Antenna Arrays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study of Radiation Patterns Using Modified Design of Yagi-Uda Antenna G
Adv. Eng. Tec. Appl. 5, No. 1, 7-9 (2016) 7 Advanced Engineering Technology and Application An International Journal http://dx.doi.org/10.18576/aeta/050102 Study of Radiation Patterns Using Modified Design of Yagi-Uda Antenna G. M. Thakur1, V. B. Sanap2,* and B. H. Pawar1. PI, Wireless section, DPW &Adl DG office, Pune (M.S.), India. Yeshwantrao Chavan College, Sillod Dist Aurangabad (M.S.), India. Received: 8 Aug. 2015, Revised: 20 Oct. 2015, Accepted: 28 Oct. 2015. Published online: 1 Jan. 2016. Abstract: Antenna is very important in wireless communication system. Among the most prevalent antennas, Yagi-Uda antenna is widely used. To improve the antenna gain and directivity, design of antenna is always important. In this paper, the Yagi Uda antenna is modified by adding two more reflectors instead of single and the gain, directivity & radiation pattern were studied. This antenna is designed to give better gain in one particular direction as well as somewhat reduced gain in other directions. The direction of "reduced gain" and gain at particular direction are not controllable in Yagi Uda. This paper provides a design which modifies radiation pattern of Yagi as per user requirement. The experiment is carried out at 157 MHz and all readings are taken for vertical polarization, with the help of Radio Communication Monitor. Keywords: Wireless communication, Yagi-Uda, Communication Service Monitor, Vertical polarization. 1 Introduction three) are used. The said antenna is designed with following set of parameters, Antennas have numerous advantages such as they can be Type:- Yagi-Uda antenna with additional two suitably used for wide range of applications such as reflectors wireless communications, satellite communications, pattern Input :- FM modulated signal of 157 MHz, with stability combining and antenna arrays. -
Array Designs for Long-Distance Wireless Power Transmission: State
INVITED PAPER Array Designs for Long-Distance Wireless Power Transmission: State-of-the-Art and Innovative Solutions A review of long-range WPT array techniques is provided with recent advances and future trends. Design techniques for transmitting antennas are developed for optimized array architectures, and synthesis issues of rectenna arrays are detailed with examples and discussions. By Andrea Massa, Member IEEE, Giacomo Oliveri, Member IEEE, Federico Viani, Member IEEE,andPaoloRocca,Member IEEE ABSTRACT | The concept of long-range wireless power trans- the state of the art for long-range wireless power transmis- mission (WPT) has been formulated shortly after the invention sion, highlighting the latest advances and innovative solutions of high power microwave amplifiers. The promise of WPT, as well as envisaging possible future trends of the research in energy transfer over large distances without the need to deploy this area. a wired electrical network, led to the development of landmark successful experiments, and provided the incentive for further KEYWORDS | Array antennas; solar power satellites; wireless research to increase the performances, efficiency, and robust- power transmission (WPT) ness of these technological solutions. In this framework, the key-role and challenges in designing transmitting and receiving antenna arrays able to guarantee high-efficiency power trans- I. INTRODUCTION fer and cost-effective deployment for the WPT system has been Long-range wireless power transmission (WPT) systems soon acknowledged. Nevertheless, owing to its intrinsic com- working in the radio-frequency (RF) range [1]–[5] are plexity, the design of WPT arrays is still an open research field currently gathering a considerable interest (Fig. -
High Gain Isotropic Rectenna Erika Vandelle, Phi Long Doan, Do Hanh Ngan Bui, T.-P
High gain isotropic rectenna Erika Vandelle, Phi Long Doan, Do Hanh Ngan Bui, T.-P. Vuong, Gustavo Ardila, Ke Wu, Simon Hemour To cite this version: Erika Vandelle, Phi Long Doan, Do Hanh Ngan Bui, T.-P. Vuong, Gustavo Ardila, et al.. High gain isotropic rectenna. 2017 IEEE Wireless Power Transfer Conference (WPTC), May 2017, Taipei, Taiwan. pp.54-57, 10.1109/WPT.2017.7953880. hal-01722690 HAL Id: hal-01722690 https://hal.archives-ouvertes.fr/hal-01722690 Submitted on 29 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High Gain Isotropic Rectenna E. Vandelle1, P. L. Doan1, D.H.N. Bui1, T.P. Vuong1, G. Ardila1, K. Wu2, S. Hemour3 1 Université Grenoble Alpes, CNRS, Grenoble INP*, IMEP–LAHC, Grenoble, France 2 Polytechnique Montréal, Poly-Grames, Montreal, Quebec, Canada 3 Université de Bordeaux, IMS Bordeaux, Bordeaux Aquitaine INP, Bordeaux, France *Institute of Engineering University of Grenoble Alpes {vandeler, buido, vuongt, ardilarg}@minatec.inpg.fr [email protected] [email protected] [email protected] Abstract— This paper introduces an original strategy to step up the capacity of ambient RF energy harvesters. -
