The Mediterranean Biodiversity: a Hotspot Under Threat

Total Page:16

File Type:pdf, Size:1020Kb

The Mediterranean Biodiversity: a Hotspot Under Threat THE MEDITERRANEAN: A BIODIVERSITY HOTSPOT UNDER THREAT Annabelle Cuttelod, Nieves García, Dania Abdul Malak, Helen Temple and Vineet Katariya The IUCN Red List of Threatened Species™ Acknowledgements: This publication is part of The 2008 Review of The IUCN Red List of Threatened Species. The IUCN Red List is compiled and produced by the IUCN Species Programme based on contributions from a network of thousands of scientifi c experts around the world. These include members of the IUCN Species Survival Commission Specialist Groups, Red List Partners (currently Conservation International, BirdLife International, NatureServe and the Zoological Society of London), and many others including experts from universities, museums, research institutes and non-governmental organizations. The long list of people, partners and donors who made this review possible can be found at the following address: www.iucn.org/redlist/ Citation: Cuttelod, A., García, N., Abdul Malak, D., Temple, H. and Katariya, V. 2008. The Mediterranean: a biodiversity hotspot under threat. In: J.-C. Vié, C. Hilton-Taylor and S.N. Stuart (eds). The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland, Switzerland. Credits: Published by IUCN, Gland, Switzerland Chief Editor: Jean-Christophe Vié Editors: Craig Hilton-Taylor and Simon N. Stuart ISBN (The 2008 Review of The IUCN Red List of Threatened): 978-2-8317-1063-1 Layout: Lynx Edicions, Barcelona, Spain © 2008 International Union for Conservation of Nature and Natural Resources Cover photo: Dalmatian coast (Croatia). © Pedro Regato The Mediterranean: a biodiversity hotspot under threat Annabelle Cuttelod, Nieves García, Dania Abdul Malak, Helen Temple and Vineet Katariya The diverse Mediterranean noted for the diversity of its plants – and 3% of the birds. The Mediterranean The Mediterranean Basin is one of the about 25,000 species are native to the is also hosting 253 species of endemic world’s richest places in terms of animal region, and more than half of these are freshwater fi sh. Although the Mediterranean and plant diversity. This diverse region, endemic – in other words, they are found Sea makes up less than 1% of the global with its lofty mountains, ancient rivers, nowhere else on earth. This has led to the ocean surface, up to 18% of the world’s deserts, forests, and many thousands of Mediterranean being recognized as one macroscopic marine species are found islands, is a mosaic of natural and cultural of the fi rst 25 Global Biodiversity Hotspots there, of which 25 to 30% are endemic landscapes, where human civilization and (Myers et al. 2000). – an incredibly rich biodiversity for such a wild nature have coexisted for centuries small area (Bianchi and Morri 2000). The (Figure 1). The unique conjunction of Besides this great richness of plants, a Mediterranean’s importance for wildlife is geography, history, and climate has led high proportion of Mediterranean animals not limited to the richness or uniqueness to a remarkable evolutionary radiation are unique to the region: 2 out of 3 of its resident fauna and fl ora: millions that continues to the present day, as amphibian species are endemic, as well of migratory birds from the far reaches animals and plants have adapted to the as half of the crabs and crayfi sh, 48% of of Europe and Africa use Mediterranean myriad opportunities for life that the region the reptiles, a quarter of mammals, 14% wetlands and other habitats as stopover or presents. The Mediterranean is particularly of dragonfl ies, 6% of sharks and rays breeding sites. Figure 1. Map of the Mediterranean Sea and surrounding countries 1 Box 1: Why is species conservation important? Species provide us with essential services: not only food, fuel, clothes and spiritual values. Consequently the loss of species diminishes the and medicine, but also purifi cation of water and air, prevention of soil quality of our lives and our basic economic security. From an ethical erosion, regulation of climate, pollination of crops by insects, and many point of view, species are part of our natural heritage and we owe it to more. In the Mediterranean, they provide a vital resource for the tourism future generations to preserve and protect them. and fi shing industries, as well as having signifi cant cultural, aesthetic The Human Factor beauty, but heavy pressure from visitors provides sound scientifi c data to decision- In addition to its thousands of species of and residents alike is causing severe makers for policy development and fauna and fl ora, the Mediterranean region environmental degradation. Urbanization, management of natural resources. These is home to some 455 million human coastal development, pollution, and assessments will help Mediterranean inhabitants, from a wide variety of countries unsustainable exploitation of natural countries to determine whether or not they and cultures. Considerable economic resources