Fifth Annual DOE Joint Genome Institute User Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summaries of FY 2001 Activities Energy Biosciences
Summaries of FY 2001 Activities Energy Biosciences August 2002 ABSTRACTS OF PROJECTS SUPPORTED IN FY 2001 (NOTE: Dollar amounts are for a twelve-month period using FY 2001 funds unless otherwise stated) 1. U.S. Department of Agriculture Urbana, IL 61801 Biochemical and molecular analysis of a new control pathway in assimilate partitioning Daniel R. Bush, USDA-ARS and Department of Plant Biology, University of Illinois at Urbana- Champaign $72,666 (21 months) Plant leaves capture light energy from the sun and transform that energy into a useful form in the process called photosynthesis. The primary product of photosynthesis is sucrose. Generally, 50 to 80% of the sucrose synthesized is transported from the leaf to supply organic nutrients to many of the edible parts of the plant such as fruits, grains, and tubers. This resource allocation process is called assimilate partitioning and alterations in this system are known to significantly affect crop productivity. We recently discovered that sucrose plays a second vital role in assimilate partitioning by acting as a signal molecule that regulates the activity and gene expression of the proton-sucrose symporter that mediates long-distance sucrose transport. Research this year showed that symporter protein and transcripts turn-over with half-lives of about 2 hr and, therefore, sucrose transport activity and phloem loading are directly proportional to symporter transcription. Moreover, we showed that sucrose is a transcriptional regulator of symporter expression. We concluded from those results that sucrose-mediated transcriptional regulation of the sucrose symporter plays a key role in coordinating resource allocation in plants. 2. U. -
The U.S. Department of Energy's Ten-Year-Plans for the Office Of
U.S. DEPARTMENT OF ENERGY The U.S. Department of Energy’s Ten-Year-Plans for the Office of Science National Laboratories FY 2019 FY 2019 Annual Laboratory Plans for the Office of Science National Laboratories i Table of Contents Introduction ................................................................................................................................................................1 Ames Laboratory ........................................................................................................................................................3 Lab-at-a-Glance ......................................................................................................................................................3 Mission and Overview ............................................................................................................................................3 Core Capabilities .....................................................................................................................................................4 Science Strategy for the Future ..............................................................................................................................8 Infrastructure .........................................................................................................................................................8 Argonne National Laboratory ................................................................................................................................. -
Second Annual DOE Joint Genome Institute User Meeting
Second Annual DOE Joint Genome Institute User Meeting Sponsored By U.S. Department of Energy Office of Science March 28–30, 2007 Marriott Hotel Walnut Creek, California Contents Speaker Presentations Abstracts alphabetical by speaker....................................................................................... 1 Poster Presentations Posters alphabetical by first author. *Presenting author. .................................................. 11 Attendees Current as of March 9, 2007 ............................................................................................. 69 Author Index ................................................................................................................... 77 iii iv Speaker Presentations Abstracts alphabetical by speaker. The JGI Aspergillus niger Genome Project Scott E. Baker ([email protected]) Fungal Biotechnology Team, Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland, WA Aspergillus niger is an economically important filamentous ascomycete fungus that is used in industry for its prodigious production of citric acid and a number of enzymes. The DOE Joint Genome Institute has sequenced the genome of A. niger ATCC 1015, a wildtype strain and the source of the first patented microbial fermentation process for citric acid production. Preliminary annotation indicates the presence of over 250 glycosyl hydrolases. These enzymes are crucial for the degradation of lignocellulosic biomass into simple sugars and other chemical building blocks. -
DOE Human Genome Program Contractor-Grantee Workshop VIII