25. Antennas II
25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is a linear d << antenna which is much shorter than the free-space wavelength: V(t) Far field: jk0 r j t 00Id e ˆ Er,, t j sin 4 r Radiation resistance: 2 d 2 RZ rad 3 0 2 where Z 000 377 is the impedance of free space. R Radiation efficiency: rad (typically is small because d << ) RRrad Ohmic Radiation patterns Antennas do not radiate power equally in all directions. For a linear dipole, no power is radiated along the antenna’s axis ( = 0). 222 2 I 00Idsin 0 ˆ 330 30 Sr, 22 32 cr 0 300 60 We’ve seen this picture before… 270 90 Such polar plots of far-field power vs. angle 240 120 210 150 are known as ‘radiation patterns’. 180 Note that this picture is only a 2D slice of a 3D pattern. E-plane pattern: the 2D slice displaying the plane which contains the electric field vectors. H-plane pattern: the 2D slice displaying the plane which contains the magnetic field vectors. Radiation patterns – Hertzian dipole z y E-plane radiation pattern y x 3D cutaway view H-plane radiation pattern Beyond the Hertzian dipole: longer antennas All of the results we’ve derived so far apply only in the situation where the antenna is short, i.e., d << . That assumption allowed us to say that the current in the antenna was independent of position along the antenna, depending only on time: I(t) = I0 cos(t) no z dependence! For longer antennas, this is no longer true. -
WDP.2458.25.4.B.02 Linear Polarization Wifi Dual Bands Patch
SPECIFICATION PATENT PENDING Part No. : WDP.2458.25.4.B.02 Product Name : Wi-Fi Dual-band 2.4/5 GHz Embedded Ceramic Patch Antenna 6dBi+ at 2.4GHz 6dBi+ on 5 to 6 GHz Features : 25mm*25mm*4mm 2400MHz to 2500MHz/5150MHz to 5850MHz Pin Type Supports IEEE 802.11 Dual-band Wi-Fi systems Dual linear polarization Tuned for 70x70mm ground plane RoHS & REACH Compliant SPE-14-8-039/B/WY Page 1 of 14 1. Introduction This unique patent pending high gain, high efficiency embedded ceramic patch antenna is designed for professional Wi-Fi dual-band IEEE 802.11 applications. It is mounted via pin and double-sided adhesive. The passive patch offers stable high gain response from 4 dBi to 6dBi on the 2.4GHz band and from 5dBi to 8dBi on the 5 ~6 GHz band. Efficiency values are impressive also across the bands with on average 60%+. The WDP.25’s high gain, high efficiency performance is the perfect solution for directional dual-band WiFi application which need long range but which want to use small compact embedded antennas. The much higher gain and efficiency of the WDP.25 over smaller less efficient more omni-directional chip antennas (these typically have no more than 2dBi gain, 30% efficiencies) means it can deliver much longer range over a wide sector. Typical applications are • Access Points • Tablets • High definition high throughput video streaming routers • High data MIMO bandwidth routers • Automotive • Home and industrial in-wall WiFi automation • Drones/Quad-copters • UAV • Long range WiFi remote control applications The WDP patch antenna has two distinct linear polarizations, on the 2.4 and 5GHz bands, increasing isolation between bands. -
Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014 ISSN 2277-8616 Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT Su Mon Aye, Zaw Min Naing, Chaw Myat New, Hla Myo Tun Abstract: This paper describes the performance improvement of C-band VSAT receiving antenna. In this work, the gain and efficiency of C-band VSAT have been evaluated and then the reflector design is developed with the help of ICARA and MATLAB environment. The proposed design meets the good result of antenna gain and efficiency. The typical gain of prime focus parabolic reflector antenna is 30 dB to 40dB. And the efficiency is 60% to 80% with the good antenna design. By comparing with the typical values, the proposed C-band VSAT antenna design is well optimized with gain of 38dB and efficiency of 78%. In this paper, the better design with compromise gain performance of VSAT receiving parabolic antenna using ICARA software tool and the calculation of C-band downlink path loss is also described. The particular prime focus parabolic reflector antenna is applied for this application and gain of antenna, radiation pattern with far field, near field and the optimized antenna efficiency is also developed. The objective of this paper is to design the downlink receiving antenna of VSAT satellite ground segment with excellent gain and overall antenna efficiency. The filter design analysis is base on Kaiser window method and the simulation results are also presented in this paper. Index Terms: prime focus parabolic reflector antenna, satellite, efficiency, gain, path loss, VSAT. -
Arrays: the Two-Element Array