such as marine fi sh are just have met their obligations, commitments disparities exist within the region, with the some of the many human activities that are and targets under international GNI per capita of the Mediterranean EU leading to an ever-increasing number of agreements, such as the target to reduce countries (USD 20,800) being ten times Mediterranean species to be facing a high the rate of biodiversity loss by 2010 under that of the North African ones (USD 2,100) risk of extinction. the Convention on Biological Diversity (World Bank 2006). Poor people depend (CBD 2002). Hence IUCN is coordinating heavily on natural resources and the loss of “An outstanding centre of a process to evaluate the conservation biodiversity is undermining the potential for biodiversity but also one of status of all vertebrates and selected economic growth, affecting the security of the most threatened, mainly invertebrate and plant groups in the populations (food, health, etc.) and limiting by human activity” Mediterranean region, including terrestrial, their options. On the other hand, economic freshwater and marine species. In total, development increases the pressures on 1,912 species have been assessed to the environment and hence conservation Assessing Mediterranean date (Table 1). Some taxonomic groups challenges and options in the region are Species have been assessed at the global level driven by these economic inequities. Assessing the conservation status of (amphibians, birds, mammals and reptiles), species at the Mediterranean regional level while others have been evaluated regionally The region also receives a large number is particularly relevant to regional policy (cartilaginous fi shes, cetaceans, crabs of visitors: in 2005, 246 million people – instruments such as the Convention for the and crayfi sh, endemic freshwater fi shes 31% of all international tourists – visited Protection of the Marine Environment and and Odonata (dragonfl ies and damselfl ies, the Mediterranean, particularly its coastal the Coastal Region of the Mediterranean later referred to collectively as dragonfl ies)). areas (Blue Plan 2008). Many visitors or Barcelona Convention. It gives a timely Although the global and regional to the region are drawn by its natural overview of the status of biodiversity, and assessments are not directly comparable Table 1. Numbers of species from Mediterranean countries assigned to each IUCN Red List category, by taxonomic group. Assessments carried out between 2004 and 2008 by IUCN and its partners. Data Defi cient means that there is not enough information to assign the species to one of the other Categories, and it does not imply that the species is not threatened. Endemic IUCN Red List Cartilaginous Crabs and Amphibians1 Birds1 Cetaceans2,3 Freshwater Mammals1 Dragonfl ies2,4 Reptiles1 TOTAL Categories fi shes2 Crayfi sh 2,3 fi shes1,4 Extinct5 110 0 0 8 2 4 016 Critically 4 6 13 1 0 45 5 5 14 93 Endangered Endangered 13 9 8 2 3 46 15 13 22 131 Vulnerable 16 13 9 2 2 51 27 13 11 144 Near Threatened 17 29 13 0 4 10 20 27 36 156 Least Concern 63 543 10 0 5 52 231 96 253 1253 Data Defi cient 1 0 18 4 0 41 30 6 19 119 TOTAL 115 601 71 9 14 253 330 164 355 1912 Endemic 71 (62%) 16 (3%) 4 (6%) 0 (0%) 7 (50%) 253 (100%) 87 (26%) 23 (14%) 170 (48%) 631 (33%) 1 Species assessed at the global level. 2 Species assessed at the regional level. 3 Preliminary data; still to be confi rmed by the IUCN Red List Authority. 4 Only the species occurring in river basins fl owing into the Mediterranean Sea and adjacent Atlantic waters were included in the assessment (Smith and Darwall 2006). 5 “Extinct” includes the categories Extinct, Extinct in the Wild and Regionally Extinct. 2 Birds2 Reptiles2 Mammals2 1 Odonata EX 2 CR/EN/VU Amphibians LC/NT Crabs and crayfish1 DD Cartilaginous fishes1 Cetaceans1 Endemic freshwater fishes2 0 10 20 30 40 50 60 70 80 90 100 % of species 1 Species assessed at the regional level 2 Species assessed at the global level Figure 2. Percentages of Extinct, threatened, non-threatened and Data Defi cient species in each major taxonomic group assessed. with each other, they do give an indication and crayfi sh, 29% of amphibians, 19% is about one fi fth (19%) and about 1% of the different levels of threat faced by of dragonfl ies and damselfl ies, 14% of of the species is already extinct in the each taxonomic group. mammals, 13% of reptiles and 5% of birds region. These percentages will be higher are threatened with extinction. Overall, the if some of the currently Data Defi cient A closer look at the different groups shows proportion of threatened species in the species prove to be threatened. Sixteen that at least 56% of endemic freshwater Mediterranean (those classifi ed as Critically species are already extinct in the region, fi shes, 56% of dolphins and whales, Endangered, Endangered or Vulnerable), including some endemics such as the Hula 42% of sharks and rays, 36% of crabs either at the global or at the regional level, Painted Frog Discoglossus nigriventer, the Figure 3a.