Human Genome Prozram U.S. Department of Energy Office of Biological and Environmental Research SC-72 GTN Germantown, MD 20874-1290 301/903-6488, Fax: 3011903-8521 E-mail: [email protected] A limited number of print copies are available. Contact: Sheryl Martin Human Genome Management Information System Oak Ridge National Laboratory 1060 Commerce Park, MS 6480 Oak Ridge, TN 37830 865/576-6669, Fax: 865/574-9888 E-mail: [email protected] An electronic version of this document will be available on February 27, 2000, at the Human Genome Project Infonnation Web site under Publications (http:llwww.ornl.gov/hgmis). Abstracts for this publication were submitted via the web. DOE/SC-0002 DOE Human Genome Program Contractor-Grantee Workshop VIII February 27-March 2, 2000 Santa Fe, New Mexico Date Published: February 2000 Prepared for the U.S. Department ofEnergy Office of Science Office of Biological and Environmental Research Washington, DC 20874-1290 Prepa.-ed by Human Genome Management Information System Oak Ridge National Labomtory Oak Ridge, 1N 37830 Managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPAR1MENT OF ENERGY UNDER CONI'RACT DE-AC05-960R22464 Contents1 Introduction to Contractor-Grantee Workshop VIII . 1 Sequencing . 3 1. Sequence Analysis of HUman Chromosome 19 Anne Olsen, Paul Predki, Ken Frankel, Laurie Gordon, Astrid Terry, Matt Nolan, Mark Wagner, Amy Brower, Andrea Aerts, Marne! Bondoc, Kristen Kadner, Manesh Shah, Richard Mural, Miriam Land, Denise Schmoyer, Sergey Petrov, Doug Hyatt, Morey Parang, Jay Snoddy, Ed Uberbacher, and the JGI Production Sequencing Team . 3 2. Draft Sequencing Procedures for Chromosome 16 Sequencing Mark 0. -
An Assessment of ARPA-E
THE NATIONAL ACADEMIES PRESS This PDF is available at http://www.nap.edu/24778 SHARE An Assessment of ARPA-E DETAILS 238 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-45945-7 | DOI: 10.17226/24778 CONTRIBUTORS GET THIS BOOK Committee on Evaluation of the Advanced Research Projects Agency-Energy (ARPA-E); Board on Science, Technology, and Economic Policy; Policy and Global Affairs; Board on Energy and FIND RELATED TITLES Environmental Systems; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. An Assessment of ARPA-E AN ASSESSMENT OF ARPA-E Committee on Evaluation of the Advanced Research Projects Agency-Energy (ARPA-E) Board on Science, Technology, and Economic Policy Policy and Global Affairs Board on Energy and Environmental Systems Division on Engineering and Physical Sciences A Report of PREPUBLICATION COPY—UNEDITED PROOFS Copyright © National Academy of Sciences. All rights reserved. An Assessment of ARPA-E THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Contract No. -
Table of Contents (PDF)
September 25, 2018 u vol. 115 u no. 39 From the Cover 9714 Social networks and partisan bias E9153 mRNA-based cancer vaccine E9182 Gene therapy and muscular dystrophy 9672 Ion-conducting perovskite materials 9779 Arginine deprivation and tuberculosis Contents THIS WEEK IN PNAS 9641 In This Issue Cover image: Pictured is a cliff exposed by glacial retreat. Douglas Guilbeault et al. found that in bipartisan social LETTERS (ONLINE ONLY) networks, liberals’ and conservatives’ interpretations of data on Arctic sea ice E9026 Pitfall of big databases became more accurate and less biased Zhangqiang You, Junhua Hu, Qing Wei, Chunwang Li, Xiaofei Deng, and Zhigang Jiang upon exposure to each other’s opinions E9029 Reply to You et al.: The World Database on Protected Areas is an invaluable in the absence of political imagery. resource for global conservation assessments and planning However, such effects were not Paul R. Elsen, William B. Monahan, and Adina M. Merenlender observed when participants were exposed to each other’s opinions in the presence of political party logos. The OPINION—Leading scientists discuss current issues results suggest that exposure to 9642 Reconsidering bioenergy given the urgency of climate protection opposing views can reduce partisan bias John M. DeCicco and William H. Schlesinger in interpretation of climate data, but only in the absence of political cues. See the article by Guilbeault et al. on pages PROFILE 9714–9719. Image courtesy of Unsplash/ 9646 Profile of Yuval Peres Yiran Ding. Sandeep Ravindran See Inaugural Article on page 9666 COMMENTARIES 9649 More security may actually make us feel less secure Vesla M. -
From Telomeres to Empathy Highlights from the EMBO Meeting 2010 by CRISTINA JIMÉNEZ
