Metallic Bridges Str403

Total Page:16

File Type:pdf, Size:1020Kb

Metallic Bridges Str403 METALLIC BRIDGES STR403 Sherif A. Mourad Professor of Steel Structures and Bridges Faculty of Engineering, Cairo University Lecture 1 – February 2020 Sherif A. Mourad 1 Introduction Course: STR403 Instructors: Prof. Sherif Ahmed Mourad. Prof. Mohammed Hassanein Soror. Lecture: Monday 8:30-10:00 or 10:15-11:45 Grading: 70% final 15% midterm 15% term work Sherif A. Mourad 2 STR403 - Metallic Bridges Winter 2020 1 Introduction Why a course in steel bridge design? Sherif A. Mourad 3 Lecture Outline • Definition of a bridge. • Historical background. • Bridge forms. • Classification of bridges (Structural system, Material of construction, Use, Position, Span, …). • Design considerations. • Course outline. Sherif A. Mourad 4 STR403 - Metallic Bridges Winter 2020 2 Definition of a Bridge A bridge is a structure that carries a service (which may be highway or railway traffic, a footpath, public utilities, etc.) over an obstacle (which may be another road or railway, a river, a valley, etc.), and then transfers the loads from the service via the superstructure through the bridge substructure to the foundation level. Sherif A. Mourad 5 Definition of a Bridge Sherif A. Mourad 6 STR403 - Metallic Bridges Winter 2020 3 Historical background The historical development of bridges best illustrates the progress of structural engineering from ancient times up to the present century. In particular the development in steel bridges equates with the progress in structural analysis, theory of strength of materials and materials testing, since all of them were increasingly stimulated by the need for bridging larger spans and building more economically with the new construction method. Sherif A. Mourad 7 Historical background The simplest type of a bridge is stepping stones, so this may have been one of the earliest types. People from the stone age also built a form of boardwalk across marshes that are around 6000 years old. Undoubtedly ancient peoples would also have used log bridges; that is a timber bridge that fall naturally or are intentionally felled or placed across streams. Sherif A. Mourad 8 STR403 - Metallic Bridges Winter 2020 4 Historical Background Probably the oldest form of bridges to cross waterways is the stepping stone bridges. Sherif A. Mourad 9 Historical Background Some of the first man-made bridges with significant span were probably intentionally felled trees. Sherif A. Mourad 10 STR403 - Metallic Bridges Winter 2020 5 Historical Background There is a drawing displayed on a monument of Sethos I at Karnak. According to this drawing the strong place of Khetam was situated on both banks of the river Nile and the two opposite parts of the fortress were joined by a great bridge. A “Qanthareh” as it is called in Arabic. Sherif A. Mourad 11 Historical Background The Indian Epic literature Ramayana provides mythological accounts of bridges constructed from India to Sri Lanka by the army of Sri Rama, the mythological King of Ayodhya. The recent satellite photograph depicts the existence of this bridge, referred to in Ramayana. Sherif A. Mourad 12 STR403 - Metallic Bridges Winter 2020 6 Historical Background Holzbrücke Rapperswil-Hurden is a wooden pedestrian bridge between the city of Rapperswil and the village of Hurden crossing the upper Lake Zürich (Obersee) in Switzerland. The prehistoric timber piles discovered to the west of the Seedamm date back to 1523 BC. Sherif A. Mourad 13 Historical background The oldest datable bridge in the world still in use is the slab-stone single-arch bridge over the river Meles in Izmir (formerly Smyrna), Turkey, which dates from c. 850 BC. Remnants of Mycenaean bridges dated c. 1600 BC exist in the neighborhood of Mycenae, Greece over the River Havos. Sherif A. Mourad 14 STR403 - Metallic Bridges Winter 2020 7 Historical Background Chinese built big bridges of wooden construction, and later stone bridges, and the oldest surviving stone bridge in China is the Zhaozhou Bridge built around 605 AD during the Sui Dynasty. This bridge is also historically significant as it is the world’s oldest open- stone segmental arch bridge. Sherif A. Mourad 15 Historical Background The ancient Romans were great bridge builders. Ancient Romans used cement (called pozzolana) consisting of water, lime, sand, and volcanic rock to provide bond between stone elements. Sherif A. Mourad 16 STR403 - Metallic Bridges Winter 2020 8 Historical background The discovery of a new material, iron, and later steel, contributed a lot to the design and construction of bridges. However, by the time the new material was ready for use in larger structures there already existed a quite highly developed technology in bridge building, namely for bridges in timber and bridges in stone. Sherif A. Mourad 17 Historical background It is important to mention that the technologies of bridge building at that time were based on individual intuition of outstanding "masters" and on the experience passed down through the generations rather than on rules of mechanics