Recommended publications
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Flora of the Mediterranean Basin in the Chilean Espinales: Evidence of Colonisation
    PASTOS 2012. ISSN: 0210-1270 PASTOS, 42 (2), 137 - 160 137 FLORA OF THE MEDITERRANEAN BASIN IN THE CHILEAN ESPINALES: EVIDENCE OF COLONISATION I. MARTÍN-FORÉS1, M. A. CASADO1*, I. CASTRO2, C. OVALLE3, A. DEL POZO4, B. ACOSTA-GALLO1, L. SÁNCHEZ-JARDÓN1 AND J. M. DE MIGUEL1 1Departamento de Ecología. Facultad de Biología. Universidad Complutense de Madrid. Madrid (España). 2Departamento de Ecología. Facultad de Ciencias. Universidad Autónoma de Madrid. Madrid (España). 3Instituto de Investigaciones Agropecuarias INIA-La Cruz. La Cruz (Chile). 4Facultad de Ciencias Agrarias. Universidad de Talca. Talca (Chile). *Author for correspondence: M.A. Casado ([email protected]). SUMMARY In Chile’s Mediterranean region, over 18% of plant species are alien. This is particularly noteworthy in some agrosilvopastoral systems such as the espinales, which are functionally very similar to the Spanish dehesas and are of great ecological and socioeconomic interest. In the present paper we analyse Chile’s non-native flora, considering three scales of analysis: national, regional (the central region, presenting a Mediterranean climate) and at community level (the espinales within the central region). We compare this flora with that recorded in areas of the Iberian Peninsula with similar lithological and geomorphological characteristics, and land use. We discuss possible mechanisms that might have been operating in the floristic colonisation from the Mediterranean Basin to Chile’s Mediterranean region. Key words: Alien plants, biogeography, Chile, life cycle, Spain. INTRODUCTION Historically, the transit of goods, domestic animals and people has favoured the flow of wild organisms around the planet (Lodge et al., 2006), a fact that is often associated with the introduction of cultural systems, which have contributed to generating new environmental and socioeconomic scenarios (Le Houérou, 1981; Hobbs, 1998; Grenon and Batisse, 1989).
    [Show full text]
  • Bregalnica River Watershed”
    Project Report “Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed” Dekons-Ema and Macedonian Ecological Society Book 4 Report on the status of protected areas in Bregalnica watershed Project coordinator: Slavčo Hristovski Director: Menka Spirovska Skopje, December 2015 Report on the status of protected areas in Bregalnica watershed Project implementation: Dekons-Ema and Macedonian Ecological Society Project funding: Center for the development of Eastern Planning Region Editors: Brajanoska Robertina and Slavcho Hristovski Authors: Brajanoska Robertina Valentina Slavevska Daniela Jovanovska Slavcho Hristovski Stamenkovikj Vasko Avukatov Metodija Velevski Nikolcho Velkovski Aleksandar Sarov Mitko Kostadinovski Zlatko Levkov Bogoljub Sterijovski Vlado Matevski Katerina Rusevska Ljiljana Tomovikj Sonja Ivanovska Despina Kitanova Svetlana Pejovikj Vladimir Dzabirski Aleksandar Stojanov Natalija Melovska Ljupcho Melovski Dime Melovski Evgenija Jordanovska Citation: Brajanoska, R., Hristovski, S. eds. (2015). Report on the status of protected areas in Bregalnica watershed. Final report of the project “Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed”, Book 4, Skopje. Dekons-Ema Environmental Management Associates Mitropolit Teodosij Gologanov st., 44/4 1000 Skopje [email protected] http://www.ema.com.mk Macedonian Ecological Society Vladimir Nazor st., 10 1000 Skopje [email protected] http://www.mes.org.mk The Report on the status of protected areas in Bregalnica watershed was prepared within the Project " Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed ", Contract No., 0205-145/10 of 16.06.2014, signed between the Center for the development of Eastern Planning Region, represented by Dragica Zdraveva, coordinator of the Center and Environmental Management Associates Dekons-Ema represented by Menka Spirovska, Director.
