Standard Operating Procedures Standard Operating Procedures Tolman Laboratory

Total Page:16

File Type:pdf, Size:1020Kb

Standard Operating Procedures Standard Operating Procedures Tolman Laboratory Tolman Group Standard Operating Procedures Standard Operating Procedures Tolman Laboratory v.7 updated May 2016 The intent of this manual is to inform you, the chemist, of the potential hazards that exist in the laboratory. This is by no means a manual to memorize or a manual of instruction. These procedures are not intended to be exhaustive or to serve as a single method of training. The procedures outlined here are meant as a refresher for those who have already received training by senior lab members. If in doubt of any procedure, please ask someone before carrying out said procedure. Asking for help when in doubt is the responsibility of every lab member. The first time you use all equipment and perform new experimental procedures, you should have someone work with you to teach you and to inform you of potential hazards, and to help prevent accidents. The purpose of this manual is to supplement personal one-on-one training with safety information that will protect you personally, as well as other lab members. It is important to make sure that you minimize your exposure to chemicals and decrease the chances of any accidents. By reviewing (and later referring to) this manual, you can be aware of the potential hazards in the lab and learn careful techniques. It is your responsibility to learn about safety and proper handling of chemicals from the resources available, including your laboratory members, other persons in the department, and the Chemical Hygiene Plan, which can be accessed via the web, from the Safety link on the Chemistry Webpage www.chem.umn.edu, or http://www.chem.umn.edu/services/safety/. This manual contains helpful links to safety procedures, Material Safety Data Sheets (MSDS), waste disposal, and much more. The general rule in our lab is that most glassware is shared, so please clean up after yourself. Make sure all glassware is clean using the appropriate solvents and procedures to clean it. Also, syringes should be washed after use, using a 5 solvent wash (usually tetrahydrofuran (THF), methanol, acid water, distilled water, and finally acetone). We generally store the syringes in the oven. Sign up for equipment (using the shared group Google Calendar) 1 Tolman Group Standard Operating Procedures TABLE OF CONTENTS I. Guidelines for Good Lab Citizenship in the Tolman Lab ................................................... 3 a. Office Etiquette ...................................................................................................................................... 3 b. Replace what you use ............................................................................................................................ 3 c. Glass and Equipment Repair ................................................................................................................. 4 d. Balance Etiquette .................................................................................................................................. 4 e. Cleaning Procedures: Base/Acid Baths ................................................................................................ 4 f. Glassware Drawers ................................................................................................................................ 5 g. Fume Hoods .......................................................................................................................................... 5 h. Oil Baths ................................................................................................................................................ 5 i. Notebook Page Format .......................................................................................................................... 5 j. Exit Checklist ......................................................................................................................................... 7 II. Tolman Group Responsibilities/Group Member Contact Information ............................. 8 III. Standard Operating Procedures (SOPs) for the Tolman Lab ............................................ 8 IV. Chemical Storage, Use, and Disposal .................................................................................... 8 a. Using the Chemical Inventory ............................................................................................................... 8 b. Storing and Labeling Chemicals ........................................................................................................... 9 c. Purchasing Chemicals ........................................................................................................................... 9 d. Standard Operating Cards (SOCs) ..................................................................................................... 10 e. Diamines .............................................................................................................................................. 11 f. Chemical hazards: Toxicity and peroxide forming chemicals ............................................................. 12 g. Techniques for handling pyrophoric liquids ....................................................................................... 13 h. Techniques for handling fuming/concentrated acids .......................................................................... 16 i. Techniques for handling elemental halides ......................................................................................... 17 j. Solvent health hazards ......................................................................................................................... 22 i. Choosing gloves ................................................................................................................................... 23 k. Scaling-up Reactions ........................................................................................................................... 24 l. Manifesting Chemical Waste ................................................................................................................ 30 m. Materials Safety Data Sheets (MSDS) ................................................................................................ 32 V. General Procedures .............................................................................................................. 32 a. Syringes and needles ........................................................................................................................... 32 b. Safety and sharps ................................................................................................................................ 32 c. Proper use of chemical fume hoods ..................................................................................................... 33 d. Gas tanks ............................................................................................................................................. 33 e. Dispensing liquid N2 tank .................................................................................................................... 34 f. Elemental Analysis ............................................................................................................................... 34 VI. Airfree Procedures ................................................................................................................ 34 a. Oil Baths .............................................................................................................................................. 34 b. Safety and high pressure reaction flasks ............................................................................................. 35 c. Vacuum Oven and Vacuum line procedures ....................................................................................... 35 d. Vacuum Pump Maintenance ................................................................................................................ 37 e. General Schlenk line manipulation review .......................................................................................... 38 f. Vacuum transfer of solvents using Schlenk line ................................................................................... 40 g. Solvent purification system (SPS) ....................................................................................................... 41 VII. Equipment ........................................................................................................................... 41 a. Comments that apply to all equipment ................................................................................................ 41 2 Tolman Group Standard Operating Procedures b. Dryboxes .............................................................................................................................................. 42 c. UV-vis and cryostat ............................................................................................................................. 50 d. FT-IR ................................................................................................................................................... 52 e. GC-MS ................................................................................................................................................. 53 f. React-IR ................................................................................................................................................ 53 g. Electrochemistry .................................................................................................................................
