A Subsurface Stratigraphic Study of the Middle Atoka, Sebastian County, Arkansas Sara Beth Sutton University of Arkansas, Fayetteville

Total Page:16

File Type:pdf, Size:1020Kb

A Subsurface Stratigraphic Study of the Middle Atoka, Sebastian County, Arkansas Sara Beth Sutton University of Arkansas, Fayetteville University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2012 A Subsurface Stratigraphic Study of the Middle Atoka, Sebastian County, Arkansas Sara Beth Sutton University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geology Commons, and the Stratigraphy Commons Recommended Citation Sutton, Sara Beth, "A Subsurface Stratigraphic Study of the Middle Atoka, Sebastian County, Arkansas" (2012). Theses and Dissertations. 477. http://scholarworks.uark.edu/etd/477 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. A SUBSURFACE STRATIGRAPHIC STUDY OF THE MIDDLE ATOKA, SEBASTIAN COUNTY, ARKANSAS A SUBSURFACE STRATIGRAPHIC STUDY OF THE MIDDLE ATOKA, SEBASTIAN COUNTY, ARKANSAS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology By Sara B. Sutton University of Arkansas Bachelor of Science in Geology, 2009 August 2012 University of Arkansas ABSTRACT Raster log images were analyzed to study the subsurface stratigraphy of the Middle Atoka in the Arkoma Basin of the western portion (Sebastian County) of Arkansas. The most significant sandstone units of the Middle Atoka in this area were determined to be two generally coarsening-upward sequences in the lower portion of the formation. Based on lithologic correlations, these two units were determined to be the informally named Casey and Freiburg members of the Middle Atoka. Thickness information based on picked tops was used to create isopach maps of the units of interest. The log signatures and geometry of the sand bodies indicate that they were deposited in a deltaic system that prograded across this portion of this basin. Distributary-mouth bar deposits dominate the Casey member, and are occasionally overlain by localized channel deposits. Avulsion of the delta lobe possibly occurred, and a new lobe then began to prograde, depositing the sediments that formed the Freiburg. This unit is also dominated by distributary-mouth bar deposits. This thesis is approved for recommendation to the Graduate Council. Thesis Director: _______________________________________ Dr. Doy Zachry Thesis Committee: _______________________________________ Mr. Douglas C. Melton, Jr. _______________________________________ Dr. Xiangyang Xie THESIS DUPLICATION RELEASE I hereby authorize the University of Arkansas Libraries to duplicate this Thesis when needed for research and/or scholarship. Agreed __________________________________________ Sara Sutton Refused __________________________________________ Sara Sutton ACKNOWLEDGEMENTS I would like to begin by thanking Dr. Doy Zachry, who has been both my undergraduate advisor, and thesis advisor as a graduate student. His guidance throughout the years has played an important role in my accomplishments as a geology student. He deserves special thanks for his patience and willingness to help, in spite of his busy schedule. I would also like to extend a special thank you to Doug Melton of Southwestern Energy. Not only has he so kindly served on my thesis committee, but also allowed me my first internship opportunity with Southwestern Energy. His guidance as a professional geologist has been invaluable to my development as a geologist and a professional. Thank you, also, to Dr. Xiangyang “Cheyenne” Xie, who has served as a thesis committee member, and to all the geology professors at the U of A who have shared their knowledge with me over the last few years. My family has also been a great source of support throughout my time in school. I would like to thank my father, Frank Butler. Without his encouragement and support, I might not have made it through my undergraduate years. Thanks go, as well, to my mother and my in-laws for always being there for me when I needed an ear. Finally, thank you to my lovely husband, Peter. He has always believed in me even when times seemed too difficult for me to believe in myself. TABLE OF CONTENTS List of Figures 1.0 INTRODUCTION....................................................................................................... 1 1.1 Methods .................................................................................................................... 5 1.2 Previous Investigations ........................................................................................... 8 2.0 GEOLOGIC SETTING.............................................................................................. 9 2.1 Ozark Uplift ............................................................................................................. 