Crotalus Cerastes (Hallowell, 1854) (Squamata, Viperidae)

Total Page:16

File Type:pdf, Size:1020Kb

Crotalus Cerastes (Hallowell, 1854) (Squamata, Viperidae) Herpetology Notes, volume 9: 55-58 (2016) (published online on 17 February 2016) Arboreal behaviours of Crotalus cerastes (Hallowell, 1854) (Squamata, Viperidae) Andrew D. Walde1,*, Andrea Currylow2, Angela M. Walde1 and Joel Strong3 Crotalus cerastes (Hallowell, 1854) is a small study area has no uninterrupted sandy areas outside of horned rattlesnake that ranges throughout most of the ephemeral washes, and no dune-like habitats. It is in deserts of southwestern United States, and south into this scrub-like habitat that we made three observations northern Mexico (Ernst and Ernst, 2003). This species of the previously undocumented arboreal behaviour of is considered to be a psammophilous (sand-dune) C. cerastes. specialist, typically inhabiting loose sand habitats and On 7 April 2005 at 1618h, we observed an adult C. dune blowouts (Ernst and Ernst, 2003). Although C. cerastes coiled in an A. dumosa shrub approximately 25 cerastes is primarily a nocturnal snake, it is known to cm above the ground (Fig. 1 A). The air temperature be active diurnally in the spring, and to bask in early was 21 °C and ground temperature was 27 °C. The morning or late afternoon (Ernst and Ernst, 2003). snake did not attempt to flee at our approach, but did This rattlesnake species exhibits a unique style of reposition slightly in the branches. A second observation locomotion known as sidewinding, from which it occurred on 18 April 2005 at 1036h, when we observed derives its common name, Sidewinder. Sidewinding is another adult C. cerastes extending the anterior third of believed to be an adaptation to efficiently move in loose its body beyond the top of an A. dumosa shrub (Fig. sand while reducing contact with the hot desert surface 2). The air temperature was 22 °C and the ground (Ernst and Ernst, 2003). However, during the past 12 temperature was 36 °C. Shortly after being observed, years of surveying in the Mojave Desert at the National the snake returned to the ground and took shelter at the Training Center, Fort Irwin, California, approximately base of a L. tridentata shrub. Finally, we observed this 40 km northeast of Barstow, San Bernadino County, we behaviour again on 3 May, 2007 (Fig. 1B). This third frequently observed C. cerastes in what is considered adult snake was approximately 40 cm from the ground typical desert scrub habitat. This area primarily in a California Jointfir (Ephedra californica); no time or comprises alluvial fans and washes with gravelly temperature data were recorded. soils dominated by Creosote (Larrea tridentata) and Rattlesnakes are not considered to be arboreal due to Burrobush (Ambrosia dumosa). The study area is having relatively stout, heavy bodies and short tails. described in more detail in Walde et al. (2009) and However, many species of rattlesnakes have been Harless et al. (2009). The habitat differs from the loose observed in shrubs and trees (Cunningham, 1955; sandy areas where C. cerastes is typically found, as the Klauber, 1997), with some species like the Timber Rattlesnake (C. horridus) frequently observed in arboreal situations (Saenz et al., 1996; Coupe, 2001; Rudolph et al., 2004). Although arboreal behaviour in the genus Crotalus has not been well studied, previously published explanations for the rare behaviour include: 1 Walde Research & Environmental Consulting, 8000 San to escape from water and flooding, to thermoregulate Gregorio Rd., Atascadero, CA 93422 (Shine et al., 2005), to capture prey (as would be 2 Department of Biological Sciences, University of Southern typical for bird nests; Martins et al., 2008), or to obtain California, Los Angeles, California, USA an advantageous perch in search of prey or enemies 3 Kleinfelder, 3919 Riga Boulevard, Tampa, Florida 33619, USA (Klauber, 1997). Juveniles and subadults of several * Corresponding author e-mail: [email protected] species more frequently use arboreal habitat than adults, 56 Andrew D. Walde et al. to the cooler ground. Fitzgerald et al. (2003) described a correlation between perch height, air temperature, and preferred body temperatures in Stephen’s Banded Snakes (Hoplocephalus stephensii), finding that the snakes would adjust their perch height to maintain preferred temperatures with changing air temperatures. Although C. cerastes typically bask on the ground, often in self-constructed depressions, it is possible that the snakes in the first and third observations were aerially basking in an attempt to avoid heat loss to the cooler ground. Although 2005 had a relatively wet spring (Harless et al., 2009) that might have caused the ground to be cooler and moister than normal for the time of year, 2007 was a drought year in the Mojave Desert and it was abnormally dry. Therefore, the behaviour may be more common than previously thought for the species and not correlated with moisture. The second snake we observed in 2005 was perched high in a small A. dumosa shrub when ground temperatures were higher, so it is possible that the snake could have been using the shrub to escape heat on the