Recommended publications
  • Laboratory Glassware N Edition No
    Laboratory Glassware n Edition No. 2 n Index Introduction 3 Ground joint glassware 13 Volumetric glassware 53 General laboratory glassware 65 Alphabetical index 76 Índice alfabético 77 Index Reference index 78 [email protected] Scharlau has been in the scientific glassware business for over 15 years Until now Scharlab S.L. had limited its sales to the Spanish market. However, now, coinciding with the inauguration of the new workshop next to our warehouse in Sentmenat, we are ready to export our scientific glassware to other countries. Standard and made to order Products for which there is regular demand are produced in larger Scharlau glassware quantities and then stocked for almost immediate supply. Other products are either manufactured directly from glass tubing or are constructed from a number of semi-finished products. Quality Even today, scientific glassblowing remains a highly skilled hand craft and the quality of glassware depends on the skill of each blower. Careful selection of the raw glass ensures that our final products are free from imperfections such as air lines, scratches and stones. You will be able to judge for yourself the workmanship of our glassware products. Safety All our glassware is annealed and made stress free to avoid breakage. Fax: +34 93 715 67 25 Scharlab The Lab Sourcing Group 3 www.scharlab.com Glassware Scharlau glassware is made from borosilicate glass that meets the specifications of the following standards: BS ISO 3585, DIN 12217 Type 3.3 Borosilicate glass ASTM E-438 Type 1 Class A Borosilicate glass US Pharmacopoeia Type 1 Borosilicate glass European Pharmacopoeia Type 1 Glass The typical chemical composition of our borosilicate glass is as follows: O Si 2 81% B2O3 13% Na2O 4% Al2O3 2% Glass is an inorganic substance that on cooling becomes rigid without crystallising and therefore it has no melting point as such.
    [Show full text]
  • Site-Directed Spin Labeling of Large Riboswitches Using Click Chemistry
    Site-Directed Spin Labeling of Large Riboswitches Using Click Chemistry Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Mark Kerzhner aus Winnyzja, Ukraine Bonn 2018 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Michael Famulok 2. Gutachter: Prof. Dr. Olav Schiemann Tag der Promotion: 25.10.2018 Erscheinungsjahr: 2019 Parts of this thesis have been published in: Kerzhner, M.; Abdullin, D.; Więcek, J.; Matsuoka, H.; Hagelueken, G.; Famulok, M.; Schiemann, O., Post-synthetic Spin-Labeling of RNA through Click Chemistry for PELDOR Measurments, Chem. Eur.J. 2016, 22, 12113 –12121. Kerzhner, M.; Matsuoka, H.; Wuebben, C.; Famulok, M.; Schiemann, O., High- Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy, Biochemistry, 2018, 57, 2923–2931. Danksagung An erster Stelle möchte ich Herrn Prof. Dr. Michael Famulok danken, dass er mir die Chance ermöglicht hat, an diesem anspruchsvollen aber hochinteressanten Projekt zu arbeiten. Außerdem bin ich ihm sehr dankbar, dass er mir über die Jahre sein Vertrauen geschenkt hat. Großer Dank gilt außerdem dem Kooperationspartner Herrn Prof. Dr. Olav Schiemann, ohne dessen Unterstützung die Umsetzung dieses Projektes nicht möglich gewesen wäre. Er und seine Arbeitsgruppe haben entscheidende Beiträge zu den erzielten Ergebnissen dieser Arbeit geleistet. Allen Mitgliedern meiner Prüfungskommission danke ich für die Begutachtung dieser Dissertation. Ich danke meinen Kooperationspartnern aus der Arbeitsgruppe von Herrn Prof. Dr. Olav Schiemann. Bei Dr. Dinar Abdullin, Dr. Hideto Matsuoka und Dr. Andreas Meyer bedanke ich mich herzlich für die zahlreichen PELDOR-Messungen sowie Hilfe bei verschiedenen Fragestellungen.
