Feeding Ecology of Sidewinder Rattlesnakes, Crotalus Cerastes (Viperidae)

Total Page:16

File Type:pdf, Size:1020Kb

Feeding Ecology of Sidewinder Rattlesnakes, Crotalus Cerastes (Viperidae) Herpetologica, 72(4), 2016, 324–330 Ó 2016 by The Herpetologists’ League, Inc. Feeding Ecology of Sidewinder Rattlesnakes, Crotalus cerastes (Viperidae) 1 2 MICHAEL M. WEBBER,TEREZA JEZKOVA , AND JAVIER A. RODRIGUEZ´ -ROBLES School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA ABSTRACT: Dietary studies are important for understanding predator–prey relationships and species interactions because they provide information on the trophic resources available to predators and their potential impact on prey populations. We relied on stomach contents of museum specimens and literature records to examine ontogenetic (size-related), sexual, seasonal, and geographic variation in the feeding habits of Sidewinders, Crotalus cerastes. Sidewinders fed primarily on lizards and slightly less frequently on mammals; birds and snakes were rarely consumed. The vast majority of C. cerastes consumed single prey items ingested head-first. Juvenile and adult female Sidewinders consumed lizards and mammals with similar frequency. We observed an ontogenetic shift in feeding patterns of adult male C. cerastes because they included more mammals in their diets, compared with juvenile males. Sidewinders are classic ambush (sit-and-wait) predators and, as predicted by theory, actively foraging lizards and mammals comprise a considerable fraction of their prey. We documented seasonal shifts in the feeding patterns of Sidewinders, with snakes consuming a greater proportion of lizards during early spring and autumn, and a greater percentage of mammals during late spring and summer. This dietary shift likely results from seasonal changes in the activity patterns of C. cerastes, because individuals can be diurnally active during early spring and autumn but are predominantly nocturnal during late spring and summer. Adult male and female Sidewinders from the Mojave and the Sonoran deserts consumed similar proportions of lizards and mammals. Our findings regarding the trophic habits of C. cerastes contribute to our understanding of the ecology of terrestrial, venomous predators. Key words: Diet; Foraging; Mojave Desert; Prey; Serpentes; Sonoran Desert; Variation DIET IS a fundamental aspect of an animal’s biology. movements occur in early spring and in the autumn, Foraging and feeding are critical ecological tasks that supply particularly during the morning or late in the afternoon the energy required for growth, maintenance, and repro- (Ernst and Ernst 2003). Sidewinders exhibit a classic ambush duction (Pianka 2000). Dietary studies are important for foraging strategy in which they wait in a cratered or coiled understanding predator–prey relationships because they position for suitable prey to come into close proximity (Secor provide information on predators’ fundamental trophic 1994a). resources and their potential impact on prey populations Herein, we tested specific hypotheses regarding the (Martınez-Guti´ errez´ et al. 2015). Foraging and feeding feeding ecology of C. cerastes, and assessed geographic behavior influence basic organismal features, including variation in the diet of this snake. Several species of large- habitat selection (Custer and Galli 2002), movement patterns bodied snakes incorporate a greater proportion of larger prey (Vedder 1984; Kreiter and Wise 2001), thermoregulatory in their diets, compared with smaller-bodied individuals regimes (Regal 1966; Lang 1979), and ultimately fitness (e.g., Mackessy 1988; Santos et al. 2007; Glaudas et al. 2008). (Selman and Houston 1996). Elucidating the underlying Accordingly, we predicted that Sidewinders experience an causes of variation in these traits thus provides valuable ontogenetic (size-related) shift in feeding behavior, in which information regarding the overall biology of a predator and snakes incorporate larger prey into their diets as the serpents its trophic niche within an ecosystem (Young et al. 2010; increase in body size (Klauber 1972; Secor 1994a). Brasil et al. 2011; Thoren´ et al. 2011; Rosca et al. 2013). Knowledge of the predominant foraging mode of a predator Sidewinders, Crotalus cerastes Hallowell 1854, are allows assessments of how aspects of the animal’s feeding relatively small-bodied serpents (50–60-cm adult snout–vent biology