ground. However, the snake could have been both thermoregulating high in the shrub while also exhibiting vigilance behaviour. Klauber (1997) observed that rattlesnakes may use vegetation to obtain an advantageous perch in order to search for enemies. Figure 1. Adult Sidewinders (Crotalus cerastes) coiled, using Fitzgerald et al. (2003) suggested that snakes may arboreal resting sites in (A) a Burrobush (Ambrosia dumosa) not use open terrestrial basking sites in order to avoid and (B) a California Jointfir (Ephedra californica) in the predation if there are vegetative basking sites available. Mojave Desert, California, USA. The second snake’s posture and behaviour suggested it was surveying the area, similar to spy-hopping in whales or scanning, anti-predator vigilance behaviours. The protection from predation offered by basking in a shrub may allow the chiefly nocturnal snake to rest in the daytime. with foraging proposed as the most likely purpose (C. The only two previously reported observations of horridus: Rudolph et al., 2004; C. oreganus helleri: Sidewinders utilising shrubs include an individual which Figueroa et al., 2008). retreated into a low shrub after being harassed (Klauber, During the time of our observations, no flooding or 1997), and a captive specimen in a laboratory which pooled water was present that might have prompted was coiled in a shrub in its enclosure (Cunningham, climbing. There were no bird nests in the shrubs to 1955). Cunningham (1955) attributed the behaviour, suggest foraging; however, lizards frequently climb however, to the setup of the enclosure itself, as at a later into shrubs, and the snakes might have followed them date another species of rattlesnake housed in the same or their odours. Temperatures recorded at the time of enclosure also coiled in the same shrub. Similarly, in our observations do not necessarily suggest that these a study on elapid snakes in Australia, Fitzgerald et al. snakes were attempting to escape the heat of the desert (2003) found that snakes in a captive setting would often surface. In field observations followed by controlled behaviourally thermoregulate arboreally, but would trials of the thermoregulatory-arboreal behaviour rarely exhibit the behaviour in the natural field setting, of Red-sided Garter Snakes (Thamnophis sirtalis motivating the authors to caution against extrapolating parietalis), Shine et al. (2005) found that the snakes captive results for natural wild behaviours. would climb trees when there was a risk of heat loss The earliest reports of arboreal habitat use by Arboreal behaviours of Crotalus cerastes 57 Figure 2. An adult Sidewinder (Crotalus cerastes) extending its head from a Burrobush (Ambrosia dumosa) in the Mojave Desert, California, USA. rattlesnakes included these species: C. adamanteus, C. reports document chance observations or if arboreal atrox, C. enyo, C. horridus, C. mitchellii, C. molossus, habitat use is a well-developed behaviour. Klauber C. oreganus, C. ruber, C. tigris, C. viridis, and Sistrurus (1997), more than 50 years ago stated that any species miliarus streckeri (Cunningham, 1955; Klauber, of rattlesnake observed long enough would, at some 1997). Since these early reports, others have reported point, probably be observed in a tree or shrub. Here, we observations of some of these same species in arboreal add the Sidewinder to this growing list of observations. habitats, for example C. enyo cerralvensis (McGuire, Funding for the project during which these observations 1991) and C. tigris (Pavlik, 2007); however, by far were made was provided by USACERL/ERDC in the most arboreal rattlesnake appears to be C. horridus Champaign, Illinois and DPW Environmental at the (Saenz et al., 1996; Coupe, 2001; Rudolph et al., 2004). National Training Center, Fort Irwin, California. More recent observations of rattlesnakes using arboreal habitat include C. cataliensis (Martins et al., 2008), C. durissus (Dayrell et al., 2010), C. mitchellii (Evanhoe Literature Cited and Haug, 2011), C. ruber lorezoensis (Hollingsworth Coupe, B. (2001): Arboreal behavior in Timber Rattlesnakes and Mellink, 1996), C. willardi obsurus (Holycross et al., (Crotalus horridus). Herpetological Review 32: 83–85. 2002), and C. willardi willardi and C. lepidus klauberi Cunningham, J.D. (1955): Arboreal habits of certain reptiles and (Rossi and Feldner, 1993). It remains unknown if these amphibians in Southern California. Herpetologica 11: 217–220. 58 Andrew D. Walde et al. Dayrell, J.S., Costa, H.C., Feio, R.N., Drummond, L.O. (2010): McGuire, J.A. (1991): Crotalus enyo cerralvensis (Cerralvo Island Crotalus durissus (South American Rattlesnake). Arboreal Rattlesnake). Behavior. Herpetological Review 22: 100. habitat use. Herpetological Review 41: 89–90. Pavlik, S. (2007): Arboreal behavior in the Tiger Rattlesnake Ernst, C.H., Ernst, E.M. (2003): Snakes of the United States and (Crotalus tigris). Sonoran Herpetologist 20: 56. Canada. Washington, Smithsonian Institute. Rossi, J.V., Feldner, J.J. (1993): Crotalus willardi willardi (Arizona Evanhoe, L., Haug, M.C. (2011): Crotalus mitchellii (Speckled Ridgenose Rattlesnake) and Crotalus lepidus klauberi (Banded Rattlesnake).
