Isolation and Characterization of a Myotoxic Fraction from Cerastes Vipera Snake Venom J Toxins

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Characterization of a Myotoxic Fraction from Cerastes Vipera Snake Venom J Toxins Open Access Research Article J Toxins May 2017 Volume 4, Issue 1 © All rights are reserved by El-Ghffar et al. Journal of Isolation and Characterization of Toxins A. Abd El - Aal1, Eman A. Abd El-Ghffar1* and a Myotoxic Fraction from Ceras- Mohamed Mostafa Soliman1,2 1Department of Zoology,Faculty of Science, University of Ain Shams, Egypt tes Vipera Snake Venom 2Biology Department,Faculty of Science, Jazan university, KSA *Address for Correspondence Eman A. Abd El-Ghffar, Department of Zoology, Faculty of Science, Ain Keywords: Phospholipase A2 - Myotoxin; Viper venom; Cerastes Shams University, Cairo, Egypt, E-mail: [email protected] vipera; Myonecrotic action Submission: 3 March, 2017 Abstract Accepted: 10 May, 2017 The aim of this study was to evaluate the biological effects of Published: 15 May, 2017 crude Cerastes vipera venom and some phospholipase A2 (PLA2) Copyright: © 2017 El - Aal AA, et al. This is an open access article dis- activity containing fraction (CV-PL-F4). Furthermore, the current study tributed under the Creative Commons Attribution License, which permits examined the antimyotoxic action of dexamethasone, vitamins (Vit.) unrestricted use, distribution, and reproduction in any medium, provided E and C and trypsin against the isolated fraction having the highest the original work is properly cited. PLA2 activity and crude venom. In the present study, a PLA2, designed CV-PL-F4, was isolated from Cerastes vipera snake venom through Sephadex G-75, and a screening for PLA2 activity (via an indirect covering a glass funnel that emptied into a glass tube in the ice. The hemolysis assay) guided the search for a myotoxin. In conclusion, venom was lyophilized and stored at 4ᵒC until used. Sephadex G-75, dexamethasone and Vit E are potentially useful in treating the phosphatidylcholine, casein (fat-free), sodiumdodecylsulfate (SDS), myotoxic effect induced by Cerastes vipera crude venom and their CV-PL-F4 fraction. 2-mercaptoethanol, acrylamide, coomassie brilliant blue R250, trypsin, bovine serum albumin dexamethasone, Vit E, vitamin C and protein molecular weight markers were obtained from Sigma Introduction Chemical Co. The bite of the viperCerastes vipera has a serious medical problem. Animals C. vipera venom contains a complex mixture of enzymes [1] including Male CD-1 White mice weighing approximately 20-25 g were phospholipase A2 [2] and proteases [3,4]. Some clinical effects housed in specially designed cages and maintained in conditions following snake bite are due to PLA2 and proteases which are among the major components of viper venoms. Although these enzymes of good ventilation, normal temperatures, and humidity ranges. Mice were housed 5 animals in each cage to avoid crowding under share a common cytotoxic activity and similar structural features with conditions of equal periods of light and dark in the animal house non-toxic mammalian pancreatic enzymes, they also promote a wide (12 hr light and 12 hr dark cycle). Mice were fed on standard pellets, variety of pathological symptoms in animals, such as cardiotoxicity, containing all nutritive elements (proteins, fats, carbohydrates, myotoxicity, anticoagulant activity and hemolysis [5-7]. Since vitamins, salts and minerals). Drinking water and food were provided phospholipase A is almost invariably the most toxic component of 2 ad libitum throughout the period of study. All experiments followed the venoms, it probably plays an important role in mortality and the ethical standards for animal experiments in toxicological research morbidity following snakebite [5,8]. The primary target of PLA2 is the recommended by the International Society of Toxinology [20]. cell membrane inducing the hydrolysis of its phospholipids [9] as the hydrolysis of erythrocyte membrane [10-12] and the damage of the Fractionation of Cerastes vipera venom muscle cell membrane inducing myonecrosis [13-15]. A few PLA2 Samples of lyophilized Cerastes vipera venom (110 mg) were of the vipers have been isolated and purified [2,9,16,17]. The study reconstituted in 5 ml 0.03 M ammonium acetate buffer, pH 4.6 and of myotoxicity of Cerastes vipera venom has received relatively little applied