may covary with foraging mode (Huey and Pianka length [SVL]; Ernst and Ernst 2003) that inhabit sandy 1981). Sidewinders are ambush foraging predators; there- washes, dunes, and flatlands of the warm deserts of fore, we predicted that they predominantly feed upon southwestern North America (Campbell and Lamar 2004; actively foraging (mobile) species. The aforementioned Fig. 1). The species is reported to be moderately sexually temporal change in the activity patterns of Sidewinders led dimorphic, with females attaining larger body sizes than to the prediction that they primarily eat diurnal prey (lizards) males (Reiserer 2001; Campbell and Lamar 2004). Males when the snakes are active during the day, and switch to achieve sexual maturity at a smaller body size (SVL ¼ 34 cm) mainly crepuscular and nocturnal prey (mammals) when the than females (SVL ¼ 38 cm), based on the body size of the serpents are predominantly active at night. Finally, we smallest reproductive individual of each sex (Reiserer 2001). investigated geographic variation in the feeding ecology of C. Sidewinders can be found near or within rodent burrows, or cerastes. coiled in self-constructed depressions (a behavior known as ‘‘cratering’’) beneath desert vegetation (Secor 1994a; Steb- MATERIALS AND METHODS bins 2003). The snakes are usually considered nocturnal; We checked the stomach contents of individual C. almost all summer activity takes place at night, but diurnal cerastes by making a midventral incision in 1086 specimens from the following institutions: California Academy of 1 Sciences, San Francisco (CAS; n ¼ 142); Natural History PRESENT ADDRESS: Department of Ecology & Evolutionary Biology, P.O. Box 210088, University of Arizona, Tucson, AZ 85721, USA Museum of Los Angeles County, Los Angeles, California 2 CORRESPONDENCE: e-mail, [email protected] (LACM; n ¼ 344); Museum of Vertebrate Zoology, 324 WEBBER ET AL.—FEEDING ECOLOGY OF CROLATUS 325 University of California, Berkeley (MVZ; n ¼ 295); and the Department of Ecology and Evolutionary Biology, Univer- sity of Arizona, Tucson (UAZ; n ¼ 305). We did not examine type specimens or especially soft, brittle, or otherwise fragile specimens, and we excluded individuals that might have been fed in captivity before being preserved. Our data set also incorporates published dietary reports of C. cerastes (cf. Rodrıguez-Robles´ 1998) after accounting for redundancy between accounts (e.g., Klauber 1931, 1972). When possible for each snake, we recorded the following variables: locality data, date of collection, body size (SVL, 6 1.0 cm), body mass (6 0.1 g), sex (determined by inspection of the reproductive tract), taxonomic identity of the prey, direction of prey ingestion (inferred from orientation in the gut), number of prey items, and prey mass (6 0.1 g). We weighed snakes and their intact or slightly digested prey after blotting and draining them briefly in a towel to remove excess fluid. Body measurements of partially digested items were estimated by comparison with intact conspecifics of similar size available at the Marjorie Barrick Museum of Natural History, University of Nevada, Las Vegas (MBM; the MBM collection was acquired by the MVZ in September 2009). We relied on this limited data set (n ¼ 15) to obtain an estimate of mean relative prey mass (RPM), the ratio of prey mass to predator mass. Most prey items were considerably digested, and in those instances we assigned an average adult mass obtained from preserved specimens or from literature records to species of lizards (Miller 1951; Vitt et al. 1981; Degenhardt et al. 1996; Turner 1998; Wright 2002; Newbold 2005; Mosher and Bateman 2014), mammals (Burt and Grossenheider 1980; Jameson and Peeters 2004), and birds (Alsop 2001) consumed by C. cerastes, an approach used in prior studies (e.g., Clark 2002; FIG. 1.