    [Show full text]
  • Wildlife; Threatened and Endangered Species
    2009 SNF Monitoring and Evaluation Report Wildlife; Threatened and Endangered Species Introduction The data described in this report outlines the history, actions, procedures, and direction that the Superior National Forest (aka the Forest or SNF) has implemented in support of the Gray Wolf Recovery Plan and Lynx Conservation Assessment and Strategy (LCAS). The Forest contributes towards the conservation and recovery of the two federally listed threatened and endangered species: Canada lynx and gray wolf, through habitat and access management practices, collaboration with other federal and state agencies, as well as researchers, tribal bands and non-governmental partners. Canada lynx On 24 March 2000, the U.S. Fish and Wildlife Service designated the Canada lynx a “Threatened” species in the lower 48 states. From 2004-2009 the main sources of information about Canada lynx for the SNF included the following: • Since 2003 the Canada lynx study has been investigating key questions needed to contribute to the recovery and conservation of Canada lynx in the Western Great Lakes. Study methods are described in detail in the annual study progress report available online at the following address: http://www.nrri.umn.edu/lynx/ . These methods have included collecting information on distribution, snow tracking lynx, tracking on the ground and in the air radio-collared lynx, studying habitat use, collecting and analyzing genetic samples (for example, from hair or scat) and conducting pellet counts of snowshoe hare (the primary prey). • In 2006 permanent snow tracking routes were established across the Forest. The main objective is to maintain a standardized, repeatable survey to monitor lynx population indices and trends.
    [Show full text]
  • Chondrostoma Nasus) Ecological Risk Screening Summary
    Common Nase (Chondrostoma nasus) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2020 Revised, April 2020 Web Version, 2/8/2021 Organism Type: Fish Overall Risk Assessment Category: High Photo: André Karwath. Licensed under CC BY-SA 2.5. Available: https://commons.wikimedia.org/wiki/File:Chondrostoma_nasus_(aka).jpg#file. (April 2020). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2021): “Europe: Basins of Black (Danube, Dniestr, South Bug and Dniepr drainages), southern Baltic (Nieman, Odra, Vistula) and southern North Seas (westward to Meuse). […] Asia: Turkey.” Status in the United States No information on occurrence, status, sale or trade in the United States was found. Chondrostoma nasus falls within Group I of New Mexico’s Department of Game and Fish Director’s Species Importation List (New Mexico Department of Game and Fish 2010). Group I species “are designated semi-domesticated animals and do not require an importation permit.” With the added restriction of “Not to be used as bait fish.” 1 Means of Introductions in the United States No introductions have been reported in the United States. Remarks Although the accepted and most used common name for Chondrostoma nasus is “Common Nase”, it appears that the simple name “Nase” is sometimes used to refer to C. nasus (Zbinden and Maier 1996; Jirsa et al. 2010). The name “Sneep” also occasionally appears in the literature (Irz et al. 2006). 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2020):
    [Show full text]
  • Eurasian Lynx – Your Essential Brief
    Eurasian lynx – Your essential brief Background Q: Are lynx native to Britain? A: Based on archaeological evidence, the range of the Eurasian lynx (Lynx lynx) included Britain until at least 1,300 years ago. It is difficult to be precise about when or why lynx became extinct here, but it was almost certainly related to human activity – deforestation removed their preferred habitat, and also that of their prey, thus reducing prey availability. These declines in prey species may have been exacerbated by human hunting. Q: Where do they live now? A: Across Europe, Scandinavia, Russia, northern China and Southeast Asia. The range used to include other areas of Western Europe, including Britain, where they are no longer present. Q: How many are there? A: There are thought to be around 50,000 in the world, of which 9,000 – 10,000 live in Europe. They are considered to be a species of least concern by the IUCN. Modern range of the Eurasian lynx Q: How big are they? A: Lynx are on average around 1m in length, 75cm tall and around 20kg, with the males being slightly larger than the females. They can live to 15 years old, but this is rare in the wild. Q: What do they eat? A: The preferred prey of the lynx are the smaller deer species, primarily the roe deer. Lynx may also prey upon other deer species, including chamois, sika deer, smaller red deer, muntjac and fallow deer. Q: Do they eat other things? A: Yes. Lynx prey on many other species when their preferred prey is scarce, including rabbits, hares, foxes, wildcats, squirrel, pine marten, domestic pets, sheep, goats and reared gamebirds.