to a 2.5x75 cm column (Pharmacia Biotech, Piscataway, NJ, attention [18,19]. The purposes of the present study are (a) to isolate a USA) packed with Sephadex G-75 equilibrated with the same buffer fraction having a myonecrotic effect with PLA2 activity from Cerastes and eluted at a flow rate of 1 ml/min using an EP-1 Econo Pump (Bio- Vipera venom, (b) to evaluate the biological properties of the fraction, Rad Laboratory, Hercules, CA, USA). Five-milliliter fractions were and (c) to investigate the antimyotoxic action of dexamethasone, Vit collected, and elution profile was monitored at 280 nm. E and C and trypsin for the isolated fraction. Hemolytic activity of Cerastes vipera venom and its fraction Materials and Methods Hemolytic activity of the crude venom and its isolated venom Venom and chemicals fraction was determined by measuring the release of hemoglobin from rabbit erythrocytes enhanced by the addition of phosphatidylcholine. Cerastes vipera venom was extracted from adult vipers collected This indirect hemolytic protocol was performed in glass tubes. from Aswan area and maintained in the Venom Research Lab, 10,20,40 and 60 µg of the crude venom and its isolated fraction Department of Zoology, Faculty of Science, Ain Shams University. were added to a prewarm (to 37 °C) assay mixture containing 0.1 Venom was collected from the vipers every four weeks for a six- ml of phosphatidylcholine suspension (10 mg /L), 1 ml of rabbit month period by allowing the vipers to bite through a rubber glove erythrocytes (2.5% v/v) and 2.9 ml of Tris buffer (1 mM, pH 7.5) Citation: Abd El - Aal A, Abd El-Ghffar EA, Soliman MM. Isolation and Characterization of a Myotoxic Fraction from Cerastes Vipera Snake Venom J Toxins. 2017;4(1): 9 Citation: Abd El - Aal A, Abd El-Ghffar EA, Soliman MM. Isolation and Characterization of a Myotoxic Fraction from Cerastes Vipera Snake Venom J Toxins. 2017;4(1): 9 ISSN: 2328-1723 containing NaCl (100 mM), KCl (100 mM) and CaCl2 (10 mM). Protein concentrations of crude venom, column eluates, and After incubation for 1 hr, the tubes were centrifuged at 2500 g for 15 isolated fractions were measured by the method of Lowry et al. min using IEC-Centra-4R cooling centrifuge (I. E. Company, USA). with bovine serum albumin as a standard or by spectrophotometric The supernatant was used to estimate the degree of hemolysis at 540 absorption at 280 nm [25]. nm. Hemolytic unit (HU50) value is the amount venom or a fraction LD determination caused 50% hemolysis and was calculated according to the method 50 of [21]. The amount of a venom or its fractions that are sufficient to kill 50 percent of a population of animals usually within a certain Myotoxic activity of the venom and fractions time is called median lethal dose (LD50). LD50 was determined by Ten fractions obtained from the viper venom were tested for Intraperitoneal (i.p.) injection of different CV-PL-F4 doses into male their ability to induce myonecrosis by intramuscular (i.m.) injection CD-1 White mice. The survival time for each mouse was recorded up into male white CD-1 mice (n=3). After 3 hours, the mice were to 24 hr. LD50 was calculated according to the method described by anesthetized with ether and killed by cervical dislocation. Samples Meier and Theakston [26]. of serum and muscle tissue were taken and processed as described Experimental protocol by Rodrigues et al. [22]. Myotoxicity was assessed by the increase in serum Creatine Kinase (CK) activity, in addition to the determination a- Myotoxic effect of Cerastes vipera venom and CV-PL-F4: of myonecrotic index using histological analysis. Cerastes vipera venom (10 µg/ 25 g mice) or myotoxin CV-PL-F4 (30 µg/ 25 g mice) was dissolved in 0.1 ml of 0.85% NaCl. The dose of Essay of PLA2 of Cerastes vipera myotoxin Cerastes vipera venom used in this study was equal to the sub LD50, The PLA2 activity of the CV-PL-F4 myotoxin fraction was where the LD50 of the venom was equal to 15.62 µg/ 25 g mouse. determined using the method described by Joubert and Taljaard CD-1 mice (64 animals) were divided into eight groups, each of eight [23]. 