Metallic Bridges Str403
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Angel's Way Route Seaton Sluice to Chester-Le-Street
Northern Saints Trails The Angel’s Way Seaton Sluice to Chester-le-Street 49 kms, 30.5 miles Introduction The Angel’s Way is an important link in the network of the Northern Saints Trails. This route between Seaton Sluice and Chester-le-Street means that there is a continuous 114 mile route between Lindisfarne and Durham, using St Oswald’s Way as far as Warkworth, The Way of the Sea from Warkworth to Seaton Sluice and after The Angel’s Way, Cuddy’s Corse (which is also part of The Way of Learning) from Chester-le-Street to Durham. All the Northern Saints Trails use the waymark shown here. In two parts, from near Holywell to Camperdown and from Bowes Railway Path to West Urpeth, the route follows The Tyne & Wear Heritage Way which is well signed and the waymark is also shown here. The route is divided into 4 sections, 3 of which are between 13 to 14 kilometres or 8 to 8.5 miles in length and section 3 from Millennium Bridge to The Angel of the North is just 8 kilometres or 5 miles. The route is of course named after the iconic Angel of the North designed by Antony Gormley. Since it was erected in 1998, it has quickly become Britain’s best known sculpture. When he designed the sculpture Gormley deliberately angled the wings 3.5 degrees forward to create what he described as “a sense of embrace”. This ties in with the protective concept of the guardian angel and if you want to engage with that theme as you journey on The Angel’s Way, perhaps this prayer will be appropriate: Angel of God, my guardian dear, to whom God’s love commits me here, ever this day, be at my side, to light and guard rule and guide. -
Bridges Key Stage 2 Thematic Unit
Bridges Key Stage 2 Thematic Unit Supporting the Areas of Learning and STEM Contents Section 1 Activity 1 Planning Together 3 Do We Need Activity 2 Do We Really Need Bridges? 4 Bridges? Activity 3 Bridges in the Locality 6 Activity 4 Decision Making: Cantilever City 8 Section 2 Activity 5 Bridge Fact-File 13 Let’s Investigate Activity 6 Classifying Bridges 14 Bridges! Activity 7 Forces: Tension and Compression 16 Activity 8 How Can Shapes Make a Bridge Strong? 18 Section 3 Activity 9 Construction Time! 23 Working with Activity 10 Who Builds Bridges? 25 Bridges Activity 11 Gustave Eiffel: A Famous Engineer 26 Activity 12 Building a Bridge and Thinking Like an Engineer 28 Resources 33 Suggested Additional Resources 60 This Thematic Unit is for teachers of Key Stage 2 children. Schools can decide which year group will use this unit and it should be presented in a manner relevant to the age, ability and interests of the pupils. This Thematic Units sets out a range of teaching and learning activities to support teachers in delivering the objectives of the Northern Ireland Curriculum. It also supports the STEM initiative. Acknowledgement CCEA would like to thank The Institution of Civil Engineers Northern Ireland (ICE NI) for their advice and guidance in the writing of this book. Cover image © Thinkstock Do We Need Bridges? Planning together for the theme. Discovering the reasons for having, and the impact of not having, bridges. Writing a newspaper report about the impact of a missing bridge. Researching bridges in the locality. Grouping and classifying bridges. -
Bridgescape As an Assessment Tool in the Socio- Spatial and Visual Connections of the Central Urban Areas of Newcastle and Gateshead
Special Issue, | Roadscape, 8(36) Bridgescape as an Assessment Tool in the Socio- spatial and Visual Connections of the Central Urban Areas of Newcastle and Gateshead Goran Erfani Abstract | Newcastle University, UK Growing roads and mobility have led to the formation of new landscape types: known bridgescape or bridge landscape. The social, [email protected] cultural, and visual impacts of bridges on their surroundings as drivers and symbols of the development have gained increasing significance in roadscape studies. This article aims to assess the role and design of bridges in the socio-spatial and visual connections of the central urban areas of Newcastle and Gateshead, located in North East England, by the criterion of the bridgescape. The findings of this article show that bridges are not only transitional passages; rather, they can be socio-spatial destinations for people to meet, do collective activities and improve their environmental perceptions. In urban milieu, landmarks have dissimilar impacts on visual connections and bridgescape. Characteristic and contrasting landmarks improve bridgescapes; however, corrupting landmarks have a destructive role in bridgescape. Keywords | Bridgescape (bridge landscape), Socio-Spatial Connections, Visual Connections. 