Formal Model Theory & Higher Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Notes and Solutions to Exercises for Mac Lane's Categories for The
Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits . -
Elements of -Category Theory Joint with Dominic Verity
Emily Riehl Johns Hopkins University Elements of ∞-Category Theory joint with Dominic Verity MATRIX seminar ∞-categories in the wild A recent phenomenon in certain areas of mathematics is the use of ∞-categories to state and prove theorems: • 푛-jets correspond to 푛-excisive functors in the Goodwillie tangent structure on the ∞-category of differentiable ∞-categories — Bauer–Burke–Ching, “Tangent ∞-categories and Goodwillie calculus” • 푆1-equivariant quasicoherent sheaves on the loop space of a smooth scheme correspond to sheaves with a flat connection as an equivalence of ∞-categories — Ben-Zvi–Nadler, “Loop spaces and connections” • the factorization homology of an 푛-cobordism with coefficients in an 푛-disk algebra is linearly dual to the factorization homology valued in the formal moduli functor as a natural equivalence between functors between ∞-categories — Ayala–Francis, “Poincaré/Koszul duality” Here “∞-category” is a nickname for (∞, 1)-category, a special case of an (∞, 푛)-category, a weak infinite dimensional category in which all morphisms above dimension 푛 are invertible (for fixed 0 ≤ 푛 ≤ ∞). What are ∞-categories and what are they for? It frames a possible template for any mathematical theory: the theory should have nouns and verbs, i.e., objects, and morphisms, and there should be an explicit notion of composition related to the morphisms; the theory should, in brief, be packaged by a category. —Barry Mazur, “When is one thing equal to some other thing?” An ∞-category frames a template with nouns, verbs, adjectives, adverbs, pronouns, prepositions, conjunctions, interjections,… which has: • objects • and 1-morphisms between them • • • • composition witnessed by invertible 2-morphisms 푓 푔 훼≃ ℎ∘푔∘푓 • • • • 푔∘푓 푓 ℎ∘푔 훾≃ witnessed by • associativity • ≃ 푔∘푓 훼≃ 훽 ℎ invertible 3-morphisms 푔 • with these witnesses coherent up to invertible morphisms all the way up. -
Derived Functors and Homological Dimension (Pdf)
DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic. -
AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory. -
N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y). -
Diagrammatics in Categorification and Compositionality
Diagrammatics in Categorification and Compositionality by Dmitry Vagner Department of Mathematics Duke University Date: Approved: Ezra Miller, Supervisor Lenhard Ng Sayan Mukherjee Paul Bendich Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 ABSTRACT Diagrammatics in Categorification and Compositionality by Dmitry Vagner Department of Mathematics Duke University Date: Approved: Ezra Miller, Supervisor Lenhard Ng Sayan Mukherjee Paul Bendich An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 Copyright c 2019 by Dmitry Vagner All rights reserved Abstract In the present work, I explore the theme of diagrammatics and their capacity to shed insight on two trends|categorification and compositionality|in and around contemporary category theory. The work begins with an introduction of these meta- phenomena in the context of elementary sets and maps. Towards generalizing their study to more complicated domains, we provide a self-contained treatment|from a pedagogically novel perspective that introduces almost all concepts via diagrammatic language|of the categorical machinery with which we may express the broader no- tions found in the sequel. The work then branches into two seemingly unrelated disciplines: dynamical systems and knot theory. In particular, the former research defines what it means to compose dynamical systems in a manner analogous to how one composes simple maps. The latter work concerns the categorification of the slN link invariant. In particular, we use a virtual filtration to give a more diagrammatic reconstruction of Khovanov-Rozansky homology via a smooth TQFT. -
A Few Points in Topos Theory
A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces. -
Basic Category Theory and Topos Theory
Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object . -
A Small Complete Category