Recommended publications
  • What You Should Know About Rattlesnakes
    Rattlesnakes in The Rattlesnakes of Snake Bite: First Aid WHAT San Diego County Parks San Diego County The primary purpose of the rattlesnake’s venomous bite is to assist the reptile in securing The Rattlesnake is an important natural • Colorado Desert Sidewinder its prey. After using its specialized senses to find YOU SHOULD element in the population control of small (Crotalus cerastes laterorepens) its next meal, the rattlesnake injects its victim mammals. Nearly all of its diet consists of Found only in the desert, the sidewinder prefers with a fatal dose of venom. animals such as mice and rats. Because they are sandy flats and washes. Its colors are those of KNOW ABOUT so beneficial, rattlesnakes are fully protected the desert; a cream or light brown ground color, To prevent being bitten, the best advice is to leave within county parks. with a row of brown blotches down the middle snakes alone. RATTLESNAKES If you encounter a rattlesnake while hiking, of the back. A hornlike projection over each eye Most bites occur when consider yourself lucky to have seen one of separates this rattlesnake from the others in our area. Length: 7 inches to 2.5 feet. someone is nature’s most interesting animals. If you see a trying to pick rattlesnake at a campsite or picnic area, please up a snake, inform the park rangers. They will do their best • Southwestern Speckled Rattlesnake (Crotalus mitchelli pyrrhus) tease it, or kill to relocate the snake. it. If snakes are Most often found in rocky foothill areas along the provided an coast or in the desert.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms
    Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms Nicholas R. Casewella,b,1, Simon C. Wagstaffc, Wolfgang Wüsterb, Darren A. N. Cooka, Fiona M. S. Boltona, Sarah I. Kinga, Davinia Plad, Libia Sanzd, Juan J. Calveted, and Robert A. Harrisona aAlistair Reid Venom Research Unit and cBioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; bMolecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; and dInstituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 11 46010 Valencia, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved May 14, 2014 (received for review March 27, 2014) Variation in venom composition is a ubiquitous phenomenon in few (approximately 5–10) multilocus gene families, with each snakes and occurs both interspecifically and intraspecifically. family capable of producing related isoforms generated by Venom variation can have severe outcomes for snakebite victims gene duplication events occurring over evolutionary time (1, 14, by rendering the specific antibodies found in antivenoms in- 15). The birth and death model of gene evolution (16) is fre- effective against heterologous toxins found in different venoms. quently invoked as the mechanism giving rise to venom gene The rapid evolutionary expansion of different toxin-encoding paralogs, with evidence that natural selection acting on surface gene families in different snake lineages is widely perceived as the exposed residues of the resulting gene duplicates facilitates main cause of venom variation. However, this view is simplistic subfunctionalization/neofunctionalization of the encoded proteins and disregards the understudied influence that processes acting (15, 17–19).