32 No.36 Autumn 2016 Goran Erfani Introduction | Bridges are a vital element in ground from landscape architects to structural engineers. transportation networks, which connect cities, communities In North east England, the city of Newcastle-upon-Tyne, and even nations. Within urban areas, bridges not only have a commonly known as Newcastle, is well-known for its key role in the spatial connection of places but also can facilitate bridgescape. Seven different bridges across a mile long stretch or interrupt social activities. -
WI-117 Bridge 22009, Salisbury Bridge, West Main Street Bridge
WI-117 Bridge 22009, Salisbury Bridge, West Main Street Bridge Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 08-29-2003 <j_3w79o INDIVIDUAL PROPERTY/DISTRICT MARYLAND HISTORICAL TRUST INTERNAL NR·ELIGIBILITY REVIE\I FORM Property/District Name: Bridse 22009.MD 991 over Wicomico River Survey Numer: \II ·117 Project: Repair of Bridge 22009 Agency: SHA Site visit by MHT Staff: _x_ no yes Name Date Eligibility recamiet lded __x_ Eligibility not reconmended Criteria: _LA _B _LC _D Considerations: _A _B _c _D _E _F __G _None Justification for decision: (Use continuation sheet if necessary and attach lllap) Based on infonnation provided by SHA, Bridge 22009 does meet the National Register Criteria for individJal listing. -
Architecture February 4, 2012
Outline of Architecture February 4, 2012 Contents ARTS>Art>Architecture .................................................................................................................................................... 1 ARTS>Art>Architecture>Building Parts ...................................................................................................................... 1 ARTS>Art>Architecture>Building Parts>Arch ....................................................................................................... 2 ARTS>Art>Architecture>Building Parts>Basement ............................................................................................... 2 ARTS>Art>Architecture>Building Parts>Beam...................................................................................................... 2 ARTS>Art>Architecture>Building Parts>Column .................................................................................................. 3 ARTS>Art>Architecture>Building Parts>Door ....................................................................................................... 4 ARTS>Art>Architecture>Building Parts>Floor ...................................................................................................... 5 ARTS>Art>Architecture>Building Parts>Furnace .................................................................................................. 5 ARTS>Art>Architecture>Building Parts>Greek Temple ........................................................................................ 5 ARTS>Art>Architecture>Building -
AA-765 Bridge 2081, Weems Creek Bridge
AA-765 Bridge 2081, Weems Creek Bridge Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 06-11-2004 INDIVIDUAL PROPERTY/DISTRICT MARYLAND HISTORICAL TRUST INTERNAL NR-ELIGIBILITY REVIEW FORM Property /District Name: Bri dqe 2081 Survey Number: ....A-"-A-'---:..-7=65"==== Project: MD 436 over Weems Creek. Annaoolis MD Agency: SHA/FHWA Site visit by MHT Staff: _X_ no =yes Name========= Date====== Eligibility recommended ~X- Eligibility not recommended== Criteria: _X_A =B _x_c =D Considerations: A =B =c =D =E =F =G =None Justification for decision: CUse continuation sheet if necessary and attach map) Bridge No. 2081 is eligible for the National Register under Criteria A and C for ~Transportation and Engineering. -
Photographs Written Historical and Descriptive Data