    [Show full text]
  • Status of Large Carnivores in Serbia
    Status of large carnivores in Serbia Duško Ćirović Faculty of Biology University of Belgrade, Belgrade Status and threats of large carnivores in Serbia LC have differend distribution, status and population trends Gray wolf Eurasian Linx Brown Bear (Canis lupus) (Lynx lynx ) (Ursus arctos) Distribution of Brown Bear in Serbia Carpathian Dinaric-Pindos East Balkan Population status of Brown Bear in Serbia Dinaric-Pindos: Distribution 10000 km2 N=100-120 Population increase Range expansion Carpathian East Balkan: Distribution 1400 km2 Dinaric-Pindos N= a few East Balkan Population trend: unknown Carpathian: Distribution 8200 km2 N=8±2 Population stable Legal status of Brown Bear in Serbia According Law on Protection of Nature and the Law on Game and Hunting brown bear in Serbia is strictly protected species. He is under the centralized jurisdiction of the Ministry of Environmental Protection Treats of Brown Bear in Serbia Intensive forestry practice and infrastructure development . Illegal killing Low acceptance due to fear for personal safety Distribution of Gray wolf in Serbia Carpathian Dinaric-Pindos East Balkan Population status of Gray wolf in Serbia Dinaric-Balkan: 2 Carpathian Distribution cca 43500 km N=800-900 Population - stabile/slight increasingly Dinaric Range - slight expansion Carpathian: Distribution 480 km2 (was) Population – a few Population status of Gray wolf in Serbia Carpathian population is still undefined Carpathian Peri-Carpathian Legal status of Gray wolf in Serbia According the Law on Game and Hunting the gray wolf in majority pars of its distribution (south from Sava and Danube rivers) is game species with closing season from April 15th to July 1st.
    [Show full text]
  • Maritime Route of Colonization of Europe
    Maritime route of colonization of Europe Peristera Paschoua,1, Petros Drineasb,1, Evangelia Yannakic, Anna Razoud, Katerina Kanakid, Fotis Tsetsosa, Shanmukha Sampath Padmanabhunia, Manolis Michalodimitrakisd, Maria C. Rendae, Sonja Pavlovicf, Achilles Anagnostopoulosc, John A. Stamatoyannopoulosg, Kenneth K. Kiddh, and George Stamatoyannopoulosg,2 aDepartment of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; bDepartment of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180; cDepartment of Hematology, George Papanicolaou Hospital, 57010 Thessaloniki, Greece; dDepartment of Forensic Medicine, University of Crete, Heraklion, 711 13 Crete, Greece; eUnità di Ricerca P. Cutino, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; fInstitute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; gDepartments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195; and hDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06511 Edited* by Yuet Wai Kan, University of California, San Francisco School of Medicine, San Francisco, CA, and approved May 9, 2014 (received for review November 7, 2013) The Neolithic populations, which colonized Europe approximately If a maritime route was used by the Neolithic farmers who settled 9,000 y ago, presumably migrated from Near East to Anatolia and Europe, their first stepping stones into Europe were the islands from there to Central Europe through Thrace and the Balkans. An of Dodecanese and Crete. The Dodecanese is very close to the alternative route would have been island hopping across the Aegean coast of Anatolia, whereas the west-most Dodecanesean Southern European coast. To test this hypothesis, we analyzed islands are very close to Crete.