and mathematics. The significance of preserving the knowledge of bridge building and of extending it was closely connected with military purposes and the interests of trade in ancient times. Sherif A. Mourad 18 STR403 - Metallic Bridges Winter 2020 9 Historical background The Romans even established a separate caste - the "pontifices" (bridge makers) - headed by the "pontifex maximum", which was also one of the titles of the Roman emperors. Similar reasons motivated the French kings, e.g. Louis XIV, and later Napoleon, to support the new engineering schools (Ecole de Ponts et Chaussés and Ecole Polytechnique). Sherif A. Mourad 19 Bridge Form Bridges may be classified according to the form by which they support the loading into two main types: 1. Bridges which carry loads mainly in flexure. 2. Bridges which carry loads mainly as axial forces. Sherif A. Mourad 20 STR403 - Metallic Bridges Winter 2020 10 Bridges carrying loads in flexure The majority of bridges are of this type. The loads are transferred to the ground by slabs or beams acting in flexure, i.e. the bridges obtain their load carrying resistance from the ability of the slabs and beams to resist bending moments and shear forces. This type of bridge is referred to generally as a girder bridge. A wide range of structural forms is possible, as shown in the next Figure which indicates a typical elevation of a girder bridge with a number of terms being defined. Sherif A. Mourad 21 Bridges carrying loads in flexure Sherif A. Mourad 22 STR403 - Metallic Bridges Winter 2020 11 Bridges carrying loads as axial This type can be further subdivided into those bridges in which the primary axial forces are compressive (arches) and those in which these forces are tensile (suspension bridges and cable stayed bridges), or a combination of both (trusses). Such forces normally have to be resisted by members carrying forces of the opposite sense. Figures 2a to 2d show the basic structural systems for some typical layouts.. Sherif A. Mourad 23 Bridges carrying loads as axial Note that flexure is also important in such structures. Certainly, in most suspension bridges, flexure of the stiffening girder is not a primary loading in that overstress is unlikely to cause overall failure; however, in cable stayed bridges (particularly if the stays are widely spaced) flexure of the girder is a primary loading. Similarly, in arch bridges, non-uniform loading of the rib can cause primary bending moments to be developed in it and may well govern the arch design. Sherif A. Mourad 24 STR403 - Metallic Bridges Winter 2020 12 Bridges carrying loads as axial Sherif A. Mourad 25 Arch stability The arch is made up of blocks, and will stand with nothing attaching them together. The central block stays up because it is wider at the top than at the bottom, so to fall down it would have to push the neighboring blocks outwards. As long as these are held securely, the central block can’t fall down. So by the combination of friction and strong abutments holding the sides of the arch, the arch remains stable. Sherif A. Mourad 26 STR403 - Metallic Bridges Winter 2020 13 Bridge Classification Material of Construction • Concrete. • Steel. • Stone. • Masonry. • Timber. Sherif A. Mourad 27 Material of Construction Why steel bridges? What are the steel grades? What are the mechanical properties? Sherif A. Mourad 28 STR403 - Metallic Bridges Winter 2020 14 Egyptian Standard Specifications Steel Egyptian Specifications STR403 - Metallic Bridges Winter 2020 15 Steel Egyptian Specifications Steel Egyptian Specifications STR403 - Metallic Bridges Winter 2020 16 Steel Egyptian Specifications Steel Egyptian Specifications STR403 - Metallic Bridges Winter 2020 17 Bridge Classification Use • Roadway Bridges. • Railway Bridges. • Footbridges. • Pipeline Bridges. • Conveyor Bridges. Sherif A. Mourad 35 Roadway Bridges Sherif A. Mourad 36 STR403 - Metallic Bridges Winter 2020 18 Railway Bridges Sherif A. Mourad 37 Pedestrian Bridges Sherif A. Mourad 38 STR403 - Metallic Bridges Winter 2020 19 Pipe Bridges Sherif A. Mourad 39 Conveyor Bridges Sherif A. Mourad 40 STR403 - Metallic Bridges Winter 2020 20 Bridge Classification Traffic Level Moving Bridges are classified according to the position of bridge floor into: • Deck • Through Sherif A. Mourad 41 Deck Bridge Sherif A. Mourad 42 STR403 - Metallic Bridges Winter 2020 21 Through Bridge Sherif A. Mourad 43 Bridge Classification Bridges are classified according to the structural system of the main girder into: • Beam/Plate Girder Bridges. • Frame Bridges. • Arch Bridges. • Truss Bridges. • Cable-Stayed Bridges. • Suspension Bridges Sherif A. Mourad 44 STR403 - Metallic Bridges Winter 2020 22 Beam Bridges Beam Bridges may be: • Rolled section or Plate Girder. • Simply-supported or Continuous. • Straight or Haunched. • Steel or Composite. • I-section or box. Sherif A. Mourad 45 Frame Bridges Sherif A. Mourad 46 STR403 - Metallic Bridges Winter 2020 23 Arch Bridges Sherif A. Mourad 47 Truss Bridges Sherif A. Mourad 48 STR403 - Metallic Bridges Winter 2020 24 Cable-Stayed Bridges Sherif A.