1 ml of egg yolk suspension was mixed with 4.0 ml 0.1 M Tris animals. Six animal groups were i.m. injected in the dorsolateral aspect buffer, pH 8, and 0.1 ml of the enzyme and incubated at 30 °C. The of the gastrocnemius muscle with either venom or CV-PL-F4 to study decrease of the turbidity of the suspension was recorded at 740 nm. the effect of the viper venom and CV-PL-F4 for three-time intervals. The absorbance change between 5 min and 15 min intervals was taken Mice injected with the crude venom or CV-PL-F4 was sacrificed after as the relative amount of enzyme activity. One unit was defined as the 1, 3 and 24 hr. The other two animal groups were injected with 0.85% amount of enzyme which produced a decrease of 0.01 in absorbance NaCl only and were used as a control. in 10 min. b- Antimyotoxic effect of dexamethasone, vitamins E, and C Proteolytic activity assay of Cerastes vipera myotoxin and trypsin: Ten animal groups (80 mice) were used each of eight animals. Two animal groups injected i.m. with the saline solution Proteolytic activity of CV-PL-F was estimated with casein (fat- 4 containing 10 µg of Cerastes vipera venom or 30 µg CV-PL-F and free, BDH, England) using the method described by Mandelbaum et 4 were used as control groups.
Recommended publications
  • Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms
    Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms Nicholas R. Casewella,b,1, Simon C. Wagstaffc, Wolfgang Wüsterb, Darren A. N. Cooka, Fiona M. S. Boltona, Sarah I. Kinga, Davinia Plad, Libia Sanzd, Juan J. Calveted, and Robert A. Harrisona aAlistair Reid Venom Research Unit and cBioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; bMolecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; and dInstituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 11 46010 Valencia, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved May 14, 2014 (received for review March 27, 2014) Variation in venom composition is a ubiquitous phenomenon in few (approximately 5–10) multilocus gene families, with each snakes and occurs both interspecifically and intraspecifically. family capable of producing related isoforms generated by Venom variation can have severe outcomes for snakebite victims gene duplication events occurring over evolutionary time (1, 14, by rendering the specific antibodies found in antivenoms in- 15). The birth and death model of gene evolution (16) is fre- effective against heterologous toxins found in different venoms. quently invoked as the mechanism giving rise to venom gene The rapid evolutionary expansion of different toxin-encoding paralogs, with evidence that natural selection acting on surface gene families in different snake lineages is widely perceived as the exposed residues of the resulting gene duplicates facilitates main cause of venom variation. However, this view is simplistic subfunctionalization/neofunctionalization of the encoded proteins and disregards the understudied influence that processes acting (15, 17–19).
    [Show full text]
  • Experience of Snakebite Envenomation by a Desert Viper in Qatar
    Hindawi Journal of Toxicology Volume 2020, Article ID 8810741, 5 pages https://doi.org/10.1155/2020/8810741 Review Article Experience of Snakebite Envenomation by a Desert Viper in Qatar Amr Elmoheen ,1 Waleed Awad Salem ,1 Mahmoud Haddad ,1 Khalid Bashir ,1 and Stephen H. Thomas1,2,3 1Department of Emergency Medicine, Hamad Medical Corporation, Doha, Qatar 2Weill Cornell Medical College in Qatar, Doha, Qatar 3Barts and "e London School of Medicine, Queen Mary University of London, London, UK Correspondence should be addressed to Amr Elmoheen; [email protected] Received 8 June 2020; Revised 8 September 2020; Accepted 28 September 2020; Published 12 October 2020 Academic Editor: Mohamed M. Abdel-Daim Copyright © 2020 Amr Elmoheen et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Crotaline and elapid snakebites are reported all over the world as well as in the Middle East and other countries around this region. However, data regarding snakebites and their treatment in Qatar are limited. &is review paper is going to investigate the presentation and treatment of snakebite in Qatar. A good assessment helps to decide on the management of the snakebites envenomation. Antivenom and conservative management are the mainstays of treatment for crotaline snakebite. Point-of-care ultrasound (POCUS) has been suggested to do early diagnosis and treatment of soft tissue problems, such as edema and compartment syndrome, after a snakebite. &e supporting data are not sufficient regarding the efficiency of POCUS in diagnosing the extent and severity of tissue involvement and its ultimate effect on the outcome.