LECTURE 13: LINEAR ARRAY THEORY - PART I (Linear arrays: the two-element array. N-element array with uniform amplitude and spacing. Broad-side array. End-fire array. Phased array.) 1. Introduction Usually the radiation patterns of single-element antennas are relatively wide, i.e., they have relatively low directivity. In long distance communications, antennas with high directivity are often required. Such antennas are possible to construct by enlarging the dimensions of the radiating aperture (size much larger than ). This approach, however, may lead to the appearance of multiple side lobes. Besides, the antenna is usually large and difficult to fabricate. Another way to increase the electrical size of an antenna is to construct it as an assembly of radiating elements in a proper electrical and geometrical configuration – antenna array. Usually, the array elements are identical. This is not necessary but it is practical and simpler for design and fabrication. The individual elements may be of any type (wire dipoles, loops, apertures, etc.) The total field of an array is a vector superposition of the fields radiated by the individual elements. To provide very directive pattern, it is necessary that the partial fields (generated by the individual elements) interfere constructively in the desired direction and interfere destructively in the remaining space. There are six factors that impact the overall antenna pattern: a) the shape of the array (linear, circular, spherical, rectangular, etc.), b) the size of the array, c) the relative placement of the elements, d) the excitation amplitude of the individual elements, e) the excitation phase of each element, f) the individual pattern of each element. -
1- Consider an Array of Six Elements with Element Spacing D = 3Λ/8. A
1- Consider an array of six elements with element spacing d = 3 λ/8. a) Assuming all elements are driven uniformly (same phase and amplitude), calculate the null beamwidth. b) If the direction of maximum radiation is desired to be at 30 o from the array broadside direction, specify the phase distribution. c) Specify the phase distribution for achieving an end-fire radiation and calculate the null beamwidth in this case. 5- Four isotropic sources are placed along the z-axis as shown below. Assuming that the amplitudes of elements #1 and #2 are +1, and the amplitudes of #3 and #4 are -1, find: a) the array factor in simplified form b) the nulls when d = λ 2 . a) b) 1- Give the array factor for the following identical isotropic antennas with N and d. 3- Design a 7-element array along the x-axis. Specifically, determine the interelement phase shift α and the element center-to-center spacing d to point the main beam at θ =25 ° , φ =10 ° and provide the widest possible beamwidth. Ψ=x kdsincosθφα +⇒= 0 kd sin25cos10 ° °+⇒=− αα 0.4162 kd nulls at 7Ψ nnπ2 nn π 2 =±, = 1,2, ⋅⋅⋅⇒Ψnull =±7 , = 1,2,3,4,5,6 α kd2π n kd d λ α −=−7 ( =⇒= 1) 0.634 ⇒= 0.1 ⇒=− 0.264 2- Two-element uniform array of isotropic sources, positioned along the z-axis λ 4 apart is seen in the figure below. Give the array factor for this array. Find the interelement phase shift, α , so that the maximum of the array factor occurs along θ =0 ° (end-fire array). -
Log Periodic Antenna
TE0321 - ANTENNA & PROPAGATION LABORATORY Laboratory Manual DEPARTMENT OF TELECOMMUNICATION ENGINEERING SRM UNIVERSITY S.R.M. NAGAR, KATTANKULATHUR – 603 203. FOR PRIVATE CIRCULATION ONLY ALL RIGHTS RESERVED SRM UNIVERSITY Faculty of Engineering & Technology Department of Telecommunication Engineering S. No CONTENTS Page no. Introduction – antenna & Propagation 1 6 Arranging the trainer & Performing functional Checks List of Experiments 1 12 Performance analysis of Half wave dipole antenna 2 15 Performance analysis of Folded dipole antenna 3 19 Performance analysis of Loop antenna 4 23 Performance analysis of Yagi ‐Uda antenna 5 38 Performance analysis of Helix antenna 6 41 Performance analysis of Slot antenna 7 44 Performance analysis of Log periodic antenna 8 47 Performance analysis of Parabolic antenna 9 51 Radio wave propagation path loss calculations ANTENNA & PROPAGATION LAB INTRODUCTION: Antennas are a fundamental component of modern communications systems. By Definition, an antenna acts as a transducer between a guided wave in a transmission line and an electromagnetic wave in free space. Antennas demonstrate a property known as reciprocity, that is an antenna will maintain the same characteristics regardless if it is transmitting or receiving. When a signal is fed into an antenna, the antenna will emit radiation distributed in space a certain way. A graphical representation of the relative distribution of the radiated power in space is called a radiation pattern. The following is a glossary of basic antenna concepts. Antenna An antenna is a device that transmits and/or receives electromagnetic waves. Electromagnetic waves are often referred to as radio waves. Most antennas are resonant devices, which operate efficiently over a relatively narrow frequency band. -
Log Periodic Antenna (LPA)
