departing from, the locally connected case [13, 11, 7]. Throughout, we work abstractly in a setting given axiomatically by a category V of locally discrete locales that has as examples the categories D of discrete locales, and Z of zero-dimensional locales [9]. In this fashion we are led to give unified and often simpler proofs of old theorems in the locally connected case, as well as new ones without that assumption. Introduction The author [2, 5] introduced certain ‘fundamental pushout toposes’ in the construction and study of the prodiscrete fundamental groupoid of a locally connected topos. The main purpose of this paper is to generalize this construction without the local connectedness assumption. The key to this program is the theory of spreads in topos theory [7], originating in [16, 25], and motivated therein by branched coverings.