—Approximate distribution of Sidewinders, Crotalus cerastes (grey Weatherhead et al. 2009; Dugan and Hayes 2012). Based on shading; after Campbell and Lamar 2004), and approximate boundaries of the distribution of these estimates of prey mass, we divided the Mojave and Sonoran deserts (dotted lines) in southwestern North America. Circles indicate the georeferenced locations of male (filled circles) prey into smaller (,30 g) and larger (30 g) prey, and female (open circles) snakes that contained prey in their stomachs. irrespective of prey type. The smaller prey category consisted of lizards (e.g., Coleonyx variegatus [Western Banded Gecko], 2.7 g; Urosaurus spp. [tree and brush southwestern Arizona (Funk 1965), southern Nevada (Clark lizards], ,3.8 g), mammals (e.g., Chaetodipus spp. [Pocket 1968), and southeastern California (Secor 1994a). We Mice], ,23 g; Reithrodontomys megalotis [Western Harvest combined these data with records from our examination of Mice], 11.5 g), and birds (e.g., Cardellina pusilla [Wilson’s a larger number of specimens from across the species’ Warblers], 8.5 g). The larger prey category included lizards distribution to investigate geographic variation in feeding (e.g., Dipsosaurus dorsalis [Desert Iguanas], 39.8 g; patterns of Sidewinders. Specifically, the distribution of C. Gambelia wislizenii [Long-nosed Leopard Lizards], 36.4 g), cerastes extends into two physiographic regions of
Recommended publications
  • What You Should Know About Rattlesnakes
    Rattlesnakes in The Rattlesnakes of Snake Bite: First Aid WHAT San Diego County Parks San Diego County The primary purpose of the rattlesnake’s venomous bite is to assist the reptile in securing The Rattlesnake is an important natural • Colorado Desert Sidewinder its prey. After using its specialized senses to find YOU SHOULD element in the population control of small (Crotalus cerastes laterorepens) its next meal, the rattlesnake injects its victim mammals. Nearly all of its diet consists of Found only in the desert, the sidewinder prefers with a fatal dose of venom. animals such as mice and rats. Because they are sandy flats and washes. Its colors are those of KNOW ABOUT so beneficial, rattlesnakes are fully protected the desert; a cream or light brown ground color, To prevent being bitten, the best advice is to leave within county parks. with a row of brown blotches down the middle snakes alone. RATTLESNAKES If you encounter a rattlesnake while hiking, of the back. A hornlike projection over each eye Most bites occur when consider yourself lucky to have seen one of separates this rattlesnake from the others in our area. Length: 7 inches to 2.5 feet. someone is nature’s most interesting animals. If you see a trying to pick rattlesnake at a campsite or picnic area, please up a snake, inform the park rangers. They will do their best • Southwestern Speckled Rattlesnake (Crotalus mitchelli pyrrhus) tease it, or kill to relocate the snake. it. If snakes are Most often found in rocky foothill areas along the provided an coast or in the desert.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Genetic Evidence for Occurrence of Macrovipera Razii (Squamata, Viperidae) in the Central Zagros Region, Iran
    Herpetozoa 33: 27–30 (2020) DOI 10.3897/herpetozoa.33.e51186 Genetic evidence for occurrence of Macrovipera razii (Squamata, Viperidae) in the central Zagros region, Iran Hamzeh Oraie1,2 1 Department of Zoology, Faculty of Science, Shahrekord University, Shahrekord, Iran 2 Department of Biodiversity, Institute of Biotechnology, Shahrekord University, Shahrekord, Iran http://zoobank.org/955A477F-7833-4D2A-8089-E4B4D48B0E31 Corresponding author: Hamzeh Oraie ([email protected]) Academic editor: Peter Mikulíček ♦ Received 16 February 2020 ♦ Accepted 17 March 2020 ♦ Published 9 April 2020 Abstract This study presents the first molecular evidence ofMacrovipera razii from central Zagros, more than 300 km north-west of its prior records in southern Iran. Molecular analyses based on mitochondrial cytochrome b sequences identified the individuals from central Zagros as a lineage of M. razii. Specimens from the new localities are separated by a genetic distance of 1.46% from the known populations of M. razii. The results extend the known distribution range of M. razii as an endemic species of Iran. Key Words Iran, Macrovipera, mtDNA, new record, Ra zi’s Viper, taxonomy, Viperidae Central Zagros is a mainly mountainous region in the Macrovipera razii, described by Oraie et al. (2018) based Chaharmahal and Bakhtiari Province and surrounding on a holotype collected at 105 km on the road from Jiroft areas of Iran. Its climatic conditions and topographic in- to Bam near Bab-Gorgi village and Valley, Kerman tricacy contribute to unique ecological conditions and a Province. The known distribution range of M. razii is significant level of biodiversity. Several endemic species reported as the central and southern parts of Iran (Oraie et of the Iranian herpetofauna are restricted to this region al.