    [Show full text]
  • Amphibians and R,Eptiles of Joshua Tree Nationat Monument
    r,-. 1 $ ,35 Sidewinder AMPHIBIANS AND R,EPTILES OF JOSHUA TREE NATIONAT MONUMENT Text by lerry Moore Drawings by Yic Koch Desert Tortoise ,OSHUA TREE NATIONAL MONUMENT )oshua Tree National Monument is one of the areas administered by the National Park Service, a bureau of the U.S. Department of the Interior. The Monument was established to preserve the richness and variety of the resources of this des- Chuckwdlla ert area. Preservation extends to all natural, archaeological and historic obiects, so that vis' itors today and for generations to come may enioy this desert in its natural state. Published by the Produced in Cooperction with the JOSHUA TREE ilATIONAL PARK SERVICE NATURAL HISTORY ASSOCIATION 1 973 a non-profit organization pledged to aid in the preservation and interpretation of the scenic and scientific features of the Monurnent. loshua Trce National Monument T wentynine P alms, Californit 92277 INTRODUCTION other geckos in lacking foot pads and having ordinarl' eyelids. Reptiles and amphibians are among the most interesting and unusual animals found in our ZEBRA-TAILED LIZARD Callisaurus draconoides (2Y2"-)Yz") is light-colored with deserts. Many superstitions and misconceptions two Iongitudinal rows of dark spots on its back have resulted from a lack of knowledge of them: that give way to dark bands on the tail; is fast, most are rarely seen because of their shy nature maneuverable, often runs on its hindlegs curling and habits. These, like all plants and animals. its tail forward to act as counterbalance; com- mon in sandy areas. are protected within foshua Tree National Mon' ument.
    [Show full text]
  • Proquest Dissertations
    Ecology and conservation of the twin- spotted rattlesnake, Crotalus pricei Item Type text; Thesis-Reproduction (electronic) Authors Prival, David Benjamin Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 01:08:24 Link to Item http://hdl.handle.net/10150/278752 INFORMATiON TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge.
    [Show full text]
  • ACTIVIDAD BIOQUÍMICA DEL VENENO DE Crotalus Ravus Exiguus
    ACTIVIDAD BIOQUÍMICA DEL VENENO DE Crotalus ravus exiguus Godoy Godoy José Benito*, Pérez Guzmán Ana Karina1, Lazcano David 2, Banda-Leal Javier 2, Morlett Jesús 1, Cepeda Nieto Ana Cecilia 3, Garza García Yolanda 1 y Zugasti Cruz Alejandro 1 2Facultad de Ciencias Biológicas, Laboratorio de Herpetología, UANL. 1Facultad de Ciencias Químicas, Posgrado en Biotecnología, UAdeC. Saltillo, Coahuila. 3Facultad de Medicina, Laboratorio de Investigación , UAdeC. Saltillo, Coahuila. [email protected] Palabras clave: Viperidae, serpiente de cascabel, Crotalus ravus exiguus. Introducción. Lo s venenos de serpientes son las secreciones más ricas en enz imas y toxinas en la Actividad Caseinolitica 2 naturaleza y están compuestos por múltiples moléculas C.atrox toxicas [1, 2]. Algunas de ellas causan daño considerable C. lepidus del tejido a nivel local como edema, formación de ampollas, hem orragias y mionecrosis tisular [ 2,3]. México C.ravus exiguus cuenta con 320 especies, de las cuales 60 son Absorbancia a 280 nm 0 venenosas. De estas últimas, 19 son de primera 100 mg de veneno importancia en la salud pública , que es el equivalente al Fig. 1. Actividad caseonolitica, medida a 280 nm, para una 2.8% de todas las especies del país [4] . Las especies concentración de veneno (100 mg/ml). principales responsables de los accidentes ofídicos en México son las de los géneros Bothrops y Crotalus , por lo En el SDS se pue den observar bandas con un peso que los antivenenos utilizados para el tratamiento de las molecular que van desde los 10 kDa hasta 50 kDa mordeduras de las mismas deben neutralizar venenos de aproximadamente.