Recommended publications
  • The Angel's Way Route Seaton Sluice to Chester-Le-Street
    Northern Saints Trails The Angel’s Way Seaton Sluice to Chester-le-Street 49 kms, 30.5 miles Introduction The Angel’s Way is an important link in the network of the Northern Saints Trails. This route between Seaton Sluice and Chester-le-Street means that there is a continuous 114 mile route between Lindisfarne and Durham, using St Oswald’s Way as far as Warkworth, The Way of the Sea from Warkworth to Seaton Sluice and after The Angel’s Way, Cuddy’s Corse (which is also part of The Way of Learning) from Chester-le-Street to Durham. All the Northern Saints Trails use the waymark shown here. In two parts, from near Holywell to Camperdown and from Bowes Railway Path to West Urpeth, the route follows The Tyne & Wear Heritage Way which is well signed and the waymark is also shown here. The route is divided into 4 sections, 3 of which are between 13 to 14 kilometres or 8 to 8.5 miles in length and section 3 from Millennium Bridge to The Angel of the North is just 8 kilometres or 5 miles. The route is of course named after the iconic Angel of the North designed by Antony Gormley. Since it was erected in 1998, it has quickly become Britain’s best known sculpture. When he designed the sculpture Gormley deliberately angled the wings 3.5 degrees forward to create what he described as “a sense of embrace”. This ties in with the protective concept of the guardian angel and if you want to engage with that theme as you journey on The Angel’s Way, perhaps this prayer will be appropriate: Angel of God, my guardian dear, to whom God’s love commits me here, ever this day, be at my side, to light and guard rule and guide.
    [Show full text]
  • Bridges Key Stage 2 Thematic Unit
    Bridges Key Stage 2 Thematic Unit Supporting the Areas of Learning and STEM Contents Section 1 Activity 1 Planning Together 3 Do We Need Activity 2 Do We Really Need Bridges? 4 Bridges? Activity 3 Bridges in the Locality 6 Activity 4 Decision Making: Cantilever City 8 Section 2 Activity 5 Bridge Fact-File 13 Let’s Investigate Activity 6 Classifying Bridges 14 Bridges! Activity 7 Forces: Tension and Compression 16 Activity 8 How Can Shapes Make a Bridge Strong? 18 Section 3 Activity 9 Construction Time! 23 Working with Activity 10 Who Builds Bridges? 25 Bridges Activity 11 Gustave Eiffel: A Famous Engineer 26 Activity 12 Building a Bridge and Thinking Like an Engineer 28 Resources 33 Suggested Additional Resources 60 This Thematic Unit is for teachers of Key Stage 2 children. Schools can decide which year group will use this unit and it should be presented in a manner relevant to the age, ability and interests of the pupils. This Thematic Units sets out a range of teaching and learning activities to support teachers in delivering the objectives of the Northern Ireland Curriculum. It also supports the STEM initiative. Acknowledgement CCEA would like to thank The Institution of Civil Engineers Northern Ireland (ICE NI) for their advice and guidance in the writing of this book. Cover image © Thinkstock Do We Need Bridges? Planning together for the theme. Discovering the reasons for having, and the impact of not having, bridges. Writing a newspaper report about the impact of a missing bridge. Researching bridges in the locality. Grouping and classifying bridges.