9 2.2 Arkoma Basin ........................................................................................................ 10 2.3 Ouachita Fold Belt ................................................................................................ 12 2.4 Tectonic and Structural History .......................................................................... 12 2.5 Paleogeography and Depositional History .......................................................... 16 2.51 Atokan............................................................................................................... 16 2.52 Desmoinesian .................................................................................................... 20 2.6 General Regional Stratigraphy ............................................................................ 24 2.7 Deltaic Sedimentation ........................................................................................... 25 3.0 LOCAL STRATIGRAPHY ..................................................................................... 25 4.0 STRATIGRAPHIC ANALYSIS.............................................................................. 41 5.0 CONCLUSIONS ....................................................................................................... 50 REFERENCES ................................................................................................................ 51 APPENDIX A …………………………………………………………………………. 53 LIST OF FIGURES FIGURE TITLE PAGE Figure 1 General location of study area in relation to geologic provinces 4 of Arkansas and Oklahoma (from Zachry and Sutherland, 1984). Figure 2 Location of study area (in blue) in Sebastian County Arkansas. 6 Figure 3 Base map of study area showing well locations highlighted in 7 red. Figure 4 North-south cross section across the Arkoma Basin illustrating 11 large syndepositional normal faults during the Middle Atokan time (modified after Zachry and Sutherland, 1984). Figure 5 Tectonic evolution of the Arkoma Basin (from Houseknecht, 14 1986). Figure 6 Graphic illustration of subsidence rates in the Arkoma Basin 15 (Houseknecht, 1985). Figure 7 Early Atokan paleogeography (from Sutherland, 1988). 17 Figure 8 Middle Atokan paleogeography (from Sutherland, 1988). 19 Figure 9 Regional paleogeography of the Early to Middle Atokan (from 19 Houseknecht and Kacena, 1983). Figure 10 Explanation to the Houseknecht and Kacena (1983) 20 paleogeographic diagrams. Figure 11 Earliest Desmoinesian paleogeography (from Sutherland, 21 1988). Figure 12 Regional paleogeography of the Desmoinesian (from 22 Houseknecht and Kacena, 1983). Figure 13 Stratigraphic column of the Carboniferous Period (from 23 McFarland, 1998). Figure 14 Location map of the growth fault zone that lies south of the 26 study area (from Zachry, 1983). Figure 15 North-south stratigraphic cross section of the Middle Atoka 28 showing sand content diminishing to the south (see Figure 16 for location). Figure 16 Figure 16. Index map of cross sections. 29 Figure 17 Isopach map of the Casey sandstone unit of the Middle Atoka. 30 Figure 18 Stratigraphic divisions (Units A, B and C) of the lower Casey 31 sand package in the central portion of the study area. Figure 19 Stratigraphic divisions (Units A, B, C and D) of the Casey sand 32 package in the central portion of the study area. Figure 20 Isopach map of Unit A of the Casey. 35 . Figure 21 Isopach map of Unit B of the Casey. 36 Figure 22 Isopach map of Unit C of the Casey. 37 Figure 23 Isopach map of Unit D of the Casey. 38 Figure 24 Log showing the stratigraphic divisions of the interval of 39 interest. Figure 25 Isopach map of the Freiburg sandstone unit of the Middle 40 Atoka Figure 26 West – East cross section showing intervals of interest and 42 lateral continuity of Shale 2 (see Figure 16 for location of cross section). Figure 27 Geometry and log signatures of distributary-mouth bar deposits 43 (Coleman and Prior, 1980). Figure 28 Idealized coarsening-upward signature formed from a deltaic 44 environment. Modified from Brown, 1979. Figure 29 Sedimentation zones in a delta front environment. From 45 Coleman and Prior, 1981. Figure 30 North-South cross section showing diminishing sand content 46 towards the south (see Figure 16 for cross section location). Figure 31 Log showing depositional environments of a prograding delta. 49 1.0 INTRODUCTION In the western and northern portions of the Arkoma Basin of Arkansas and Oklahoma several sandstone units of the Middle Atoka are substantial natural gas producing reservoirs. This makes understanding of the Middle Atoka of significance. The Middle Atoka is informally divided into sandstone units, which are separated by shales. These Middle Atoka sands
Recommended publications
  • Pre-Atoka Rocks of Northern Arkansas