    [Show full text]
  • Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms
    Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms Nicholas R. Casewella,b,1, Simon C. Wagstaffc, Wolfgang Wüsterb, Darren A. N. Cooka, Fiona M. S. Boltona, Sarah I. Kinga, Davinia Plad, Libia Sanzd, Juan J. Calveted, and Robert A. Harrisona aAlistair Reid Venom Research Unit and cBioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; bMolecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; and dInstituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 11 46010 Valencia, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved May 14, 2014 (received for review March 27, 2014) Variation in venom composition is a ubiquitous phenomenon in few (approximately 5–10) multilocus gene families, with each snakes and occurs both interspecifically and intraspecifically. family capable of producing related isoforms generated by Venom variation can have severe outcomes for snakebite victims gene duplication events occurring over evolutionary time (1, 14, by rendering the specific antibodies found in antivenoms in- 15). The birth and death model of gene evolution (16) is fre- effective against heterologous toxins found in different venoms. quently invoked as the mechanism giving rise to venom gene The rapid evolutionary expansion of different toxin-encoding paralogs, with evidence that natural selection acting on surface gene families in different snake lineages is widely perceived as the exposed residues of the resulting gene duplicates facilitates main cause of venom variation. However, this view is simplistic subfunctionalization/neofunctionalization of the encoded proteins and disregards the understudied influence that processes acting (15, 17–19).
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]
  • Amphibians and R,Eptiles of Joshua Tree Nationat Monument
    r,-. 1 $ ,35 Sidewinder AMPHIBIANS AND R,EPTILES OF JOSHUA TREE NATIONAT MONUMENT Text by lerry Moore Drawings by Yic Koch Desert Tortoise ,OSHUA TREE NATIONAL MONUMENT )oshua Tree National Monument is one of the areas administered by the National Park Service, a bureau of the U.S. Department of the Interior. The Monument was established to preserve the richness and variety of the resources of this des- Chuckwdlla ert area. Preservation extends to all natural, archaeological and historic obiects, so that vis' itors today and for generations to come may enioy this desert in its natural state. Published by the Produced in Cooperction with the JOSHUA TREE ilATIONAL PARK SERVICE NATURAL HISTORY ASSOCIATION 1 973 a non-profit organization pledged to aid in the preservation and interpretation of the scenic and scientific features of the Monurnent. loshua Trce National Monument T wentynine P alms, Californit 92277 INTRODUCTION other geckos in lacking foot pads and having ordinarl' eyelids. Reptiles and amphibians are among the most interesting and unusual animals found in our ZEBRA-TAILED LIZARD Callisaurus draconoides (2Y2"-)Yz") is light-colored with deserts. Many superstitions and misconceptions two Iongitudinal rows of dark spots on its back have resulted from a lack of knowledge of them: that give way to dark bands on the tail; is fast, most are rarely seen because of their shy nature maneuverable, often runs on its hindlegs curling and habits. These, like all plants and animals. its tail forward to act as counterbalance; com- mon in sandy areas. are protected within foshua Tree National Mon' ument.
    [Show full text]
  • (Cope) Mexican Lance-Headed Rattlesnake
    180.1 REPTILIA: SQUAMATA: SERPENTES: CROTALIDAE CROTALUS POLYSTICTUS Catalogue of American Amphibians and Reptiles. record of "Colima" suggests. The southern Jalisco records are only approximately 25 miles north of the Colima state line. Fu• MCCRANIE,JAMES R. 1976. Crotalus polystictus. ture collecting in the environs of Volcan de Colima, in Colima, should reveal the presence of C. polystictus in that state. A Crotalus polystictus (Cope) specimen in the Paris Museum is recorded from Tehuantepec, Oaxaca, but Tehuantepec probably represents the shipping Mexican lance-headed rattlesnake point rather than the locality at which the specimen was actu• Crotalus lugubris Jan, 1859:153, 156 (part). See remarks. ally collected (Klauber, 1952). Specimens have been collected Crotalus lugubris var. multimaculata Jan, 1863:124. Type• in open grass-covered rolling plains in southern Zacatecas locality, "Mexico." Restricted to Tupataro, Guanajuato, (Klauber, 1972) and in similar circumstances in southern Mexico by Smith and Taylor (1950:330). Type specimen, Jalisco (pers. observ.). Formerly polystictus was abundant in Westphal-Castelnau collection, present disposition un• the marshes around Lago de Chapala but the draining of these known. See REMARKS. marshes probably resulted in reducing their numbers Caudisona polysticta Cope, 1865:191. Type-locality, "Table (Duellman, 1961). land, Mexico." Restricted to Tupataro, Guanajuato by • FOSSIL RECORD.None. Smith and Taylor (1950:330). No holotype designated or known to exist. • PERTINENTLITERATURE.Gloyd (1940) and Klauber (1952) Crotalus polystictus: Cope, in Yarrow, 1875:533. published the most comprehensive systematic accounts, in• Crotalus jimenezii Duges, 1877:23. Type-locality not definitely cluding distribution maps. Distribution maps were also pub• stated. Restricted to Guadalajara, Jalisco, Mexico by lished by Klauber (1936, 1972).