    [Show full text]
  • Pdf 584.52 K
    3 Egyptian J. Desert Res., 66, No. 1, 35-55 (2016) THE VERTEBRATE FAUNA RECORDED FROM NORTHEASTERN SINAI, EGYPT Soliman, Sohail1 and Eman M.E. Mohallal2* 1Department of Zoology, Faculty of Science, Ain Shams University, El-Abbaseya, Cairo, Egypt 2Department of Animal and Poultry Physiology, Desert Research Center, El Matareya, Cairo, Egypt *E-mail: [email protected] he vertebrate fauna was surveyed in ten major localities of northeastern Sinai over a period of 18 months (From T September 2003 to February 2005, inclusive). A total of 27 species of reptiles, birds and mammals were recorded. Reptiles are represented by five species of lizards: Savigny's Agama, Trapelus savignii; Nidua Lizard, Acanthodactylus scutellatus; the Sandfish, Scincus scincus; the Desert Monitor, Varanus griseus; and the Common Chamaeleon, Chamaeleo chamaeleon and one species of vipers: the Sand Viper, Cerastes vipera. Six species of birds were identified during casual field observations: The Common Kestrel, Falco tinnunculus; Pied Avocet, Recurvirostra avocetta; Kentish Plover, Charadrius alexandrines; Slender-billed Gull, Larus genei; Little Owl, Athene noctua and Southern Grey Shrike, Lanius meridionalis. Mammals are represented by 15 species; Eleven rodent species and subspecies: Flower's Gerbil, Gerbillus floweri; Lesser Gerbil, G. gerbillus, Aderson's Gerbil, G. andersoni (represented by two subspecies), Wagner’s Dipodil, Dipodillus dasyurus; Pigmy Dipodil, Dipodillus henleyi; Sundevall's Jird, Meriones crassus; Negev Jird, Meriones sacramenti; Tristram’s Jird, Meriones tristrami; Fat Sand-rat, Psammomys obesus; House Mouse, Mus musculus and Lesser Jerboa, Jaculus jaculus. Three carnivores: Red Fox, Vulpes vulpes; Marbled Polecat, Vormela peregosna and Common Badger, Meles meles and one gazelle: Arabian Gazelle, Gazella gazella.
    [Show full text]
  • Crotalus Cerastes (Hallowell, 1854) (Squamata, Viperidae)
    Herpetology Notes, volume 9: 55-58 (2016) (published online on 17 February 2016) Arboreal behaviours of Crotalus cerastes (Hallowell, 1854) (Squamata, Viperidae) Andrew D. Walde1,*, Andrea Currylow2, Angela M. Walde1 and Joel Strong3 Crotalus cerastes (Hallowell, 1854) is a small study area has no uninterrupted sandy areas outside of horned rattlesnake that ranges throughout most of the ephemeral washes, and no dune-like habitats. It is in deserts of southwestern United States, and south into this scrub-like habitat that we made three observations northern Mexico (Ernst and Ernst, 2003). This species of the previously undocumented arboreal behaviour of is considered to be a psammophilous (sand-dune) C. cerastes. specialist, typically inhabiting loose sand habitats and On 7 April 2005 at 1618h, we observed an adult C. dune blowouts (Ernst and Ernst, 2003). Although C. cerastes coiled in an A. dumosa shrub approximately 25 cerastes is primarily a nocturnal snake, it is known to cm above the ground (Fig. 1 A). The air temperature be active diurnally in the spring, and to bask in early was 21 °C and ground temperature was 27 °C. The morning or late afternoon (Ernst and Ernst, 2003). snake did not attempt to flee at our approach, but did This rattlesnake species exhibits a unique style of reposition slightly in the branches. A second observation locomotion known as sidewinding, from which it occurred on 18 April 2005 at 1036h, when we observed derives its common name, Sidewinder. Sidewinding is another adult C. cerastes extending the anterior third of believed to be an adaptation to efficiently move in loose its body beyond the top of an A.