Log Periodic Antenna (LPA) Dr. Md. Mostafizur Rahman Professor Department of Electronics and Communication Engineering (ECE) Khulna University of Engineering & Technology (KUET) Frequency Independent Antenna : may be defined as the antenna for which “the impedance and pattern (and hence the directivity) remain constant as a function of the frequency” Antenna Theory - Log-periodic Antenna The Yagi-Uda antenna is mostly used for domestic purpose. However, for commercial purpose and to tune over a range of frequencies, we need to have another antenna known as the Log-periodic antenna. A Log-periodic antenna is that whose impedance is a logarithmically periodic function of frequency. Not only this all the electrical properties undergo similar periodic variation, particularly radiation pattern, directive gain, side lobe level, beam width and beam direction. These are broadband antenna. Bandwidth of 10:1 is achieved easily and even 100:1 is feasible if the theoretical design closely approximated. Radiation pattern may be bidirectional and unidirectional of low to moderate gain. Frequency range The frequency range, in which the log-periodic antennas operate is around 30 MHz to 3GHz which belong to the VHF and UHF bands. Construction & Working of Log-periodic Antenna The construction and operation of a log-periodic antenna is similar to that of a Yagi-Uda antenna. The main advantage of this antenna is that it exhibits constant characteristics over a desired frequency range of operation. It has the same radiation resistance and therefore the same SWR. The gain and front-to-back ratio are also the same. The image shows a log-periodic antenna. -
Design and Analysis of Microstrip Patch Antenna Arrays
Design and Analysis of Microstrip Patch Antenna Arrays Ahmed Fatthi Alsager This thesis comprises 30 ECTS credits and is a compulsory part in the Master of Science with a Major in Electrical Engineering– Communication and Signal processing. Thesis No. 1/2011 Design and Analysis of Microstrip Patch Antenna Arrays Ahmed Fatthi Alsager, [email protected] Master thesis Subject Category: Electrical Engineering– Communication and Signal processing University College of Borås School of Engineering SE‐501 90 BORÅS Telephone +46 033 435 4640 Examiner: Samir Al‐mulla, Samir.al‐[email protected] Supervisor: Samir Al‐mulla Supervisor, address: University College of Borås SE‐501 90 BORÅS Date: 2011 January Keywords: Antenna, Microstrip Antenna, Array 2 To My Parents 3 ACKNOWLEGEMENTS I would like to express my sincere gratitude to the School of Engineering in the University of Borås for the effective contribution in carrying out this thesis. My deepest appreciation is due to my teacher and supervisor Dr. Samir Al-Mulla. I would like also to thank Mr. Tomas Södergren for the assistance and support he offered to me. I would like to mention the significant help I have got from: Holders Technology Cogra Pro AB Technical Research Institute of Sweden SP I am very grateful to them for supplying the materials, manufacturing the antennas, and testing them. My heartiest thanks and deepest appreciation is due to my parents, my wife, and my brothers and sisters for standing beside me, encouraging and supporting me all the time I have been working on this thesis. Thanks to all those who assisted me in all terms and helped me to bring out this work. -
Antenna Arrays
ANTENNA ARRAYS Antennas with a given radiation pattern may be arranged in a pattern line, circle, plane, etc.) to yield a different radiation pattern. Antenna array - a configuration of multiple antennas (elements) arranged to achieve a given radiation pattern. Simple antennas can be combined to achieve desired directional effects. Individual antennas are called elements and the combination is an array Types of Arrays 1. Linear array - antenna elements arranged along a straight line. 2. Circular array - antenna elements arranged around a circular ring. 3. Planar array - antenna elements arranged over some planar surface (example - rectangular array). 4. Conformal array - antenna elements arranged to conform two some non-planar surface (such as an aircraft skin). Design Principles of Arrays There are several array design var iables which can be changed to achieve the overall array pattern design. Array Design Variables 1. General array shape (linear, circular,planar) 2. Element spacing. 3. Element excitation amplitude. 4. Element excitation phase. 5. Patterns of array elements. Types of Arrays: • Broadside: maximum radiation at right angles to main axis of antenna • End-fire: maximum radiation along the main axis of ant enna • Phased: all elements connected to source • Parasitic: some elements not connected to source: They re-radiate power from other elements. Yagi-Uda Array • Often called Yagi array • Parasitic, end-fire, unidirectional • One driven element: dipole or folded dipole • One reflector behind driven element and slightly longer