    [Show full text]
  • Dalton Transactions
    Dalton Transactions View Article Online PAPER View Journal | View Issue The role of neutral Rh(PONOP)H, free NMe2H, boronium and ammonium salts in the dehydro- Cite this: Dalton Trans., 2019, 48, 14724 coupling of dimethylamine-borane using the 2 + cationic pincer [Rh(PONOP)(η -H2)] catalyst†‡ E. Anastasia K. Spearing-Ewyn,a Nicholas A. Beattie,b Annie L. Colebatch, a Antonio J. Martinez-Martinez, a Andrew Docker,a Timothy M. Boyd,a Gregg Baillie,b Rachel Reed,b Stuart A. Macgregor *b and Andrew S. Weller *a 1 F 3 The σ-amine-borane pincer complex [Rh(PONOP)(η -H3B·NMe3)][BAr 4][2, PONOP = κ -NC5H3-2,6- t 2 F (OP Bu2)2] is prepared by addition of H3B·NMe3 to the dihydrogen precursor [Rh(PONOP)(η -H2)][BAr 4], 1 F 1. In a similar way the related H3B·NMe2H complex [Rh(PONOP)(η -H3B·NMe2H)][BAr 4], 3, can be made in situ, but this undergoes dehydrocoupling to reform 1 and give the aminoborane dimer [H2BNMe2]2. Creative Commons Attribution 3.0 Unported Licence. NMR studies on this system reveal an intermediate neutral hydride forms, Rh(PONOP)H, 4, that has been prepared independently. 1 is a competent catalyst (2 mol%, ∼30 min) for the dehydrocoupling of H3B·Me2H. Kinetic, mechanistic and computational studies point to the role of NMe2H in both forming the neutral hydride, via deprotonation of a σ-amine-borane complex and formation of aminoborane, and Received 17th August 2019, closing the catalytic cycle by reprotonation of the hydride by the thus-formed dimethyl ammonium Accepted 3rd September 2019 + + [NMe2H2] .
    [Show full text]
  • Viruses at Glycocalyx Barriers SI Bioarxiv
    Glycocalyx crowding with synthetic mucin mimetics strengthens interactions between soluble and virus-associated lectins and cell surface glycan receptors Authors: aDaniel J. Honigfort, b, † Meghan O. Altman, bPascal Gagneux, and Kamil Godula*,a Author Affiliation: aDepartment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA bDepartment of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA Supporting Information 1 Table of contents: Instrumentation and reagents. ............................................................................................................ 4 Synthesis of propargyl glycosides. ........................................................... Error! Bookmark not defined. Scheme S1. Preparation of β-propargyl glycosides via the Schmidt glycosylation.Error! Bookmark not defined. Synthesis of glycopolymers GP-S/M/L ............................................................................................... 5 Scheme S2. Synthesis of Glycopolymers through iterative CuAAc click strategy. ................................ 5 General Procedure for the preparation of poly(epichlorohydrin) (P1). ............................................ 5 General Procedure for the end-functionalization of poly(epichlorohydrin) (P2). ............................ 6 General Procedure for the preparation of poly(Glycidyl Azide) (P3). .............................................. 6 General procedure for the preparation of Glycopolymers
    [Show full text]
  • Elements of a Glovebox Glove Integrity Program
    RESEARCH ARTICLE Elements of a Glovebox Glove Integrity Program Programmatic operations at the Los Alamos National Laboratory Plutonium Facility involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator’s breathing zone are prevented through the use of a variety of gloveboxes. The glovebox gloves are the weakest part of this engineering control. As a matter of good business practice, a team of glovebox experts from Los Alamos National Laboratory has been assembled to proactively investigate processes and procedures that minimize unplanned openings in the glovebox gloves, i.e., breaches and failures. Working together, they have developed the key elements of an efficient Glovebox Glove Integrity Program (GGIP). In the following report, the consequences of a glove failure or breach are identified, the acceptable risk is clarified, and elements needed to implement an efficient GGIP are discussed. By Michael E. Cournoyer, INTRODUCTION Through an integrated approach, Julio M. Castro, controls have been developed and Michelle B. Lee, Plutonium requires a high degree of implemented that come from input Cindy M. Lawton, confinement and continuous control from glovebox workers, scientists, Young Ho Park, measures in nuclear research labora- health physicists, statisticians, and phy- Roy Lee, tories because of its extremely low sical therapists. Working together, they Stephen Schreiber permissible body burden.1 Methods have developed an efficient Glovebox and equipment must be designed Glove Integrity Program (GGIP). toward the ultimate accomplishment Recent accomplishes of this team have 2–5 Michael E.