    [Show full text]
  • Molecular Systematics of the Genus Pseudocerastes (Ophidia: Viperidae) Based on the Mitochondrial Cytochrome B Gene
    Turkish Journal of Zoology Turk J Zool (2014) 38: 575-581 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1308-25 Molecular systematics of the genus Pseudocerastes (Ophidia: Viperidae) based on the mitochondrial cytochrome b gene 1,2, 1,2 2,3 Behzad FATHINIA *, Nasrullah RASTEGAR-POUYANI , Eskandar RASTEGAR-POUYANI , 4 2,5,6 Fatemeh TOODEH-DEHGHAN , Mehdi RAJABIZADEH 1 Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran 2 Iranian Plateau Herpetology Research Group, Faculty of Science, Razi University, Kermanshah, Iran 3 Department of Biology, Hakim Sabzevari University, Sabzevar, Iran 4 Department of Venomous Animals and Antivenin Production, Razi Vaccine & Serum Research Institute, Karaj, Iran 5 Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium 6 Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran Received: 14.08.2013 Accepted: 21.02.2014 Published Online: 14.07.2014 Printed: 13.08.2014 Abstract: The false horned vipers of the genus Pseudocerastes consist of 3 species; all have been recorded in Iran. These include Pseudocerastes persicus, P. fieldi, and P. urarachnoides. Morphologically, the taxonomic border between P. fieldi and P. persicus is not as clear as that between P. urarachnoides and P. persicus or P. fieldi. Regarding the weak diagnostic characters differentiating P. fieldi from P. persicus and very robust characters separating P. urarachnoides from both, there may arise some uncertainty in the exact taxonomic status of P. urarachnoides and whether it should remain at the current specific level or be elevated to a distinct genus.
    [Show full text]
  • Comparative Morphology of the Skin of Natrix Tessellata (Family: Colubridae) and Cerastes Vipera (Family: Viperidae) Author(S): Rasha E
    Comparative Morphology of the Skin of Natrix tessellata (Family: Colubridae) and Cerastes vipera (Family: Viperidae) Author(s): Rasha E. Abo-Eleneen and Ahmed A. Allam Source: Zoological Science, 28(10):743-748. Published By: Zoological Society of Japan DOI: http://dx.doi.org/10.2108/zsj.28.743 URL: http://www.bioone.org/doi/full/10.2108/zsj.28.743 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ZOOLOGICAL SCIENCE 28: 743–748 (2011) ¤ 2011 Zoological Society of Japan Comparative Morphology of the Skin of Natrix tessellata (Family: Colubridae) and Cerastes vipera (Family: Viperidae) Rasha E. Abo-Eleneen1 and Ahmed A. Allam1,2* 1Department of Zoology, Faculty of Science, Beni-suef University, Beni-Suef 65211, Egypt 2King Saud University, College of Science, Zoology Department, Riyadh 11345, Saudi Arabia We studied beneficial difference of the skin of two snakes.
    [Show full text]
  • A Case of Four Desert Rodents Learning to Respond To
    bioRxiv preprint doi: https://doi.org/10.1101/362202; this version posted July 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Bleicher et al. Interviews | 1 1 Divergent Behavior Amid Convergent Evolution: A Case of Four Desert Rodents Learning 2 to Respond to Known and Novel Vipers 3 Sonny S. Bleicher1,2,3*, Kotler Burt P.2, Shalev, Omri2, Dixon Austin2,Keren Embar2, Brown Joel 4 S.3,4 5 1. Tumamoc People and Habitat, Department of Ecology and Evolutionary Biology, University 6 of Arizona, 1675 W. Anklem Rd, Tucson, AZ, 85745, USA. 2. Mitrani Department for Desert 7 Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde- 8 Boker 84-990, Israel. 3. Department of Biological Science, University of Illinois at Chicago, 845 9 West Taylor Street (MC 066), Chicago, IL, 60607, USA. 4. Moffitt Cancer Research Center, 10 Tampa, FL, 33612, USA. 11 *Corresponding Author: [email protected]; orcid.org/0000-0001-8727-5901 12 bioRxiv preprint doi: https://doi.org/10.1101/362202; this version posted July 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Bleicher et al. Interviews | 2 13 ABSTRACT 14 Desert communities word-wide are used as natural laboratories for the study of convergent 15 evolution, yet inferences drawn from such studies are necessarily indirect.