AUTUMN 2010 encounters Newsletter of the European Molecular Biology Organization From telomeres to empathy Highlights from The EMBO Meeting 2010 BY CRISTINA JIMÉNEZ ◗ In the early 1980s, after a meeting at the Gordon Research Conference, Elizabeth Blackburn and Jack Szostak discovered that telo meres include a specifi c DNA sequence. 29 years on, the fortuitous encounter resulted in a Nobel Prize for discovering the structure Elizabeth Frans de Waal Blackburn of molecular caps called telomeres and for working out how they protect chromosomes from degradation. This is only one fi brillation, a condition in Richard example of how necessary meetings can be for the advancement of sci- which there is uncoordinated Losick ence. They provide a perfect setting for junior researchers to approach contraction of the cardiac prospective supervisors – and vice versa. They can lead to new part- muscle of the ventricles in the nerships between research groups working in similar fi elds. And they heart, making them quiver also inspire open discussion and collaboration between institutions. rather than contract properly. The EMBO Meeting, held in September in Barcelona, gathered more Haïssaguerre explained how than 1,300 researchers from a broad scope of disciplines, extending he is currently having great from synthetic, developmental and evolutionary biologists to plant success in curing hundreds of scientists and neuroscientists. “Postdocs and PhD students are the patients every year from this main benefi ciaries of these meetings,” pointed out Luis Serrano, who sort of arrhythmia. Austin co-organized the meeting with Denis Duboule. Smith, the other prize winner, | Barcelona © Christine Panagiotidis The meeting kicked off on Saturday 4 September with Richard Losick gave a lecture on stem cells and the Design principles of pluripotency. -
A N N U a L R E P O R T 2 0
0 1 0 2 Acknowledgements T R HFSPO is grateful for the support of the following organizations: O P Australia E R National Health and Medical Research Council (NHMRC) L Canada A Canadian Institute of Health Research (CIHR) U Natural Sciences and Engineering Research Council (NSERC) N European Union N European Commission - A Directorate General Information Society (DG INFSO) European Commission - Directorate General Research (DG RESEARCH) France Communauté Urbaine de Strasbourg (CUS) Ministère des Affaires Etrangères et Européennes (MAEE) Ministère de l’Enseignement Supérieur et de la Recherche (MESR) Région Alsace Germany Federal Ministry of Education and Research (BMBF) India Department of Biotechnology (DBT), Ministry of Science and Technology Italy Ministry of Education, University and Research (CNR) Japan Ministry for Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Republic of Korea Ministry of Education, Science and Technology (MEST) New Zealand Health Research Council (HRC) Norway Research Council of Norway (RCN) Switzerland State Secretariat for Education and Research (SER) United Kingdom The International Human Frontier Science Biotechnology and Biological Sciences Research Program Organization (HFSPO) Council (BBSRC) 12 quai Saint Jean - BP 10034 Medical Research Council (MRC) 67080 Strasbourg CEDEX - France Fax. +33 (0)3 88 32 88 97 United States of America e-mail: [email protected] National Institutes of Health (NIH) Web site: www.hfsp.org National Science Foundation (NSF) Japanese web site: http://jhfsp.jsf.or.jp HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontiers of the life sciences. -
FORGING the FUTURE of the DOE JGI OUR VISION the User Facility Pioneering Functional Genomics to Solve the Most Relevant Bioenergy and Environmental Problems U.S
U.S. Department of Energy Joint Genome Institute (JGI) A 10-Year Strategic Vision September, 2012 FORGING THE FUTURE OF THE DOE JGI OUR VISION The user facility pioneering functional genomics to solve the most relevant bioenergy and environmental problems U.S. Department of Energy Joint Genome Institute (JGI) A 10-Year Strategic Vision FORGING THE FUTURE OF THE DOE JGI September 2012 This document contains three sections: I. Introduction II. Background-Science Drivers III. Capabilities The Introduction provides a high level overview of the DOE Joint Genome Institute (DOE JGI) and how it plans to evolve as a genomic user facility to meet the scientific needs of energy and environmental research over the next decade. The Background-Science Driver section provides an assessment of the major scientific energy and environmental problems that the DOE JGI needs to enable its users to solve. Finally the Capabilities component contains three sections, “pillars”, which outline the capabilities and operating principles of the DOE JGI as it transitions into becoming a next-generation genome science user facility. TABLE OF CONTENTS I. Introduction.................................................................1 Executive Summary ....................................................1 Transition into a Next-Generation Genome Science User Facility ................5 II. Background – Science Drivers ................................................6 Mission Areas.........................................................6 Strategic Capabilities ...................................................8 -
Trip the Light Magnetic Stimulate Flowering Independently of Research Center in San Jose, California, and Science 325, 973–976 (2009) Daylight Cues