    [Show full text]
  • Crotalus Lepidus Klauberi) from Southwestern Coahuila De Zaragoza, Mexico
    Western Wildlife 8:27–29 • 2021 Submitted: 31 July 2021; Accepted: 5 August 2021. PEER EDITED NOTES NEW PREY ITEM OF THE BANDED ROCK RATTLESNAKE (CROTALUS LEPIDUS KLAUBERI) FROM SOUTHWESTERN COAHUILA DE ZARAGOZA, MEXICO RICARDO PALACIOS-AGUILAR1,3, VÍCTOR EDUARDO RODRÍGUEZ-MALDONADO2, 1,2 AND RUFINO SANTOS-BIBIANO 1Instituto para el Manejo y Conservación de la Biodiversidad A. C. Calle Durango 23, Colonia José Vasconcelos 39047, Chilpancingo de los Bravo, Guerrero, México 2Calle Teopan, Fraccionamiento Teocaltiche 87024, Ciudad Victoria, Tamaulipas, México 3Corresponding author, e-mail: [email protected] Abstract.—We report for the first time the consumption of the Texas Banded Gecko (Coleonyx brevis) by the Banded Rock Rattlesnake (Crotalus lepidus klauberi) in southwestern Coahuila de Zaragoza, Mexico. We consider that this event might be more widespread given the broad sympatry of both species, albeit rarely documented. Key Words.—feeding; natural history; northwestern Mexico; Texas Banded Gecko Resumen.—Reportamos por primera vez el consumo del Gecko Bandeado de Texas (Coleonyx brevis) por la Cascabel Bandeada de Roca (Crotalus lepidus klauberi) en el suroeste de Coahuila de Zaragoza, México. Consideramos que este evento puede ser más común dada la amplia simpatría de ambas especies, pero rara vez documentado. Palabras Clave.—alimentación; Gecko Bandeado de Texas; historia natural; noroeste de México Diet is one of the most important aspects of organisms, On 17 September 2020, at 2136, we found an adult as it may vary within species, populations, and even male C. l. klauberi (Fig. 1) near the road between ontogenetically, and determines survival and life-history Ejido Vicente Guerrero and Tacubaya (25.61451°N, traits (Greene 1983, 1989; Beaupre 1995; Wiseman et al.
    [Show full text]
  • Crotalus Cerastes, the Sidewinder
    180 / Litteratura Serpentium, 1993, Vol. 13, Nr. 6 CROTALUS CERASTES, THE SIDEWINDER By: Pete Strimple, 5310 Sultana Drive, Cincinnati, Ohio 45238, U.S.A. Contents: Historical -Habitat- Food -Habits -Breeding- The subspecies of Crotalus cerastes - Key to the subspecies of Crotalus cerastes. * * * HISTORICAL The sidewinder is a small to intermediate sized rattlesnake found in the southwestern United States and northwestern Mexico. It was first described by Hallowell in 1854 as Crotalus cerastes. The type specimen was collected by Dr. A.L. Heerman, with the type locality being designated as 'borders of the Mojave River, and in the desert of the Mojave (California).' In 1944, Laurence Klauber described the first subspecies based on a specimen collected at the Narrows, San Diego County, California. Klauber named the subspecies Crotalus cerastes laterorepens, the Colorado Desert sidewinder. The subspecies name 'laterorepens' is quite fitting for a sidewinder, because it is latin for 'sideways creeping.' In accordance with the rules of nomenclature, this established the nominate subspecies as Crotalus cerastes cerastes Hallowell, the Mojave desert sidewinder. These remained the only two subspecies of the sidewinder until 1953, when Savage and Cliff described Crotalus cerastes cercobombus, the Sonora sidewinder. The subspecies name 'cercobombus' is actually a combination of a Greek and Latin word which mean 'buzzing tail.' HABITAT Crotalus cerastes is primarily a desert dwelling form, whose habitats include desert flatland, sand dunes, and sand hammocks topped with creosote or mesquite bushes. FOOD Sidewinders feed mainly on small mammals (kangaroo rats, mice, pocket gophers, etc.) and lizards (desert iguanas, utas, whiptails, etc.). There are also records of sidewinders eating birds, and even a case of cannibalism.
    [Show full text]
  • Experience of Snakebite Envenomation by a Desert Viper in Qatar
    Hindawi Journal of Toxicology Volume 2020, Article ID 8810741, 5 pages https://doi.org/10.1155/2020/8810741 Review Article Experience of Snakebite Envenomation by a Desert Viper in Qatar Amr Elmoheen ,1 Waleed Awad Salem ,1 Mahmoud Haddad ,1 Khalid Bashir ,1 and Stephen H. Thomas1,2,3 1Department of Emergency Medicine, Hamad Medical Corporation, Doha, Qatar 2Weill Cornell Medical College in Qatar, Doha, Qatar 3Barts and "e London School of Medicine, Queen Mary University of London, London, UK Correspondence should be addressed to Amr Elmoheen; [email protected] Received 8 June 2020; Revised 8 September 2020; Accepted 28 September 2020; Published 12 October 2020 Academic Editor: Mohamed M. Abdel-Daim Copyright © 2020 Amr Elmoheen et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Crotaline and elapid snakebites are reported all over the world as well as in the Middle East and other countries around this region. However, data regarding snakebites and their treatment in Qatar are limited. &is review paper is going to investigate the presentation and treatment of snakebite in Qatar. A good assessment helps to decide on the management of the snakebites envenomation. Antivenom and conservative management are the mainstays of treatment for crotaline snakebite. Point-of-care ultrasound (POCUS) has been suggested to do early diagnosis and treatment of soft tissue problems, such as edema and compartment syndrome, after a snakebite. &e supporting data are not sufficient regarding the efficiency of POCUS in diagnosing the extent and severity of tissue involvement and its ultimate effect on the outcome.