Mystic River Drawbridge No. 7 HAER No. MAS Spanning Mystic River at the Massachusetts Bay Transportation Authority Rail Line (formerly Boston & Maine Eastern Route) Right-of-Way i\ Atz O Somerville T^M^'^ Everett filrV^ , Middlesex, County q c ^- ^--\\/ Massachusetts i ^°'!" "^ PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American r.nglr;eri;g T.eccrd Mid-Attune R?gbnal Cftlcs National Park Service U.S. D.-; rutrnui- of the Interior TiiUadelphia, Pennsylvania 19106 MASS, i HISTORIC AMERICAN ENGINEERING RECORD Mvstic River Drawbridge No. 7 HAER No. MA-88 Location: Spanning Mystic River on the right-of-way of the Massachusetts Bay Transportation Authority rail line (formerly the Boston & Maine Eastern Route) at the town line between Somerville (south), SttffoH^Gounty, and Everett (north), Middlesex County, Massachusetts 'ULl"" "*"'"' UTM: 19.329250.4695250 Quad: Boston North, Massachusetts (1979) Date of Construction: 1893-1894. 1933 - Tower rebuilt. 1955 - Easterly girder built, replacing 1977 truss. 1917 - Westerly truss built. 1988-1989 - Replaced. Present Owner: Massachusetts Bay Transportation Authority Ten Park Plaza Boston, Massachusetts 02116 Present Use: Single-track, movable span railroad bridge. Horizontal draw accommodates limited marine traffic. Significance: Drawbridge No. 7 is apparently the last horizontally folding railroad bridge in the eastern United States. Its technology is representative of the earliest patented movable span bridge in the country (patented by Joseph Ross of Ipswich, Massachusetts, in 1849). The horizontally folding draw was a common railroad bridge type in the Greater Boston area since the 1840s. All except Drawbridge No. 7 have been removed and/or replaced. Project Information: Mary Elizabeth McCahon Abba G. -
Use Style: Paper Title
AUTOMATED FOOT BRIDGE FOR RAILWAY STATION (SMART WAY OF CROSSING TRACKS) Prof. Harish C. Ringe1, Prof. Anushree B. Chaudhari2, Prof. Chitra E. Ghodke3 1,2,3Civil Engineering Dept.,Csmss College of Polytechnic, Aurangabad ABSTRACT This Paper will explain use of Automated Foot Bridge in Railway station to overcome the problem of passing tracks (from one platform to another) in less time period with less efforts, Automated Foot bridge is designed to overcome the accidental problems occurring on the railway stations during passengers crossing the railway tracks and also it will help to transport the goods from one platform to another. Keywords—Automated Foot Bridge,Railway Station, Accidental Problems I. INTRODUCTION As India is fast growing country we are trying to develop our transportation system to fulfill the need of population and as we knows train is one of the best mode of transportation to travel from one place to another, but when time comes to use this mode of transportation people are being irritated due to the crowd and the systems adopted at railway stations to reach on platforms from one to another. And to avoid the time consumption and efforts many of the people choose to reach the platform by crossing the track directly and due to this many of the time accidents occur and many of the people lose their life. According to http://wonderfulmumbai.com website 10 people die every day in railway accidents in Mumbai. 36,152 people have died and 36,688 injured on Mumbai’s Suburban (Local) Trains, from 2002 to 2012. Of the 36,152 deaths, 15,053 occurred on Mumbai’s Western Railway line and 21,099 occurred on Mumbai’s Central Railway. -
D-584 Brookview Bridge, (Crotcher's Ferry, Upper Black Walnut Landing)
D-584 Brookview Bridge, (Crotcher's Ferry, Upper Black Walnut Landing) Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 07-25-2017 Maryland Historical Trust Maryland Inventory of Historic Properties Number: Name: The bridge referenced herein was inventoried by the Maryland State Highway Administration as part of the Historic Bridge Inventory, and SHA provided the Trust with eligibility determinations in February 2001. The Trust accepted the Historic Bridge Inventory on April 3, 2001. The bridged received the following determination of eligibly. MARYLAND HISTORICAL TRUST Eligibility Recommended X Eligibility Not Recommended Criteria: A B C D Considerations: A B C D E F G None Comments: Reviewer, OPS:_Anne E. Bruder Date:_3 April 2001 Reviewer, NR Program :_Peter E. -
Superintendent of Documents, US Government Printing Training
DOCUMENT RESUME ED 080 795 CE 000 008 TITLE Bridge Inspector's Training Manual.. INSTITUTION Federal Highway Administration (DOT), Washington, D.C. Bureau of Public Roads. PUB DATE 72 NOTE 241p.; Corrected Reprint 1971 AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, D.C..20402 (GPO 19720-930, $2.50) :MRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Building Trades; Civil Engineering; Component ' Building Systems; *Construction (Process); *Curriculum Guides; Equipment; *Inspection; *Job Training; *Manuals; Skilled Occupations; Vocational Education IDENTIFIERS *Bridge Inspectors ABSTRACT A guide for the instruction of bridge inspectors is provided in this manual as well as instructions for conducting and reporting on a bridge inspection. The chapters outline