    [Show full text]
  • General Glovebox Rules
    Glovebox etiquette in the Lewis group Introduction: The gloveboxes are here to assist you in oxygen and water sensitive chemistry. The following guidelines are given to protect the box atmosphere and longevity and ultimately your chemistry and that of the whole group. If you feel that these guidelines impede your ability to do work, talk about it with the person in charge of the glovebox and they will help assist you in designing a set up that will work for you! Disregarding the guidelines compromises your chemistry as well as everyone elses. Available boxes: *Big Bird – Vac, purchased 2008. Drybox, Ar. Noyes 227B. Use for electrochemistry. O2 < 0.5 ppm *Snuffleupagus – Vac, older than time. Drybox, N2. Noyes 227B. Use for electrochemistry and storage. Absolutely no bad solvents/chemicals with the exception of CH3CN open for <5 minutes at a time. O2 < 1 ppm *Oscar the Grouch – Vac, older than time. Flushbox, N2. Noyes 227B. Alcohol OK. Electrochemistry, set-up, surface chemistry. O2 < 10 ppm *Elmo – Vac, purchased 2008. Drybox, N2. BI 032. Electrochemistry and chemical synthesis. O2 < 0.5 ppm *Count von Count – Mbraun, less old than time. Drybox, N2. BI 032. Don, Tony, electrochemistry and set up. O2 < 1 ppm *Cookie Monster – Vac, eh? As old as time?. Flushbox, N2. BI 023. Alcohol OK. Electrochemistry, set-up, surface chemistry. Connected to XPS. O2 < 10 ppm Note: Contact Box Czar before using a new box – even if you are trained on the old box. If nothing else, so they can keep track of who is using what and include you on important info for that box.
    [Show full text]
  • Chem 1140; Techniques for Handling Air-Sensitive Compounds
    P. Wipf 1 Chem 1140 Chem 1140; Techniques for Handling Air-Sensitive Compounds • Introduction • The Glove Box • Schlenk Techniques • Drying and Degassing Solvents What are Air-Sensitive Compounds? Materials which oxidize, decompose or even explode under the influence of oxygen or moisture. • Pyrophoric Compounds Metal alkyls and aryls e.g. RMgX, RLi, RNa,R3Al, R2Zn Metal carbonyls e.g. Ni(CO)4, Fe(CO)5, Co2(CO)8 Alkali metals e.g. Na, K, Cs Metal powders e.g. Al, Co, Fe, Mg, Pd, Pt, Zn Metal hydrides e.g. NaH, KH, LiAlH4 Hydrides e.g. B2H6, PH3, AsH3 Boranes, phosphines, arsenes, etc. e.g. Et3B, R3P, R3As • Chemicals which react violently with water Metal hydrides, metal amides (NaNH2), metal alkyls and aryls, metals, metal powders, hydrides, many main group halides (BCl3, BF3, AlCl3, PCl3, SiCl4), inorganic acid halides (POCl3, SOCl2), low molecular weight organic acid halides and anhydrides. Glove boxes and Schlenk techniques do NOT protect from explosive or shock sensitive materials or mixtures!!! Also, they only provide limited protection from toxic compounds. P. Wipf 2 Chem 1140 The Glove Box • The best way to keep things away from atmospheric oxygen and water is to work in a fully enclosed “bench top,” containing an “inert atmosphere,” which one could reach into with gloves. Such a device is called a “glove box” or a “dry box”. There are also cheap “glove bags”, bags you can fill with inert gas and reach into with attached gloves. The Glove Box A glove box has four important components: 1. The actual “box” is a large aluminum chamber with a plastic front window and two impressive looking gloves.