Annals of Pure and Applied Logic 40 (1988) 135-165 135 North-Holland A SMALL COMPLETE CATEGORY J.M.E. HYLAND Department of Pure Mathematics and Mathematical Statktics, 16 Mill Lane, Cambridge CB2 ISB, England Communicated by D. van Dalen Received 14 October 1987 0. Introduction This paper is concerned with a remarkable fact. The effective topos contains a small complete subcategory, essentially the familiar category of partial equiv- alence realtions. This is in contrast to the category of sets (indeed to all Grothendieck toposes) where any small complete category is equivalent to a (complete) poset. Note at once that the phrase ‘a small complete subcategory of a topos’ is misleading. It is not the subcategory but the internal (small) category which matters. Indeed for any ordinary subcategory of a topos there may be a number of internal categories with global sections equivalent to the given subcategory. The appropriate notion of subcategory is an indexed (or better fibred) one, see 0.1. Another point that needs attention is the definition of completeness (see 0.2). In my talk at the Church’s Thesis meeting, and in the first draft of this paper, I claimed too strong a form of completeness for the internal category. (The elementary oversight is described in 2.7.) Fortunately during the writing of [13] my collaborators Edmund Robinson and Giuseppe Rosolini noticed the mistake. Again one needs to pay careful attention to the ideas of indexed (or fibred) categories. The idea that small (sufficiently) complete categories in toposes might exist, and would provide the right setting in which to discuss models for strong polymorphism (quantification over types), was suggested to me by Eugenio Moggi. -
The Hecke Bicategory
Axioms 2012, 1, 291-323; doi:10.3390/axioms1030291 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Communication The Hecke Bicategory Alexander E. Hoffnung Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, PA 19122, USA; E-Mail: [email protected]; Tel.: +215-204-7841; Fax: +215-204-6433 Received: 19 July 2012; in revised form: 4 September 2012 / Accepted: 5 September 2012 / Published: 9 October 2012 Abstract: We present an application of the program of groupoidification leading up to a sketch of a categorification of the Hecke algebroid—the category of permutation representations of a finite group. As an immediate consequence, we obtain a categorification of the Hecke algebra. We suggest an explicit connection to new higher isomorphisms arising from incidence geometries, which are solutions of the Zamolodchikov tetrahedron equation. This paper is expository in style and is meant as a companion to Higher Dimensional Algebra VII: Groupoidification and an exploration of structures arising in the work in progress, Higher Dimensional Algebra VIII: The Hecke Bicategory, which introduces the Hecke bicategory in detail. Keywords: Hecke algebras; categorification; groupoidification; Yang–Baxter equations; Zamalodchikov tetrahedron equations; spans; enriched bicategories; buildings; incidence geometries 1. Introduction Categorification is, in part, the attempt to shed new light on familiar mathematical notions by replacing a set-theoretic interpretation with a category-theoretic analogue. Loosely speaking, categorification replaces sets, or more generally n-categories, with categories, or more generally (n + 1)-categories, and functions with functors. By replacing interesting equations by isomorphisms, or more generally equivalences, this process often brings to light a new layer of structure previously hidden from view. -
Arxiv:1005.0156V3
FOUR PROBLEMS REGARDING REPRESENTABLE FUNCTORS G. MILITARU C Abstract. Let R, S be two rings, C an R-coring and RM the category of left C- C C comodules. The category Rep (RM, SM) of all representable functors RM→ S M is C shown to be equivalent to the opposite of the category RMS . For U an (S, R)-bimodule C we give necessary and sufficient conditions for the induction functor U ⊗R − : RM→ SM to be: a representable functor, an equivalence of categories, a separable or a Frobenius functor. The latter results generalize and unify the classical theorems of Morita for categories of modules over rings and the more recent theorems obtained by Brezinski, Caenepeel et al. for categories of comodules over corings. Introduction Let C be a category and V a variety of algebras in the sense of universal algebras. A functor F : C →V is called representable [1] if γ ◦ F : C → Set is representable in the classical sense, where γ : V → Set is the forgetful functor. Four general problems concerning representable functors have been identified: Problem A: Describe the category Rep (C, V) of all representable functors F : C→V. Problem B: Give a necessary and sufficient condition for a given functor F : C→V to be representable (possibly predefining the object of representability). Problem C: When is a composition of two representable functors a representable functor? Problem D: Give a necessary and sufficient condition for a representable functor F : C → V and for its left adjoint to be separable or Frobenius. The pioneer of studying problem A was Kan [10] who described all representable functors from semigroups to semigroups.