the qualifications necessary to become a bridge inspector. The subject areas covered are: The Bridge Inspector, Bridge Structures, Bridge Inspection Reporting System, Inspection Procedures, Bridge Component Inspection Guidance, and Reports and Recommendations..The duties of an inspector and the requirements for his training are laid out in chapters one through four. Chapter five covers the construction and design aspects of bridges together with the explanation of mechanical principles. The nature and theory of bridge construction occupies approximately two thirds of the manual. The rest of the manual covers the inspection field book, inspection equipment, foundation movements and effects on bridges, the nature of underwater inspections, and structural bridge deficiencies._ There are extensive diagrams, photographs, a glossary of bridge engineering and inspection terms, and a 62-item bibliography. (KP) FILMED FROM BEST AVAILABLE CO BRIDGE INSPECTOR'S TRAINING cc MANUAL 70 _ II I I I 1111VILLI,4 41. -
Article: Types of Movable Bridges and Their Construction Details I
Article: Types of Movable Bridges and their Construction Details _____________________________________________________________ Introduction Movable bridges are designed and constructed to change its position and occasionally its shapes to permit the passage of vessels and boats in the waterway. This type of bridge is generally cost effective since the utilization of long approaches and high piers are not required. When the waterway is opened to vessels and ships, traffics over the bridge would be stopped and vice-versa. Moveable bridge is a bridge that can change position (and even shape in some cases) to allow for passage of boats below. This has a lower cost of building because it has no high piers and long approaches but its use stops the road traffic when the bridge is open for river traffic. The oldest know movable bridge was built in the 2nd millennium BC in the ancient Egypt. History also knows for one early movable bridge built in Chaldea in the Middle East in 6th century BC. Since then they were almost forgotten until Middle Ages when they again appeared in Europe. Leonardo da Vinci designed and built designed and built bascule bridges in 15th century. He also made designs and built models of swing and a retractable bridges. Industrial revolution allowed for new technologies like mass-produced steel and powerful machines and it is no surprise that new types of modern movable bridges appeared in 19th century. They are built even today but many movable bridges that are still in use in United States are built in early 20th century. In time, some of them are repaired with lighter materials and their gears are replaced with hydraulics. -
Physics: Building Bridges Week 04/20/20 Reading: Annotate the Article: How It Works: Engineering Bridges to Handle Stres
Physics: Building Bridges Week 04/20/20 Reading: ● Annotate the article: How it Works: Engineering Bridges to Handle Stress ○ Underline important ideas ○ Circle important words ○ Put a “?” next to something you want to know more about Activity: ● Engineer a paper bridge ○ Paper Bridge Challenge Writing: ● Read the article Wildlife Crossings, from bridges to tunnels to overpasses ○ Answer the writing prompt at the end of the article. Física: Construyendo Puentes Semana 04/20/20 Lectura: ● Anote el artículo: How it Works: Engineering Bridges to Handle Stress ○ Subráye ideas importantes ○ Circúle palabras importantes ○ Ponga un "?" junto a algo sobre lo que desea saber más Actividad: ● Construya un puente de papel ○ Paper Bridge Challenge Escritura de la: ● Lea el artículo Wildlife Crossings, from bridges to tunnels to overpasses ○ Responda la pregunta al fin del artículo. How it Works: Engineering Bridges to Handle Stress Mar. 17, 2017 Bridge Masters Bridge Design, Innovations Bridges are generally thought of as static structures. The truth is that they actually act more like dynamic, living beings. They constantly change, responding to different loads, weather patterns, and other types of stress in order to function. In some cases, much like a person undergoing a trauma, bridges must “react” to extremely stressful events like accidents, explosions, fires, earthquakes, and hurricanes in order to survive. In this article, we’ll look at how different types of bridges are engineered to handle stress. We’ll also examine some of the most common forces that put stress on bridges. These stressors can have a big impact on how bridges age, fall into decline, and potentially fail.