    [Show full text]
  • Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear Or Radiological Emergency
    CONTAMINATION EPR-INTERNAL AND RESPONSE PREPAREDNESS EMERGENCY EPR-INTERNAL EPR-INTERNAL CONTAMINATION CONTAMINATION 2018 2018 2018 Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear or Radiological Emergency Contaminatedin aNuclear with Radionuclides Internally of Persons Management Medical Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear or Radiological Emergency A Manual for Medical Personnel Jointly sponsored by the Endorsed by AMERICAN SOCIETY FOR RADIATION ONCOLOGY INTERNATIONAL ATOMIC ENERGY AGENCY V I E N N A ISSN 2518–685X @ IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS IAEA SAFETY STANDARDS Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. The publications by means of which the IAEA establishes standards are issued in the IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport safety and waste safety. The publication categories in the series are Safety Fundamentals, Safety Requirements and Safety Guides. Information on the IAEA’s safety standards programme is available on the IAEA Internet site http://www-ns.iaea.org/standards/ The site provides the texts in English of published and draft safety standards. The texts of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the IAEA Safety Glossary and a status report for safety standards under development are also available. For further information, please contact the IAEA at: Vienna International Centre, PO Box 100, 1400 Vienna, Austria. All users of IAEA safety standards are invited to inform the IAEA of experience in their use (e.g.
    [Show full text]
  • Standard Glovebox Workstations
    STANDARD GLOVEBOX WORKSTATIONS www.mbraun.com Light Hood *Freezer Flange DN 40 KF Adjustable Shelving Large Antechamber *Analyzers *Small Antechamber Fine Filter Stainless Steel Piping Programmable Logic Controller Glove Ports Gas Purification System Castors for Easy Mobility Vacuum Pump Leveling Feet Foot Switch *LABstar glovebox workstation is pictured with optional features MBRAUN GLOVEBOX WORKSTATION GLOVEBOX MBRAUN Light Hood Touch Screen PLC Controller *Freezer Adjustable Shelving Large Antechamber *Analyzers Flange DN 40 KF Glove Ports *Small Antechamber Stainless Steel Piping Fine Filter Gas Purification System Castors for Easy Mobility Leveling feet Foot Switch Flow Meter *UNIlab glovebox workstation is pictured with optional features Light Hood Color Touch Screen PLC Controller Adjustable Shelving Large Antechamber Glove Ports *Small Antechamber Fine Filter Flange DN 40 KF Gas Purification Single (SP) or Double (DP) Purifier Unit *External Solvent Trap Castors for Easy Mobility Vacuum Pump Foot Switch Leveling Feet *LABmaster SP/DP glovebox workstation is pictured with optional features GLOVEBOX CONFIGURATIONS MAY VARY LABstar Standard Features: • Programmable logic controller • Large main antechamber • Three glovebox sizes available LAB • Vacuum pump • Automatic regenerable H O/O WORKSTATION 2 2 single column inert gas purifier • World-wide operation using standard power supply The LABstar workstation is a ready to operate high • Integrated high vacuum feedthroughs • Stainless steel adjustable shelving quality glovebox system
    [Show full text]
  • LC-1 Stand Alone Glovebox Operation Manual
    LC-1 Stand Alone Glovebox Operation Manual Table of Contents 1. System Overview Page 4 2. Installation Instructions Page 5 - 8 2.1 Attach Gloves Page 5 2.2 Glovebox Connections Page 6 - 8 3. Operational Instructions Page 9 - 39 3.1 Purge System Page 9 - 13 3.1.1 Purging without a Purge Valve Page 9 - 10 3.1.2 Purging with a Manual Purge Valve Page 11 - 12 3.1.3 Purging with an Automatic Purge Valve Page 13 3.2 Normal / Circulation Mode Page 14 - 15 3.3 Antechamber Operation Page 16 - 25 3.3.1 Antechamber Door Operation for Systems Without an Page 16 -17 Antechamber 3.3.2 Antechamber Door Operation for Systems With an Page 18 - 21 Antechamber 3.3.2.1 Bringing Items into Glovebox Page 18 - 20 3.3.2.2 Removing Items from Glovebox Page 21 3.3.3 Mini Antechamber Operation Page 22 - 23 3.3.4 Automatic Antechamber Control Page 24 - 25 3.4 Regeneration Mode Page 26 - 27 3.5 Service Mode Page 28 - 32 3.6 Analyzers Page 33 3.7A Manual Solvent Removal System Operation & Maintenance Page 34 - 35 3.7.1A Manual Solvent Removal System Operation Page 34 3.7.2A Manual Solvent Removal System Maintenance Page 35 3.7B Automatic Solvent Removal System Operation Page 36 - 37 3.7.1B Automatic Solvent Removal System Operation Page 36 3.7.2B Automatic Solvent Removal Reactivation Page 37 3.8 Freezer Operation and Maintenance Page 38 - 39 3.8.1 Freezer Operation Page 38 3.8.2 Freezer Maintenance Page 39 3.9 Box Cooling Operation Page 40 2 3.10 Alarm Messages Page 41 - 42 3.11 Window Removal Page 43 3.12 Window Replacement Page 44 3.13 Maintenance Schedule & Recommended Spare Parts Page 45 3 LC-1 Stand Alone Glovebox Operation Manual Section 1: System Overview Antechamber Star Knobs Antechamber Evacuate/Refill Buttons -35°C Freezer Vacuum Gauge Mini Antechamber Window Frame Mini Antechamber Evacuate/Refill Valve Glove Ports PLC Controller Chiller Butyl Gloves Electrical Cabinet Foot Pedals Gas Purification System Power Switch Solvent Removal System Blower Vacuum Filter Pump Column 4 Section 2: Installation Instructions 2.1 Attach Gloves -Place glove onto the glove port.