    [Show full text]
  • The Snakes of Niger
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 9(2) [Special Section]: 39–55 (e110). The snakes of Niger 1Jean-François Trape and Youssouph Mané 1Institut de Recherche pour le Développement (IRD), UMR MIVEGEC, Laboratoire de Paludologie et de Zoologie Médicale, B.P. 1386, Dakar, SENEGAL Abstract.—We present here the results of a study of 1,714 snakes from the Republic of Niger, West Africa, collected from 2004 to 2008 at 28 localities within the country. Based on this data, supplemented with additional museum specimens (23 selected specimens belonging to 10 species) and reliable literature reports, we present an annotated checklist of the 51 snake species known from Niger. Psammophis sudanensis is added to the snake fauna of Niger. Known localities for all species are presented and, where necessary, taxonomic and biogeographic issues discussed. Key words. Reptilia; Squamata; Ophidia; taxonomy; biogeography; species richness; venomous snakes; Niger Re- public; West Africa Citation: Trape J-F and Mané Y. 2015. The snakes of Niger. Amphibian & Reptile Conservation 9(2) [Special Section]: 39–55 (e110). Copyright: © 2015 Trape and Mané. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited.
    [Show full text]
  • A Crowned Devil: New Species of Cerastes Laurenti, 1768 (Ophidia, Viperidae) from Tunisia, with Two Nomenclatural Comments
    Bonn zoological Bulletin Volume 57 Issue 2 pp. 297–306 Bonn, November 2010 A crowned devil: new species of Cerastes Laurenti, 1768 (Ophidia, Viperidae) from Tunisia, with two nomenclatural comments Philipp Wagner1* & Thomas M. Wilms2 1 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany; [email protected] 2 Zoologischer Garten Frankfurt, Bernhard-Grizmek-Allee 1, 60316 Frankfurt a. Main, Germany; * corresponding author Abstract. A distinctive new species of the viperid genus Cerastes is described form Tunisia. It is closely related to Cerastes vipera but easily distinguishable from this invariably hornless species by having tufts of erected supraocular scales form- ing little crowns above the eyes. These crown-like tufts consist of several vertically erect, blunt scales which differ dras- tically from the supraocular horns of C. cerastes or C. gasperettii that consist of one long, pointed scale only. Although the new species is based on only one single specimen, further specimens had originally been available but were subse- quently lost in private terraria. The taxonomic status of the nomen “Cerastes cerastes karlhartli” is discussed and the name is found to be unavailable (nomen nudum). Also the authorship of “Cerastes cornutus” is discussed and ascribed to Boulenger. Key words. Cerastes cerastes, Cerastes vipera, Cerastes sp. n., Cerastes c. karlhartli, Cerastes cornutus, horned viper, North Africa, Tunisia. INTRODUCTION The genus Cerastes Laurenti, 1768 includes only five taxa The second North African species is C. vipera (Linnaeus, (three species and two subspecies), which are distributed 1758). Its distribution range is very similar to C. cerastes in northern Africa and on the Arabian Peninsula.
    [Show full text]
  • Calibrating the Tree of Vipers Under the Fossilized Birth-Death Model Jiří Šmíd 1,2,3,4 & Krystal A
    www.nature.com/scientificreports OPEN Calibrating the tree of vipers under the fossilized birth-death model Jiří Šmíd 1,2,3,4 & Krystal A. Tolley 1,5 Scaling evolutionary trees to time is essential for understanding the origins of clades. Recently Received: 18 September 2018 developed methods allow including the entire fossil record known for the group of interest and Accepted: 15 February 2019 eliminated the need for specifying prior distributions for node ages. Here we apply the fossilized birth- Published: xx xx xxxx death (FBD) approach to reconstruct the diversifcation timeline of the viperines (subfamily Viperinae). Viperinae are an Old World snake subfamily comprising 102 species from 13 genera. The fossil record of vipers is fairly rich and well assignable to clades due to the unique vertebral and fang morphology. We use an unprecedented sampling of 83 modern species and 13 genetic markers in combination with 197 fossils representing 28 extinct taxa to reconstruct a time-calibrated phylogeny of the Viperinae. Our results suggest a late Eocene-early Oligocene origin with several diversifcation events following soon after the group’s establishment. The age estimates inferred with the FBD model correspond to those from previous studies that were based on node dating but FBD provides notably narrower credible intervals around the node ages. Viperines comprise two African and an Eurasian clade, but the ancestral origin of the subfamily is ambiguous. The most parsimonious scenarios require two transoceanic dispersals over the Tethys Sea during the Oligocene. Scaling phylogenetic trees to time is one of the major challenges in evolutionary biology. Reliable estimates for the age of evolutionary events are essential for addressing a wide array of questions, such as deciphering micro- and macroevolutionary processes, identifying drivers of biodiversity patterns, or understanding the origins of life1.