    [Show full text]
  • Bridgescape As an Assessment Tool in the Socio- Spatial and Visual Connections of the Central Urban Areas of Newcastle and Gateshead
    Special Issue, | Roadscape, 8(36) Bridgescape as an Assessment Tool in the Socio- spatial and Visual Connections of the Central Urban Areas of Newcastle and Gateshead Goran Erfani Abstract | Newcastle University, UK Growing roads and mobility have led to the formation of new landscape types: known bridgescape or bridge landscape. The social, [email protected] cultural, and visual impacts of bridges on their surroundings as drivers and symbols of the development have gained increasing significance in roadscape studies. This article aims to assess the role and design of bridges in the socio-spatial and visual connections of the central urban areas of Newcastle and Gateshead, located in North East England, by the criterion of the bridgescape. The findings of this article show that bridges are not only transitional passages; rather, they can be socio-spatial destinations for people to meet, do collective activities and improve their environmental perceptions. In urban milieu, landmarks have dissimilar impacts on visual connections and bridgescape. Characteristic and contrasting landmarks improve bridgescapes; however, corrupting landmarks have a destructive role in bridgescape. Keywords | Bridgescape (bridge landscape), Socio-Spatial Connections, Visual Connections. 32 No.36 Autumn 2016 Goran Erfani Introduction | Bridges are a vital element in ground from landscape architects to structural engineers. transportation networks, which connect cities, communities In North east England, the city of Newcastle-upon-Tyne, and even nations. Within urban areas, bridges not only have a commonly known as Newcastle, is well-known for its key role in the spatial connection of places but also can facilitate bridgescape. Seven different bridges across a mile long stretch or interrupt social activities.
    [Show full text]
  • WI-117 Bridge 22009, Salisbury Bridge, West Main Street Bridge
    WI-117 Bridge 22009, Salisbury Bridge, West Main Street Bridge Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 08-29-2003 <j_3w79o INDIVIDUAL PROPERTY/DISTRICT MARYLAND HISTORICAL TRUST INTERNAL NR·ELIGIBILITY REVIE\I FORM Property/District Name: Bridse 22009.MD 991 over Wicomico River Survey Numer: \II ·117 Project: Repair of Bridge 22009 Agency: SHA Site visit by MHT Staff: _x_ no yes Name Date Eligibility recamiet lded __x_ Eligibility not reconmended Criteria: _LA _B _LC _D Considerations: _A _B _c _D _E _F __G _None Justification for decision: (Use continuation sheet if necessary and attach lllap) Based on infonnation provided by SHA, Bridge 22009 does meet the National Register Criteria for individJal listing.
    [Show full text]
  • Architecture February 4, 2012
    Outline of Architecture February 4, 2012 Contents ARTS>Art>Architecture .................................................................................................................................................... 1 ARTS>Art>Architecture>Building Parts ...................................................................................................................... 1 ARTS>Art>Architecture>Building Parts>Arch ....................................................................................................... 2 ARTS>Art>Architecture>Building Parts>Basement ............................................................................................... 2 ARTS>Art>Architecture>Building Parts>Beam...................................................................................................... 2 ARTS>Art>Architecture>Building Parts>Column .................................................................................................. 3 ARTS>Art>Architecture>Building Parts>Door ....................................................................................................... 4 ARTS>Art>Architecture>Building Parts>Floor ...................................................................................................... 5 ARTS>Art>Architecture>Building Parts>Furnace .................................................................................................. 5 ARTS>Art>Architecture>Building Parts>Greek Temple ........................................................................................ 5 ARTS>Art>Architecture>Building
    [Show full text]
  • AA-765 Bridge 2081, Weems Creek Bridge
    AA-765 Bridge 2081, Weems Creek Bridge Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 06-11-2004 INDIVIDUAL PROPERTY/DISTRICT MARYLAND HISTORICAL TRUST INTERNAL NR-ELIGIBILITY REVIEW FORM Property /District Name: Bri dqe 2081 Survey Number: ....A-"-A-'---:..-7=65"==== Project: MD 436 over Weems Creek. Annaoolis MD Agency: SHA/FHWA Site visit by MHT Staff: _X_ no =yes Name========= Date====== Eligibility recommended ~X- Eligibility not recommended== Criteria: _X_A =B _x_c =D Considerations: A =B =c =D =E =F =G =None Justification for decision: CUse continuation sheet if necessary and attach map) Bridge No. 2081 is eligible for the National Register under Criteria A and C for ~Transportation and Engineering.