    Pre-Atoka Rocks of Northern Arkansas GEOLOGICAL SURVEY PROFESSIONAL PAPER 314-H Pre-Atoka Rocks of Northern Arkansas By SHERWOOD E. FREZON and ERNEST E. CLICK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 314-H Thickness, lithofacies, and geologic history of potential oil and gas producing rocks of Paleozoic age in northern Arkansas UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U. S. Geological Survey Library has cataloged this publication as follows: Frezon, Sherwood Earl, 1921- Pre-Atoka rocks of northern Arkansas, by Sherwood E. Frezon and Ernest E. Glick. Washington, U. S. Govt. Print. Off., 1959. iii, 171-189 p. maps, diagrs., table. 30 cm. (U. S. Geological Sur­ vey. Professional paper 314-H. Shorter contributions to general geology) Part of illustrative matter fold, col., in pocket. Bibliography: p. 186-187. 1. Geology Arkansas. 2. Rocks, Sedimentary. 3. Geology, Strati- graphic Paleozoic. i. Glick, Ernest Earwood, 1922- joint author, n. Title. (Series: U. S. Geological Survey. Professional paper 314-H. Series: U. S. Geological Survey. Shorter contribu­ tions to general geology) 551.7209767 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract .__----_ ---_-_._--._---__-_-____ 171 Stratigraphy Continued Page Introduction. ___ ___________________________________ 171 Probable latest Mississippian and early
    [Show full text]
  • THE UNIVERSITY of Oklahœia GRADUATE COLLEGE the ATOKA FORMATION W the N Œ T H SIDE of the Mcalester BASIN a DISSERTATION SUBMI
    THE UNIVERSITY OF OKlAHŒiA GRADUATE COLLEGE THE ATOKA FORMATION W THE N Œ T H SIDE OF THE McALESTER BASIN A DISSERTATION SUBMITTED TO THE ŒIADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY JACK GORDON BLYTHE Norman, Oklahoma 1957 THE ATOKA FORMATION ON THE NORTH SIDE OF THE McALESTER BASIN APPROVED BY j /•) • DISSERTATION CCMMITTEE ACKNOWLEDGMENTS Dr. Carl C. Branson directed this dissertation problem. Dr. George G. Huffman, Dr. E. L. Lucas, Dr. Doris Curtis, and Dr. Reginald Harris contributed helpful advice and information. The Oklahoma Geo­ logical Survey employed the author as field geologist during the summer of 1954. Assistance was rendered in the field by Richard Beveridge during the month of June in 1953; and Mr. A. H. Hanson of Muskogee, Oklahoma, spent a portion of one day in the field with the author, directing his attention to several fossil localities in the Atoka for­ mation. Mr. Irwin Gold photographed the thin sections and the fossils, Mr. June D. King took some of the field photographs, Mr. Raymond Kune instructed the author in certain procedures of drafting, and Mr. Roy Davis and Mr. Kent Gregg assisted with much of the drafting. The author's wife, Ruth, assisted in certain phases of the field work, typed preliminary drafts of the dissertation, and continually en­ couraged the author during all phases of the dissertation program. Ill TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS .................................... vi LIST OF MAPS xiii Chapter I . INTRODUCTION 1 II. STRATIGRAPHY 10 III. SEDIMENTATIOMAL ASPECTS AND ENVIRONMENTS OF DEPOSITION 52 IV.
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • Basin-Centered Gas Systems of the U.S. by Marin A
    Basin-Centered Gas Systems of the U.S. By Marin A. Popov,1 Vito F. Nuccio,2 Thaddeus S. Dyman,2 Timothy A. Gognat,1 Ronald C. Johnson,2 James W. Schmoker,2 Michael S. Wilson,1 and Charles Bartberger1 Columbia Basin Western Washington Sweetgrass Arch (Willamette–Puget Mid-Continent Rift Michigan Basin Sound Trough) (St. Peter Ss) Appalachian Basin (Clinton–Medina Snake River and older Fms) Hornbrook Basin Downwarp Wasatch Plateau –Modoc Plateau San Rafael Swell (Dakota Fm) Sacramento Basin Hanna Basin Great Denver Basin Basin Santa Maria Basin (Monterey Fm) Raton Basin Arkoma Park Anadarko Los Angeles Basin Chuar Basin Basin Group Basins Black Warrior Basin Colville Basin Salton Mesozoic Rift Trough Permian Basin Basins (Abo Fm) Paradox Basin (Cane Creek interval) Central Alaska Rio Grande Rift Basins (Albuquerque Basin) Gulf Coast– Travis Peak Fm– Gulf Coast– Cotton Valley Grp Austin Chalk; Eagle Fm Cook Inlet Open-File Report 01–135 Version 1.0 2001 This report is preliminary, has not been reviewed for conformity with U. S. Geological Survey editorial standards and stratigraphic nomenclature, and should not be reproduced or distributed. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U. S. Government. 1Geologic consultants on contract to the USGS 2USGS, Denver U.S. Department of the Interior U.S. Geological Survey BASIN-CENTERED GAS SYSTEMS OF THE U.S. DE-AT26-98FT40031 U.S. Department of Energy, National Energy Technology Laboratory Contractor: U.S. Geological Survey Central Region Energy Team DOE Project Chief: Bill Gwilliam USGS Project Chief: V.F.