    [Show full text]
  • Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms
    Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms Nicholas R. Casewella,b,1, Simon C. Wagstaffc, Wolfgang Wüsterb, Darren A. N. Cooka, Fiona M. S. Boltona, Sarah I. Kinga, Davinia Plad, Libia Sanzd, Juan J. Calveted, and Robert A. Harrisona aAlistair Reid Venom Research Unit and cBioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; bMolecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; and dInstituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 11 46010 Valencia, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved May 14, 2014 (received for review March 27, 2014) Variation in venom composition is a ubiquitous phenomenon in few (approximately 5–10) multilocus gene families, with each snakes and occurs both interspecifically and intraspecifically. family capable of producing related isoforms generated by Venom variation can have severe outcomes for snakebite victims gene duplication events occurring over evolutionary time (1, 14, by rendering the specific antibodies found in antivenoms in- 15). The birth and death model of gene evolution (16) is fre- effective against heterologous toxins found in different venoms. quently invoked as the mechanism giving rise to venom gene The rapid evolutionary expansion of different toxin-encoding paralogs, with evidence that natural selection acting on surface gene families in different snake lineages is widely perceived as the exposed residues of the resulting gene duplicates facilitates main cause of venom variation. However, this view is simplistic subfunctionalization/neofunctionalization of the encoded proteins and disregards the understudied influence that processes acting (15, 17–19).
    [Show full text]
  • Mediterranean Basin Ecosystem Profile Overview About CEPF
    Mediterranean Basin ecosystem profile overview about CEPF Established in 2000, the Critical Ecosystem Partnership Fund (CEPF) is a global leader in enabling civil society to participate in and influence the conservation of some of the world’s most critical ecosystems. CEPF is a joint initiative of l’Agence Française de Développement (AFD), Conservation International, the Global Environment Facility (GEF), the Government of Japan, the John D. and Catherine T. MacArthur Foundation, and the World Bank. CEPF is unique among funding mechanisms in that it focuses on high-priority biological areas rather than political boundaries and examines conservation threats on a landscape scale. From this perspective, CEPF seeks to identify and support a regional, rather than a national, approach to achieving conservation outcomes and engages a wide range of public and private institutions to address conservation needs through coordinated regional efforts. Cover photo: Coastal landscape, north coast of Menorca, Spain © Francis Abbott/npl/Minden Pictures introduction The Mediterranean Basin—which stretches across 2 million square kilometers and 34 countries, east from Portugal to Jordan, and south from northern Italy to Cape Verde—is one of 34 biodiversity hotspots identified around the globe, Earth’s most biologically rich yet threatened areas. Its status as a hotspot, as well as the unique biological, economic and cultural importance of the Mediterranean Basin, led CEPF to create a conservation strategy for the entire region. The strategy, known as the Mediterranean Basin Ecosystem Profile, will guide CEPF’s highly targeted investment in the region—$10 million, to be disbursed via grants to civil society. But the profile, which was developed through the input of more than 90 organizations based or working in the region, is much more than CEPF’s strategy.
    [Show full text]
  • The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
    The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts.
    [Show full text]
  • Growth Parameters of a Threatened Species Chondrostoma Holmwoodii (Boulenger, 1896) from Tahtalı Reservoir, İzmir, Turkey
    LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 3(3): 137-142 (2017) Main Growth Parameters of a Threatened Species Chondrostoma holmwoodii (Boulenger, 1896) from Tahtalı Reservoir, İzmir, Turkey Mustafa KORKMAZ* , Fatih MANGIT , Sedat Vahdet YERLİ Hacettepe University, Science Faculty, Departmant of Biology, SAL, Ankara, Turkey ABSTRACT ARTICLE INFO A diverse genus of the Cyprinidae family, genus Chondrostoma Agassiz, 1832 RESEARCH ARTICLE has a wide distribution. More than half of the species distributes in Turkey, however there is little biological information about them. The aim of this study is Received : 19.07.2017 to investigate the population parameters of Eastern Aegean Nase Chondrostoma Revised : 15.09.2017 holmwoodii and to evaluate the risks for the species in Tahtalı Reservoir. Fish sampling was carried out at 8 different sampling points at Tahtalı Reservoir in Accepted : 18.09.2017 2014 with multimesh gillnets. Population parameters such as age and sex Published : 29.12.2017 composition, length frequence analysis and von Bertalanffy growth function were investigated. A total of 215 specimens of C. holmwoodii was sampled. Total DOI: 10.17216/LimnoFish.329521 length of the specimens varies between 4.3 - 28.2 cm and total weight 1.05 - 271 * g. Age composition of the sampled specimens varies between 0 to V and most of CORRESPONDING AUTHOR the specimens were age-III. The von Bertalanffy growth parameters for C. [email protected] holmwoodii was estimated as; L = 395.30 mm (SD=63.80), K=0.17 (SD=0.05) ∞ Tel : +90 312 297 67 85 and L0=46.45 mm (SD=9.41).
    [Show full text]