    [Show full text]
  • Photographs Written Historical and Descriptive Data
    Mystic River Drawbridge No. 7 HAER No. MAS Spanning Mystic River at the Massachusetts Bay Transportation Authority Rail Line (formerly Boston & Maine Eastern Route) Right-of-Way i\ Atz O Somerville T^M^'^ Everett filrV^ , Middlesex, County q c ^- ^--\\/ Massachusetts i ^°'!" "^ PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American r.nglr;eri;g T.eccrd Mid-Attune R?gbnal Cftlcs National Park Service U.S. D.-; rutrnui- of the Interior TiiUadelphia, Pennsylvania 19106 MASS, i HISTORIC AMERICAN ENGINEERING RECORD Mvstic River Drawbridge No. 7 HAER No. MA-88 Location: Spanning Mystic River on the right-of-way of the Massachusetts Bay Transportation Authority rail line (formerly the Boston & Maine Eastern Route) at the town line between Somerville (south), SttffoH^Gounty, and Everett (north), Middlesex County, Massachusetts 'ULl"" "*"'"' UTM: 19.329250.4695250 Quad: Boston North, Massachusetts (1979) Date of Construction: 1893-1894. 1933 - Tower rebuilt. 1955 - Easterly girder built, replacing 1977 truss. 1917 - Westerly truss built. 1988-1989 - Replaced. Present Owner: Massachusetts Bay Transportation Authority Ten Park Plaza Boston, Massachusetts 02116 Present Use: Single-track, movable span railroad bridge. Horizontal draw accommodates limited marine traffic. Significance: Drawbridge No. 7 is apparently the last horizontally folding railroad bridge in the eastern United States. Its technology is representative of the earliest patented movable span bridge in the country (patented by Joseph Ross of Ipswich, Massachusetts, in 1849). The horizontally folding draw was a common railroad bridge type in the Greater Boston area since the 1840s. All except Drawbridge No. 7 have been removed and/or replaced. Project Information: Mary Elizabeth McCahon Abba G.
    [Show full text]
  • Use Style: Paper Title
    AUTOMATED FOOT BRIDGE FOR RAILWAY STATION (SMART WAY OF CROSSING TRACKS) Prof. Harish C. Ringe1, Prof. Anushree B. Chaudhari2, Prof. Chitra E. Ghodke3 1,2,3Civil Engineering Dept.,Csmss College of Polytechnic, Aurangabad ABSTRACT This Paper will explain use of Automated Foot Bridge in Railway station to overcome the problem of passing tracks (from one platform to another) in less time period with less efforts, Automated Foot bridge is designed to overcome the accidental problems occurring on the railway stations during passengers crossing the railway tracks and also it will help to transport the goods from one platform to another. Keywords—Automated Foot Bridge,Railway Station, Accidental Problems I. INTRODUCTION As India is fast growing country we are trying to develop our transportation system to fulfill the need of population and as we knows train is one of the best mode of transportation to travel from one place to another, but when time comes to use this mode of transportation people are being irritated due to the crowd and the systems adopted at railway stations to reach on platforms from one to another. And to avoid the time consumption and efforts many of the people choose to reach the platform by crossing the track directly and due to this many of the time accidents occur and many of the people lose their life. According to http://wonderfulmumbai.com website 10 people die every day in railway accidents in Mumbai. 36,152 people have died and 36,688 injured on Mumbai’s Suburban (Local) Trains, from 2002 to 2012. Of the 36,152 deaths, 15,053 occurred on Mumbai’s Western Railway line and 21,099 occurred on Mumbai’s Central Railway.
    [Show full text]
  • D-584 Brookview Bridge, (Crotcher's Ferry, Upper Black Walnut Landing)
    D-584 Brookview Bridge, (Crotcher's Ferry, Upper Black Walnut Landing) Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 07-25-2017 Maryland Historical Trust Maryland Inventory of Historic Properties Number: Name: The bridge referenced herein was inventoried by the Maryland State Highway Administration as part of the Historic Bridge Inventory, and SHA provided the Trust with eligibility determinations in February 2001. The Trust accepted the Historic Bridge Inventory on April 3, 2001. The bridged received the following determination of eligibly. MARYLAND HISTORICAL TRUST Eligibility Recommended X Eligibility Not Recommended Criteria: A B C D Considerations: A B C D E F G None Comments: Reviewer, OPS:_Anne E. Bruder Date:_3 April 2001 Reviewer, NR Program :_Peter E.