    [Show full text]
  • Oklahoma Map.Eps
    U.S. DEPARTMENT OF THE INTERIOR OPEN FILE REPORT 03–247 U.S. GEOLOGICAL SURVEY Version 1.0 103° Kp 37° Jm Kds Qd Kp Kds Je Kds Kp 102° Qa To To Qd Tb Jm Qd Jm Je Toa dd 101° dd Qa Jm Qa Qa Qd Qd Kp Kds Qd Je Qd Qd Qd 100° Kp Jm Pu Qa Pu Qal Pm Kk Pr To Je Qt 99° Qal Kp Pch Kc Qd dd To Pm Pf 98° Qa Pb Psp hnw hlp hol Kds Pcc Pbi Pk 97° 96° hbv hbv hbv hhg hsl 95° 37° Kc Toa Pr To Pr To Qt Pk Pw hn hsa hsa Kc Pch hlb Qt hmh Pm hva hcc hbo Kp Pcc Pf Psp hbd hch Pr hta hto hto hlp hol Pu To Pr Pm Pr Qal To Qt Pf Qal Mkr To Pu Qd Pcc Psp hwi Qal hmh Pch Pfa Pfa ho hch hbo Mpfh hn hlb Pw hn hse To Pm Pbi hto Qa Qd Qt Qt Qt hlp Pfa Qt hv hta Qd Pm Pch Pu Qt Pdc Pmd hd hnw cu Qd ha hwi Pm Po hhg hlp Qt Pdc Pg cu Qa Qa ho hn Qal hfs Pu Pr Pb Qal hbv hsl hsa Mpfh Qt To Pw hch hnw hcc Qt hlb Qd Qd cu Qd Pu Pm Pf Pb Qal Qt hva hch hlb Pch hta hol hbo Qal hd Qa hlp To Qd hn hmh Kds Qa Pb hn Qa Pu Pcc Pdc Pmd Pf hhg Mpfh Pu Qt Mkr Qd Qa hch Qd Pcc Pr Pf Qt hlp hol To To Toa Qal Pmd Pch Pbi hsl hlb Pu Pr hd hol Qt hta hbo hsa Mpfh 103° Qa Po hwi Qt To Pbi Qal hch To Toa Qa Pu Pfa hn hnw To Qa Pcc hhg hsa hmh Kk Pdc Psp Pk Pfa ho hwi hmh Pr Qt Pr Pf hta hbd hlp 102° Qal Qal Kk Pmd hlb hse Mpfh Mkr Pb Pb hsa Pm hv Pr Psp hn Pcc Pf hv hch 101° Pfa hat Pg ha Pr hbd hcc hta hol Qt Pcc Pk Pw hwi hfs Mpfh Qt Pbi Mpfh Pf hmh Pch hva hnw Qt Qt Psp To Pf Pdc Pf Pf hwi hlb hse Pr Pbi Qt hbo hta hsl Mpfh Qal hfs Pm Pdc Qt MAP UNITS Qt hbd hch Qal Pfa hsma hv Pch hch hn Qt MDO hfs Qa Alluvium Psp Salt Plains Formation hwc Wapanucka Formation and Chickachoc Chert
    [Show full text]
  • Tectonic-Sedimentary Interplay of a Multi-Sourced, Structurally
    UNDER REVIEW PREPRINT This manuscript is a preprint and has been submitted for publication to the Journal of Sedimentary Research. As of June 18, 2020, this manuscript is under review and has not been accepted for publication. The content of subsequent versions may be different from this one. Once the manuscript is formally accepted, we will add the Peer-reviewed Publication DOI, through which the final version will be available. Should you have any feedback, please contact any of the authors. We appreciate it. 1 UNDER REVIEW PREPRINT 1 TECTONIC-SEDIMENTARY INTERPLAY OF A MULTI-SOURCED, 2 STRUCTURALLY-CONFINED DEEPWATER SYSTEM IN A FORELAND BASIN 3 SETTING: THE PENNSYLVANIAN LOWER ATOKA FORMATION, 4 OUACHITA MOUNTAINS, USA 5 6 Pengfei Hou*, Lesli J. Wood, Zane R. Jobe 7 Department of Geology and Geological Engineering, Colorado School of Mines 8 1516 Illinois St, Golden, CO 80525 USA 9 * Corresponding author, Email: [email protected] 2 UNDER REVIEW PREPRINT 10 ABSTRACT 11 Submarine fans deposited in structurally complex settings record important 12 information on basin evolution and tectonic-sedimentary relationships but are often poorly 13 preserved in outcrops due to post-depositional deformation. This study integrates both new 14 field data as well as data compiled from literature to demonstrate the spatial facies variability 15 of the deep-water lower Atoka formation (Lower Pennsylvanian) that occupies a structurally 16 complex early foreland-basin setting. The lower Atoka outcrops in the Ouachita Mountains 17 and the southern Arkoma Basin in the USA are divided into three structural-depositional 18 zones: foredeep, wedge-top, and foreland.
    [Show full text]