    [Show full text]
  • Crotalus Cerastes, the Sidewinder
    180 / Litteratura Serpentium, 1993, Vol. 13, Nr. 6 CROTALUS CERASTES, THE SIDEWINDER By: Pete Strimple, 5310 Sultana Drive, Cincinnati, Ohio 45238, U.S.A. Contents: Historical -Habitat- Food -Habits -Breeding- The subspecies of Crotalus cerastes - Key to the subspecies of Crotalus cerastes. * * * HISTORICAL The sidewinder is a small to intermediate sized rattlesnake found in the southwestern United States and northwestern Mexico. It was first described by Hallowell in 1854 as Crotalus cerastes. The type specimen was collected by Dr. A.L. Heerman, with the type locality being designated as 'borders of the Mojave River, and in the desert of the Mojave (California).' In 1944, Laurence Klauber described the first subspecies based on a specimen collected at the Narrows, San Diego County, California. Klauber named the subspecies Crotalus cerastes laterorepens, the Colorado Desert sidewinder. The subspecies name 'laterorepens' is quite fitting for a sidewinder, because it is latin for 'sideways creeping.' In accordance with the rules of nomenclature, this established the nominate subspecies as Crotalus cerastes cerastes Hallowell, the Mojave desert sidewinder. These remained the only two subspecies of the sidewinder until 1953, when Savage and Cliff described Crotalus cerastes cercobombus, the Sonora sidewinder. The subspecies name 'cercobombus' is actually a combination of a Greek and Latin word which mean 'buzzing tail.' HABITAT Crotalus cerastes is primarily a desert dwelling form, whose habitats include desert flatland, sand dunes, and sand hammocks topped with creosote or mesquite bushes. FOOD Sidewinders feed mainly on small mammals (kangaroo rats, mice, pocket gophers, etc.) and lizards (desert iguanas, utas, whiptails, etc.). There are also records of sidewinders eating birds, and even a case of cannibalism.
    [Show full text]
  • Agkistrodon Piscivorus)
    BearWorks MSU Graduate Theses Fall 2019 Behavioral Aspects Of Chemoreception In Juvenile Cottonmouths (Agkistrodon Piscivorus) Chelsea E. Martin Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Behavior and Ethology Commons Recommended Citation Martin, Chelsea E., "Behavioral Aspects Of Chemoreception In Juvenile Cottonmouths (Agkistrodon Piscivorus)" (2019). MSU Graduate Theses. 3466. https://bearworks.missouristate.edu/theses/3466 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. BEHAVIORAL ASPECTS OF CHEMORECEPTION IN JUVENILE COTTONMOUTHS (AGKISTRODON PISCIVORUS) A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Biology By Chelsea E. Martin December 2019 Copyright 2019 by Chelsea Elizabeth Martin ii BEHAVIORAL ASPECTS OF CHEMORECPTION IN JUVENILE COTTONMOUTHS (AGKISTRODON PISCIVORUS) Biology Missouri State University, December 2019 Master of Science Chelsea E. Martin ABSTRACT For snakes, chemical recognition of predators, prey, and conspecifics has important ecological consequences.