    [Show full text]
  • A Smartphone Biosensor Based on Analysing Structural Colour of Porous Silicon† Cite This: Analyst, 2019, 144, 3942 Tengfei Cao, a Yiliang Zhao, a Crystal A
    Analyst View Article Online PAPER View Journal | View Issue A smartphone biosensor based on analysing structural colour of porous silicon† Cite this: Analyst, 2019, 144, 3942 Tengfei Cao, a Yiliang Zhao, a Crystal A. Nattoo, b,c Rabeb Layouni d and Sharon M. Weiss *a,c We report a smartphone compatible, low-cost porous silicon biosensor, which correlates the structural colour of a porous silicon microcavity (PSiM) to spectral peak position. Molecules captured in the PSiM cause a colour change that can be quantified through image analysis. Minimal external accessories are employed. Spectrometer measurements of the PSiM reflectance spectrum shifts are carried out concur- rently with the smartphone measurements to benchmark the accuracy of the smartphone biosensor. We Received 4th January 2019, estimate that the smartphone biosensor supports an equivalent accuracy of 0.33 nm for the detection of Accepted 5th May 2019 colour changes corresponding to spectral shifts of the PSiM. Biosensing functionality is demonstrated DOI: 10.1039/c9an00022d using a biotin–streptavidin assay with an estimated detection limit of 500 nM. The PSiM-smartphone bio- rsc.li/analyst sensor is a promising platform for label-free point of care diagnostics. 1. Introduction designed for a single purpose instead of multi-parameter testing. Moreover, the data processing capabilities of these Point-of-care (POC) testing is a fast-growing sector in the sensors are usually basic and not intended for more compli- diagnostics market due to the convenience and low cost of cated detection and analysis tasks. Over the past few years, POC measurements.1 Biosensors are the crucial elements of smartphones have emerged as a promising host platform for POC diagnostics, which transform biomolecular or medical POC diagnostics systems due to their ubiquitous availability information into easily understandable readouts.
    [Show full text]
  • PDF (4 Chapter 2.Pdf)
    -82- Chapter 2 The Synthesis and Reactivity of Group 7 Carbonyl Derivatives Relevant to Synthesis Gas Conversion -83- Abstract Various Group 7 carbonyl complexes have been synthesized. Reduction of these complexes with hydride sources, such as LiHBEt3, led to the formation of formyl species. A more electrophilic carbonyl precursor, [Mn(PPh3)(CO)5][BF4], reacted with transition metal hydrides to form a highly reactive formyl product. Moreover, a diformyl species was obtained when [Re(CO)4(P(C6H4(p-CF3))3)2][BF4] was treated with excess LiHBEt3. The synthesis and reactivity of novel borane-stabilized Group 7 formyl complexes is also presented. The new carbene-like species display remarkable stability compared to the corresponding “naked” formyl complexes. Reactivity differs significantly whether BF3 or B(C6F5)3 binds the formyl oxygen. Unlike other analogs, Mn(CO)3(PPh3)2(CHOB(C6F5)3) is not stable over time and undergoes decomposition to a manganese carbonyl borohydride complex. Cationic Fischer carbenes were prepared by the reaction of the corresponding formyl species with electrophiles trimethylsilyl triflate and methyl triflate. While the siloxycarbene product is highly unstable at room temperature, the methoxy carbene is stable both in solution and in the solid state. Treating the methoxycarbene complexes with a hydride led to the formation of methoxymethyl species. Manganese methoxymethyl complexes are susceptible to SN2-type attack by a hydride to release dimethyl ether and a manganese anion, which presumably proceeds with further reaction with reactive impurities or borane present. Furthermore, subjecting manganese methoxymethyl complexes to an atmosphere of CO led to the formation of acyl products via migratory insertion.
    [Show full text]