    [Show full text]
  • Science Bulletin
    THE UNIVERSITY OF KANSAS SCIENCE BULLETIN Vol. XXX, pt. I] May 15, 1944 [No. 4 Two New Species of Crotalid Snakes from Mexico EDWARD H. TAYLOR, Department fif Zoology, Uni\'ei>:ity of Kansas Abstr-act : Two new rattlesnakes from Mexico are described: Crofalus scmi- cornutus from Mojarachic, Chihuahua, related to the lepidus group, and Cro- talus transversus from the Ajusco Mountains, near Tres Cumbres, Morelos (elevation about 10.000 ft.). The latter .species may belong in the trisirmtus group as defined by Ciloyd. species of the genus Crotalua, one from the high plateau TWOregion of southern Mexico, the other from southwestern Chi- huahua, are described as new. Crotalus transversus sp. nov. Type. Edward H. Taylor—Hobart M. Smith Coll. No. 30001; collected about 55 kuL SW Mexico (city), near Tres Marias (Tres Cumbres), Morelos, elevation about 10,000 ft., Aug., 1942, by E. Powell. Paratype. EHT-HMS, No. 15879, purchased. Mexico, exact lo- cality uncertain (probably Ajusco range, Morelos). Diagnosis. A small rattlesnake probably belonging to the tri- seriatus group, but not subspecifically related to any of the known forms. Characterized by 21-19-17 scale rows, upper labials, 8-10, lower labials 9-9. Ventrals, 147; subcaudals, 22-25. Labials sepa- rated from the eye by a single row of scales; one scale row only be- tween canthals; upper preocular divided. Brownish with a median light stripe; 34-38 narrow, transverse black stripes on body; 5-7 on tail."'" the Head the not elevated Description of type. flat, supraoculars ; rostral visible above, its posterior part rounding; internasals in con- * There is some difficulty in counting the transverse stripes as many are broken.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Mating in Free-Ranging Neotropical Rattlesnakes, Crotalus Durissus: Is It Risky for Males?
    Herpetology Notes, volume 14: 225-227 (2021) (published online on 01 February 2021) Mating in free-ranging Neotropical rattlesnakes, Crotalus durissus: Is it risky for males? Selma Maria Almeida-Santos1,*, Thiago Santos2, and Luis Miguel Lobo1 Field observations of the mating behaviour of snakes The male remained stretched out for about 20 minutes are scarce, probably because of the secretive nature and and showed no defensive posture even with the presence low encounter rates of many species (Sasa and Curtis, of the observer. We then noticed drops of blood on the 2006). In the Neotropical rattlesnake, Crotalus durissus vegetation and the hemipenis (Fig. 1 E-F). We could not Linnaeus, 1758, mating has been reported only in determine the origin of the blood, but we suggest two captive individuals (Almeida-Santos et al., 1999). Here nonexclusive hypotheses. The hemipenis spicules may we describe the first record of the mating behaviour of have hurt the female’s vagina while she was dragging the the Neotropical rattlesnake, Crotalus durissus, in nature male over a long distance. Alternatively, the male may (Fig. 1 A). have suffered an injury to the hemipenis while being Observations were made on 9 March 2017, at 14:54 h, dragged quickly by the female. The slow hemipenis a warm and sunny day (temperature = 27.1 oC; relative retraction and the male’s fatigue after copulation may humidity = 66%), in an ecotone between dry forest and better support the second hypothesis. Cerrado (Brazilian savannah) in Prudente de Morais, Potential costs for male C. durissus during mating Minas Gerais, Brazil (-19.2841 °S,-44.0628 °W; datum season include increased activity and energy expenditure WGS 84).
    [Show full text]