    [Show full text]
  • Systematics, Distribution and Ecology of the Snakes of Jordan
    Vertebrate Zoology 61 (2) 2011 179 179 – 266 © Museum für Tierkunde Dresden, ISSN 1864-5755, 25.10.2011 Systematics, distribution and ecology of the snakes of Jordan ZUHAIR S. AMR 1 & AHMAD M. DISI 2 1 Department of Biology, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 11112, Jordan. amrz(at)just.edu.jo 2 Department of Biology, the University of Jordan, Amman, 11942, Jordan. ahmadmdisi(at)yahoo.com Accepted on June 18, 2011. Published online at www.vertebrate-zoology.de on June 22, 2011. > Abstract The present study consists of both locality records and of literary data for 37 species and subspecies of snakes reported from Jordan. Within the past decade snake taxonomy was re-evaluated employing molecular techniques that resulted in reconsideration of several taxa. Thus, it is imperative now to revise the taxonomic status of snakes in Jordan to update workers in Jordan and the surrounding countries with these nomenclatural changes. The snake fauna of Jordan consists of 37 species and subspecies belonging to seven families (Typhlopidae, Leptotyphlopidae, Boidae, Colubridae, Atractaspididae, Elapidae and Viperidae). Families Leptotyphlopidae, Boidae and Elapidae are represented by a single species each, Leptotyphlops macrorhynchus, Eryx jaculus and Walterinnesia aegyptia respectively. The families Typhlopidae and Atractaspididae are represented by two and three species respectively. Species of the former genus Coluber were updated and the newly adopted names are included. Family Colubridae is represented by twelve genera (Dolichophis, Eirenis, Hemorrhois, Lytorhynchus, Malpolon, Natrix, Platyceps, Psammophis, Rhagerhis, Rhynchocalamus, Spalerosophis and Telescopus) and includes 24 species. Family Viperidae includes fi ve genera (Cerastes, Daboia, Echis, Macrovipera and Pseudocerastes), each of which is represented by a single species, except the genus Cerastes which is represented by two subspecies.
    [Show full text]
  • The Mediterranean Biodiversity: a Hotspot Under Threat
    THE MEDITERRANEAN: A BIODIVERSITY HOTSPOT UNDER THREAT Annabelle Cuttelod, Nieves García, Dania Abdul Malak, Helen Temple and Vineet Katariya The IUCN Red List of Threatened Species™ Acknowledgements: This publication is part of The 2008 Review of The IUCN Red List of Threatened Species. The IUCN Red List is compiled and produced by the IUCN Species Programme based on contributions from a network of thousands of scientifi c experts around the world. These include members of the IUCN Species Survival Commission Specialist Groups, Red List Partners (currently Conservation International, BirdLife International, NatureServe and the Zoological Society of London), and many others including experts from universities, museums, research institutes and non-governmental organizations. The long list of people, partners and donors who made this review possible can be found at the following address: www.iucn.org/redlist/ Citation: Cuttelod, A., García, N., Abdul Malak, D., Temple, H. and Katariya, V. 2008. The Mediterranean: a biodiversity hotspot under threat. In: J.-C. Vié, C. Hilton-Taylor and S.N. Stuart (eds). The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland, Switzerland. Credits: Published by IUCN, Gland, Switzerland Chief Editor: Jean-Christophe Vié Editors: Craig Hilton-Taylor and Simon N. Stuart ISBN (The 2008 Review of The IUCN Red List of Threatened): 978-2-8317-1063-1 Layout: Lynx Edicions, Barcelona, Spain © 2008 International Union for Conservation of Nature and Natural Resources Cover photo: Dalmatian coast (Croatia). © Pedro Regato The Mediterranean: a biodiversity hotspot under threat Annabelle Cuttelod, Nieves García, Dania Abdul Malak, Helen Temple and Vineet Katariya The diverse Mediterranean noted for the diversity of its plants – and 3% of the birds.
    [Show full text]