  • Structural Geometry of Thrust Faulting in the Baker Mountain and Panola Quadrangles, Southeastern Oklahoma
    STRUCTURAL GEOMETRY OF THRUST FAULTING IN THE BAKER MOUNTAIN AND PANOLA QUADRANGLES, SOUTHEASTERN OKLAHOMA By JUSTIN EVANS Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1995 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1997 STRUCTIJRAL GEOMETRY OF THRUST FAULTING IN THE BAKER MOUNTAIN AND PANOLA QUADRANGLES, SOUTHEASTERN OKLAHOMA Thesis Approved: Thesis Advisor ~-v.-I-- M- f h\\~ ------...~-Ml J ~~ j)umzcu C. ~ Dean ·ofGraduate College 11 ACKNOWLEDGMENTS I would like to extend my deepest thanks to my commitlee chair, Dr. Ibrahim Cemen. His advice, knowledge, and guidance have been a great help throughout this study. I would also like to thank my other committee members, Dr. Zuhair AI-Shaieb for his help and expertise as well as for the use of lab equipment to finish this study, and to Dr. Gary Stewan for advice, guidance, and editing. My thanks also go out to Jeff Ronck and Syed Mehdi for their help, and viewpoints when mine got narrow. I also want to thank Dr. Jim Pucketle for his help in everything from geology to life. Thank you so much. Thanks also to Catherine Price for help and support with the computers. Thanks to Neil Suneson for OGS well log information and for unpublished map interpretations by him, C. A. Ferguson and L. R. Hemish. Thank you Mom and Dad for your love, moral, and financial support. You always taught me to push my boundaries and look over the next horizon. Finally, and most importantly, thank you to my wife Julie.
    [Show full text]
  • Stratigraphic and Structural Analysis of Middle Atoka Formation in Aetna Gas Field, Franklin, Johnson and Logan Counties, Arkans
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2015 Stratigraphic and Structural Analysis of Middle Atoka Formation in Aetna Gas Field, Franklin, Johnson and Logan Counties, Arkansas Ikramuddin Bahram University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geology Commons, Oil, Gas, and Energy Commons, and the Stratigraphy Commons Recommended Citation Bahram, Ikramuddin, "Stratigraphic and Structural Analysis of Middle Atoka Formation in Aetna Gas Field, Franklin, Johnson and Logan Counties, Arkansas" (2015). Theses and Dissertations. 1396. http://scholarworks.uark.edu/etd/1396 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Stratigraphic and Structural Analysis of Middle Atoka Formation in Aetna Gas Field, Franklin, Johnson and Logan Counties, Arkansas A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology By Ikramuddin Bahram University of Peshawar Bachelor of Science in Geology, 2010 December 2015 University of Arkansas This thesis is approved for recommendation to the Graduate Council. _____________________________________ Dr. Doy L. Zachry Thesis Director ______________________________________ ______________________________ Dr. Ralph K. Davis Dr. Gregory Dumond Committee Member Committee Member Abstract Arkoma basin is a prolific natural gas basin. The defining feature of this basin is the Atoka Formation that was deposited in the early-middle Pennsylvanian. The Atoka is held equivalent to the tectonic and structural evolution of the basin. This study focuses on one of the many gas fields in the Arkoma Basin in Arkansas to assess the stratigraphic and structural evolution that the strata in this particular field display.
