Wideband Phased Array & Rectenna Design And
Total Page:16
File Type:pdf, Size:1020Kb
WIDEBAND PHASED ARRAY & RECTENNA DESIGN AND MODELING FOR WIRELESS POWER TRANSMISSION A Dissertation by JONATHAN NOEL HANSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2011 Major Subject: Electrical Engineering Wideband Phased Array & Rectenna Design and Modeling for Wireless Power Transmission Copyright 2011 Jonathan Noel Hansen WIDEBAND PHASED ARRAY & RECTENNA DESIGN AND MODELING FOR WIRELESS POWER TRANSMISSION A Dissertation by JONATHAN NOEL HANSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Kai Chang Committee Members, Krzysztof Michalski Laszlo Kish Kenith Meissner Head of Department, Costas Georghiades December 2011 Major Subject: Electrical Engineering iii ABSTRACT Wideband Phased Array & Rectenna Design and Modeling for Wireless Power Transmission. (December 2011) Jonathan Noel Hansen, B.S., Texas A&M University Chair of Advisory Committee: Dr. Kai Chang Microstrip patch antennas are the most common type of printed antenna due to a myriad of advantages which encourage use in a wide range of applications such as: wireless communication, radar, satellites, remote sensing, and biomedicine. An initial design for a stacked-patch, broadband, dual-polarized, aperture-fed antenna is tested, and some adjustments are made to improve performance. The design goal is to obtain a 3 GHz bandwidth centered at 10 GHz for each polarization. Once the single-element design is finalized, it is used in a 4x1 array configuration. An array increases the gain, and by utilizing variable phase-shifters to each element, the pattern can be electronically steered in a desired direction. The phase- shifters are controlled by a computer running LabVIEW so that the array’s steering angle can be easily adjusted. The result of this new phased array design is a wide bandwidth system with dual-polarization which can be electronically steered. Rectennas (rectifying antennas) are used in wireless power transmission (WPT) systems to collect microwave power and convert this power into useable DC power. iv They find use in many areas such as space power transmission, RFID tags, wireless sensors, and recycling ambient microwave energy. The ability to simulate rectenna designs will allow for an easier method of analysis and tuning without the time and expense of repetitive fabrication and measurement. The most difficult part of rectenna simulation is a good diode model, and since different diodes have dissimilar properties, a model must be specific to a particular diode. Therefore, a method of modeling an individual diode is the most critical part of rectenna simulation. A diode modeling method which is based on an equivalent circuit and compatible with harmonic balance simulation is developed and presented. The equivalent circuit parameters are determined from a series of S-parameter measurements, and the final model demonstrates S-parameters in agreement with the measured data. An aperture-coupled, high-gain, single-patch rectenna is also designed and measured. This rectenna is modeled using the presented method, and the simulation shows good agreement with the measured results. This further validates the proposed modeling technique. v ACKNOWLEDGEMENTS I would like to express my appreciation to Dr. Kai Chang for his guidance and support throughout my graduate studies and research at Texas A&M University. I would also like to thank Dr. Michalski, Dr. Kish, and Dr. Meissner for serving on my committee and for their helpful comments. I am grateful to Mr. Li and other members of the Electromagnetic and Microwaves Laboratory at Texas A&M University for their invaluable technical assistance. I also want to extend my gratitude for the generous support of Raytheon and the guidance of Dr. James McSpadden throughout the phased array project. Lastly, I would like to thank my family, especially my father, who has been a continuing source of guidance, support, and encouragement. vi TABLE OF CONTENTS Page ABSTRACT .............................................................................................................. iii ACKNOWLEDGEMENTS ...................................................................................... v TABLE OF CONTENTS .......................................................................................... vi LIST OF FIGURES ................................................................................................... ix LIST OF TABLES .................................................................................................... xv 1. INTRODUCTION ............................................................................................... 1 2. SINGLE-ELEMENT ANTENNA DEVELOPMENT ........................................ 4 A. Background .......................................................................................... 4 B. Initial Design ........................................................................................ 7 C. Fabrication of Initial Design ................................................................ 12 D. Redesign (Dimension Adjustment) (Final Design) .............................. 17 E. Radiation Pattern Measurement ........................................................... 20 F. Conclusion ............................................................................................ 27 3. ARRAY THEORY .............................................................................................. 28 A. Introduction .......................................................................................... 28 B. Array Factor ......................................................................................... 29 C. Grating Lobes ....................................................................................... 32 D. Non-Uniform Amplitude ...................................................................... 34 E. Phase Quantization ............................................................................... 37 F. Design Choices ..................................................................................... 39 4. PHASED ARRAY DEVELOPMENT ................................................................ 47 A. Antenna Array ...................................................................................... 47 B. Power Divider ...................................................................................... 52 C. Phase-Shifters ....................................................................................... 56 D. Phase-Shifter Control ........................................................................... 60 E. Phase-Shifter Logic Conversion ........................................................... 62 F. Phased Array Assembly ....................................................................... 65 G. Phased Array Calibration ..................................................................... 69 vii Page H. Pattern Measurements .......................................................................... 74 I. Conclusion ............................................................................................ 85 5. RECTENNA HISTORY ..................................................................................... 86 6. RECTENNA OPERATION THEORY ............................................................... 95 A. Wireless Power Transmission System ................................................. 95 B. Rectenna Operation Theory.................................................................. 100 C. Analytical Model of Rectenna Efficiency ............................................ 104 D. Effect of Input Power on Rectenna Efficiency ..................................... 115 E. Diode Selection .................................................................................... 115 7. DIODE MODEL ................................................................................................. 117 A. Background and Introduction ............................................................... 117 B. Diode Equivalent Circuit ...................................................................... 119 C. Measurements ....................................................................................... 123 D. Model Parameter Extraction ................................................................. 133 E. Alternate Model Parameter Extraction Method ................................... 137 F. Rj Calculation ....................................................................................... 141 G. Cj Calculation ....................................................................................... 143 H. Cj Calculation (Charge-Based Model) ................................................. 146 I. Final Model .......................................................................................... 149 J. Conclusion ............................................................................................ 153 8. RECTENNA DESIGN ........................................................................................ 154 A. Design and Fabrication ......................................................................... 154 B. Efficiency Measurement ...................................................................... 160 C. Comparison to Model ..........................................................................