    [Show full text]
  • Superintendent of Documents, US Government Printing Training
    DOCUMENT RESUME ED 080 795 CE 000 008 TITLE Bridge Inspector's Training Manual.. INSTITUTION Federal Highway Administration (DOT), Washington, D.C. Bureau of Public Roads. PUB DATE 72 NOTE 241p.; Corrected Reprint 1971 AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, D.C..20402 (GPO 19720-930, $2.50) :MRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Building Trades; Civil Engineering; Component ' Building Systems; *Construction (Process); *Curriculum Guides; Equipment; *Inspection; *Job Training; *Manuals; Skilled Occupations; Vocational Education IDENTIFIERS *Bridge Inspectors ABSTRACT A guide for the instruction of bridge inspectors is provided in this manual as well as instructions for conducting and reporting on a bridge inspection. The chapters outline the qualifications necessary to become a bridge inspector. The subject areas covered are: The Bridge Inspector, Bridge Structures, Bridge Inspection Reporting System, Inspection Procedures, Bridge Component Inspection Guidance, and Reports and Recommendations..The duties of an inspector and the requirements for his training are laid out in chapters one through four. Chapter five covers the construction and design aspects of bridges together with the explanation of mechanical principles. The nature and theory of bridge construction occupies approximately two thirds of the manual. The rest of the manual covers the inspection field book, inspection equipment, foundation movements and effects on bridges, the nature of underwater inspections, and structural bridge deficiencies._ There are extensive diagrams, photographs, a glossary of bridge engineering and inspection terms, and a 62-item bibliography. (KP) FILMED FROM BEST AVAILABLE CO BRIDGE INSPECTOR'S TRAINING cc MANUAL 70 _ II I I I 1111VILLI,4 41.
    [Show full text]
  • Article: Types of Movable Bridges and Their Construction Details I
    Article: Types of Movable Bridges and their Construction Details _____________________________________________________________ Introduction Movable bridges are designed and constructed to change its position and occasionally its shapes to permit the passage of vessels and boats in the waterway. This type of bridge is generally cost effective since the utilization of long approaches and high piers are not required. When the waterway is opened to vessels and ships, traffics over the bridge would be stopped and vice-versa. Moveable bridge is a bridge that can change position (and even shape in some cases) to allow for passage of boats below. This has a lower cost of building because it has no high piers and long approaches but its use stops the road traffic when the bridge is open for river traffic. The oldest know movable bridge was built in the 2nd millennium BC in the ancient Egypt. History also knows for one early movable bridge built in Chaldea in the Middle East in 6th century BC. Since then they were almost forgotten until Middle Ages when they again appeared in Europe. Leonardo da Vinci designed and built designed and built bascule bridges in 15th century. He also made designs and built models of swing and a retractable bridges. Industrial revolution allowed for new technologies like mass-produced steel and powerful machines and it is no surprise that new types of modern movable bridges appeared in 19th century. They are built even today but many movable bridges that are still in use in United States are built in early 20th century. In time, some of them are repaired with lighter materials and their gears are replaced with hydraulics.
    [Show full text]
  • Physics: Building Bridges Week 04/20/20 Reading: Annotate the Article: ​ How It Works: Engineering Bridges to Handle Stres
    Physics: Building Bridges Week 04/20/20 Reading: ● Annotate the article: How it Works: Engineering Bridges to Handle Stress ​ ○ Underline important ideas ○ Circle important words ○ Put a “?” next to something you want to know more about Activity: ● Engineer a paper bridge ○ Paper Bridge Challenge Writing: ● Read the article Wildlife Crossings, from bridges to tunnels to overpasses ​ ○ Answer the writing prompt at the end of the article. Física: Construyendo Puentes Semana 04/20/20 Lectura: ● Anote el artículo: How it Works: Engineering Bridges to Handle Stress ​ ○ Subráye ideas importantes ○ Circúle palabras importantes ○ Ponga un "?" junto a algo sobre lo que desea saber más Actividad: ● Construya un puente de papel ○ Paper Bridge Challenge Escritura de la: ● Lea el artículo Wildlife Crossings, from bridges to tunnels to overpasses ​ ○ Responda la pregunta al fin del artículo. How it Works: Engineering Bridges to Handle Stress Mar. 17, 2017 Bridge Masters Bridge Design, Innovations ​ ​ ​ ​ ​ Bridges are generally thought of as static structures. The truth is that they actually act more like dynamic, living beings. They constantly change, responding to different loads, weather patterns, and other types of stress in order to function. In some cases, much like a person undergoing a trauma, bridges must “react” to extremely stressful events like accidents, explosions, fires, earthquakes, and hurricanes in order to survive. In this article, we’ll look at how different types of bridges are engineered to handle stress. We’ll also examine some of the most common forces that put stress on bridges. These stressors can have a big impact on how bridges age, fall into decline, and potentially fail.
    [Show full text]