    [Show full text]
  • High-Resolution Facies Analysis of Deltaic Subenvironments of the Pennsylvanian Atoka Formation, Arkansas
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1997 High-Resolution Facies Analysis of Deltaic Subenvironments of the Pennsylvanian Atoka Formation, Arkansas. Tanwi Gangopadhyay Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Gangopadhyay, Tanwi, "High-Resolution Facies Analysis of Deltaic Subenvironments of the Pennsylvanian Atoka Formation, Arkansas." (1997). LSU Historical Dissertations and Theses. 6462. https://digitalcommons.lsu.edu/gradschool_disstheses/6462 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS tF This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]
  • Geologic Road Guide to Arkansas State Highway 10
    STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY BEKKI WHITE, DIRECTOR AND STATE GEOLOGIST ROADSIDE GEOLOGY SERIES 02 Geologic Road Guide to Arkansas State Highway 10 A Geotour of the Southern Arkoma Basin Fold Belt And Related Ouachita Mountain Tectonic Zones by Richard R. Cohoon, Ed.D., P.G., Emeritus Professor of Geology Jason A. Patton, Ph.D., P.G., Associate Professor of Geology Victor K. Vere, Ph.D., P.G., Emeritus Professor of Geology Arkansas Tech University, Russellville, Arkansas Little Rock, Arkansas 2017 ii STATE OF ARKANSAS Asa Hutchinson, Governor ARKANSAS GEOLOGICAL SURVEY Bekki White, Director and State Geologist COMMISSIONERS Dr. Richard Cohoon, Chairman .................................................................................Russellville William Willis, Vice-Chairman .................................................................................Hot Springs Gus Ludwig ......................................................................................................................Quitman Ken Fritsche ................................................................................................................Greenwood William Cains ...................................................................................................................... Altus Quin Baber ........................................................................................................................ Benton David Lumbert ...........................................................................................................
    [Show full text]
  • Groundwater Vulnerability Map of Oklahoma -- Appendix A
    APPENDIX A Description of Hydrogeologic Basins Description of Hydrogeologic Basins A description of the basin definitions, boundaries, and hydrogeology for the hydrogeologic basins is presented below. Table A-1 lists for each basin the names, ages, and codes for the geologic units, as cited in the surficial geology maps in the hydrologic atlases of Oklahoma. The 12 hydrologic atlases are available from the Oklahoma Geological Survey. The digital surficial geology sets from the hydrologic atlases are available on the Internet at http://wwwok.cr.usgs.gov/gis/geology/index.html. The digital surficial geology map of Hydro- logic Atlas 3 does not include the alluvium and terrace deposits. To identify the alluvium and terrace deposits in the Ardmore and Sherman quadrangles, refer to Sheet 1 in Hydrologic Atlas 3 (Hart, 1974). Alluvium and Terrace Deposits Alluvium and terrace deposits are Quaternary in age, and occur along modern and ancient streams throughout the state. They encompass the outcrop of alluvium, terrace deposits, and dune sand. Alluvium and terrace deposits along the major rivers (Salt Fork of the Arkansas, Arkansas, Cimarron, Beaver-North Canadian, Canadian, Washita, North Fork of the Red, and the Red) extend from 1-15 miles from the river banks. Terraces represent older, higher stages of the rivers that have since cut their channels deeper (OWRB, 1995). Alluvium and terrace deposits consist mainly of unconsolidated deposits of gravel, sand, silt, and clay. Along large streams, these deposits consist of clay and silt at the surface, grading down- ward into coarse sand and gravel at the base (Carr and Bergman, 1976).
    [Show full text]