NATUREVol 460|27|Vol August 460|27 2009 August 2009 RESEARCH HIGHLIGHTS Paul Rothemund of the California PHYSICS — molecules that prevent translation of Institute of Technology in Pasadena, messenger RNAs into proteins — can Gregory Wallraff of the IBM Almaden Trip the light magnetic stimulate flowering independently of Research Center in San Jose, California, and Science 325, 973–976 (2009) daylight cues. their colleagues now show that DNA, folded Researchers have coaxed the tiny particles They find that levels of microRNA-156 origami-style into triangles measuring 127 known as quantum dots to change their decline as the plant ages, parallelling a rise nanometres on each side, can slot neatly into magnetic properties simply by shining light in expression of the genes it seems to silence. matching depressions carved onto a silica on them. The finding is another development The products of these genes, called SPLs, set surface. in the quest to produce ‘spintronic’ devices off floral development. In principle, each chunk of DNA origami that rely on particles’ spin states, rather than can be attached to an individual molecule such their charge, to convey information. GEOSCIENCE as a conducting nanowire or a fluorescent By adding manganese to a chemical protein. As a result, these structures offer a suspension, or colloid, of cadmium Ground down way to control the positioning and orientation selenide quantum dots, Daniel Gamelin Nature Geosci. doi:10.1038/ngeo616 (2009) of single molecules using straightforward at the University of Washington in Glaciers are often said to be better than rivers lithographic techniques. Seattle and his co-workers were able to at eroding the land, in part because of the manipulate the particles’ magnetism in dramatic landscapes they leave behind. -
Pnas11052ackreviewers 5098..5136
Acknowledgment of Reviewers, 2013 The PNAS editors would like to thank all the individuals who dedicated their considerable time and expertise to the journal by serving as reviewers in 2013. Their generous contribution is deeply appreciated. A Harald Ade Takaaki Akaike Heather Allen Ariel Amir Scott Aaronson Karen Adelman Katerina Akassoglou Icarus Allen Ido Amit Stuart Aaronson Zach Adelman Arne Akbar John Allen Angelika Amon Adam Abate Pia Adelroth Erol Akcay Karen Allen Hubert Amrein Abul Abbas David Adelson Mark Akeson Lisa Allen Serge Amselem Tarek Abbas Alan Aderem Anna Akhmanova Nicola Allen Derk Amsen Jonathan Abbatt Neil Adger Shizuo Akira Paul Allen Esther Amstad Shahal Abbo Noam Adir Ramesh Akkina Philip Allen I. Jonathan Amster Patrick Abbot Jess Adkins Klaus Aktories Toby Allen Ronald Amundson Albert Abbott Elizabeth Adkins-Regan Muhammad Alam James Allison Katrin Amunts Geoff Abbott Roee Admon Eric Alani Mead Allison Myron Amusia Larry Abbott Walter Adriani Pietro Alano Isabel Allona Gynheung An Nicholas Abbott Ruedi Aebersold Cedric Alaux Robin Allshire Zhiqiang An Rasha Abdel Rahman Ueli Aebi Maher Alayyoubi Abigail Allwood Ranjit Anand Zalfa Abdel-Malek Martin Aeschlimann Richard Alba Julian Allwood Beau Ances Minori Abe Ruslan Afasizhev Salim Al-Babili Eric Alm David Andelman Kathryn Abel Markus Affolter Salvatore Albani Benjamin Alman John Anderies Asa Abeliovich Dritan Agalliu Silas Alben Steven Almo Gregor Anderluh John Aber David Agard Mark Alber Douglas Almond Bogi Andersen Geoff Abers Aneel Aggarwal Reka Albert Genevieve Almouzni George Andersen Rohan Abeyaratne Anurag Agrawal R. Craig Albertson Noga Alon Gregers Andersen Susan Abmayr Arun Agrawal Roy Alcalay Uri Alon Ken Andersen Ehab Abouheif Paul Agris Antonio Alcami Claudio Alonso Olaf Andersen Soman Abraham H. -
Meet the Director: Nigel Mouncey, Joint Genome Institute
18 March 2019 Communique provides a biweekly review of recent Office of Science Communications and Public Affairs work, including feature stories, science highlights, social media posts, and more. This is only a sample of our recent work promoting research done at universities, national labs, and user facilities throughout the country. Please note that some links may expire after time. Meet the Director: Nigel Mouncey, Joint Genome Institute Biological parents pass down physical traits to their children. Microbial geneticist Nigel Mouncey's father passed down not just his genes, but a love of the science examining them as well. "I've always been into science. My dad was a microbiologist," Mouncey said. He and his father still joke about him inheriting that trait. "It was a no-brainer to pursue microbiology, given the genetic inheritance from my father." Like his dad, Mouncey first pursued microbiology. But as he finished his Ph.D. at the University of Sussex, scientists were wrapping up the first-ever sequencing of an organism's DNA. This new field sparked his interest. Twenty-four years later, Mouncey is now the director of the Joint Genome Institute, an Office of Science user facility at Berkeley Laboratory. Both Mouncey and the JGI have been studying genomics since the field's early years and evolving along the way. With Mouncey at the helm, the JGI continues to grow as a leader in the field of genomics. Click here to read more about Nigel Mouncey and his leadership of the Joint Genome Institute. NEWS CENTER The Office of Science posted 64 news pieces between 3/4/2019 and 3/17/2019, including 28 university articles and 29 pieces from the labs and user facilities.