    [Show full text]
  • Experience of Snakebite Envenomation by a Desert Viper in Qatar
    Hindawi Journal of Toxicology Volume 2020, Article ID 8810741, 5 pages https://doi.org/10.1155/2020/8810741 Review Article Experience of Snakebite Envenomation by a Desert Viper in Qatar Amr Elmoheen ,1 Waleed Awad Salem ,1 Mahmoud Haddad ,1 Khalid Bashir ,1 and Stephen H. Thomas1,2,3 1Department of Emergency Medicine, Hamad Medical Corporation, Doha, Qatar 2Weill Cornell Medical College in Qatar, Doha, Qatar 3Barts and "e London School of Medicine, Queen Mary University of London, London, UK Correspondence should be addressed to Amr Elmoheen; [email protected] Received 8 June 2020; Revised 8 September 2020; Accepted 28 September 2020; Published 12 October 2020 Academic Editor: Mohamed M. Abdel-Daim Copyright © 2020 Amr Elmoheen et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Crotaline and elapid snakebites are reported all over the world as well as in the Middle East and other countries around this region. However, data regarding snakebites and their treatment in Qatar are limited. &is review paper is going to investigate the presentation and treatment of snakebite in Qatar. A good assessment helps to decide on the management of the snakebites envenomation. Antivenom and conservative management are the mainstays of treatment for crotaline snakebite. Point-of-care ultrasound (POCUS) has been suggested to do early diagnosis and treatment of soft tissue problems, such as edema and compartment syndrome, after a snakebite. &e supporting data are not sufficient regarding the efficiency of POCUS in diagnosing the extent and severity of tissue involvement and its ultimate effect on the outcome.
    [Show full text]
  • Species Assessment for the Midget Faded Rattlesnake (Crotalus Viridis Concolor)
    SPECIES ASSESSMENT FOR THE MIDGET FADED RATTLESNAKE (CROTALUS VIRIDIS CONCOLOR ) IN WYOMING prepared by 1 2 AMBER TRAVSKY AND DR. GARY P. BEAUVAIS 1 Real West Natural Resource Consulting, 1116 Albin Street, Laramie, WY 82072; (307) 742-3506 2 Director, Wyoming Natural Diversity Database, University of Wyoming, Dept. 3381, 1000 E. University Ave., Laramie, WY 82071; (307) 766-3023 prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming October 2004 Travsky and Beauvais – Crotalus viridus concolor October 2004 Table of Contents INTRODUCTION ................................................................................................................................. 2 NATURAL HISTORY ........................................................................................................................... 2 Morphological Description........................................................................................................... 3 Taxonomy and Distribution ......................................................................................................... 4 Habitat Requirements ................................................................................................................. 6 General ............................................................................................................................................6 Area Requirements..........................................................................................................................7
    [Show full text]
  • Pit Vipers: from Fang to Needle—Three Critical Concepts for Clinicians
    Tuesday, July 28, 2021 Pit Vipers: From Fang to Needle—Three Critical Concepts for Clinicians Keith J. Boesen, PharmD & Nicholas B. Hurst, M.D., MS Disclosures / Potential Conflicts of Interest • Keith Boesen and Nicholas Hurst are employed by Rare Disease Therapeutics, Inc. (RDT) • RDT is a U.S. company working with Laboratorios Silanes, S.A. de C.V., a company in Mexico • Laboratorios Silanes manufactures a variety of antivenoms Note: This program may contain the mention of suppliers, brands, products, services or drugs presented in a case study or comparative format using evidence-based research. Such examples are intended for educational and informational purposes and should not be perceived as an endorsement of any particular supplier, brand, product, service or drug. 2 Learning Objectives At the end of this session, participants should be able to: 1. Describe the venom variability in North American Pit Vipers 2. Evaluate the clinical symptoms associated with a North American Pit Viper envenomation 3. Develop a treatment plan for a North American Pit Viper envenomation 3 Audience Poll Question: #1 of 5 My level of expertise in treating Pit Viper Envenomation is… a. I wouldn’t know where to begin! b. I have seen a few cases… c. I know a thing or two because I’ve seen a thing or two d. I frequently treat these patients e. When it comes to Pit Viper envenomation, I am a Ssssuper Sssskilled Ssssnakebite Sssspecialist!!! 4 PIT VIPER ENVENOMATIONS PIT VIPERS Loreal Pits Movable Fangs 1. Russel 1983 -Photo provided by the Arizona Poison and Drug Information Center 1.
    [Show full text]