TGF-Β Signaling

Total Page:16

File Type:pdf, Size:1020Kb

TGF-Β Signaling biomolecules Review TGF-β Signaling Kalliopi Tzavlaki and Aristidis Moustakas * Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; [email protected] * Correspondence: [email protected]; Tel.: +46-18-4714732; Fax: +46-18-4714441 Received: 18 February 2020; Accepted: 20 March 2020; Published: 23 March 2020 Abstract: Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β. Keywords: extracellular matrix; phosphorylation; receptor serine/threonine kinase; signal transduction; SMAD; transcription; transforming growth factor-β; ubiquitylation 1. Introduction Biological signals regulate every aspect of physiological development of multicellular organisms and are important for the communication and coordination of cellular, tissue, and organ functions throughout life [1]. Among the large number of signaling molecules, the transforming growth factor β (TGF-β) family is highly conserved in the animal kingdom, and is thought to have appeared from the early days of multicellular (metazoan) evolution [2–6]. Across many species, the TGF-βs mediate a diverse range of embryonic and adult signaling functions that provide tissue-specific control of differentiation, proliferation, and cell-specific or tissue-specific motility [7–10]. The human TGF-β family includes thirty-three genes that encode for homodimeric or heterodimeric secreted cytokines [10,11]. These proteins are synthesized in a precursor form that is cleaved during processing through the secretory pathway and generate mature dimeric ligands most often held together via a single disulfide bond [11,12]. The family members have received a variety of names based on the history of their molecular identification, and include the activins, the bone morphogenetic proteins (BMPs), the growth differentiation factors (GDFs), the müllerian inhibiting substance (MIS), the nodal and the TGF-βs. Due to space limitation, this article will focus on the three TGF-βs (TGF-β1, -β2, -β3), which are collectively referred as TGF-β, and with occasional references to other family members. Like in every other signaling network, regulation at multiple levels is of paramount importance so that the pathways operate physiologically and perform their normal function [1]. Genetic mutations Biomolecules 2020, 10, 487; doi:10.3390/biom10030487 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, 487 2 of 38 can occur in several of the central molecular mediators of TGF-β signaling [8,9]. In addition, and more frequently, dedicated regulators of TGF-β family pathways malfunction, either due to their misexpression or due to genetic mutation, leading to weak or more often enhanced signaling input by the TGF-β signaling engine [8–10]. Such perturbations associate with the onset or alternatively with late stages of different diseases that include fibrotic disorders, chronic inflammatory conditions, and cancer [8,9]. In this article, the discussion will not focus on disease and only occasionally, examples from the pathophysiology of various diseases may be used, to illustrate control of signal transduction. 2. TGF-β Synthesis, Extracellular Deposition, and Activation The elucidation of crystal structures for the various TGF-β family members, coupled to detailed biochemical and biophysical studies have shed light to the importance of TGF-β ligand processing, extracellular deposition and the mechanisms of their activation for presentation to signaling receptors [13,14]. We will now review this well-researched topic of TGF-β biogenesis and activation. Similar to all other secreted proteins, TGF-β is synthesized by ribosomes attached to the rough endoplasmic reticulum of most cells, where removal of the short N-terminal signal peptide allows protein folding, glycosylation, and processing in subsequent biosynthetic steps during transport from the endoplasmic reticulum to the Golgi apparatus (Figure1)[ 12,14]. TGF-β protein folding is intimately connected to the formation of intermolecular disulfide bonds, two in the N-terminal region that will later become the long prodomain and one in the C-terminal region that will later be the short mature ligand, resulting in obligatory dimerization of the unprocessed ligand (Figure1)[ 12]. Glycosylation of the N-terminal part of the polypeptide is known to confirm latency, i.e., inactivity of the newly synthesized TGF-β [15], leading to the concept that functional activation is required at a later stage. Dimerization via disulfide linkage is followed by proteolytic cleavage of the polypeptides by furin family proteases, resulting in the formation of an N-terminal long dimeric and disulfide-linked propeptide, also known as latency-associated peptide (LAP), and a C-terminal short dimeric disulfide-linked polypeptide, also known as mature TGF-β (Figure1)[ 10,12]. The two parts of TGF-β, generated after proteolytic cleavage, the LAP and the mature TGF-β, remain associated with each other and form the latent form of the ligand, often referred as large latent complex (LLC, Figure1), whereby latency means lack of direct biological activity in the absence of further processing. Structural analysis of the latent form of TGF-β has elucidated the detailed molecular mechanism by which LAP directly covers the critical amino acids of the C-terminal dimer that are later used for interaction with the signaling receptors, and thus confers inactivation of the C-terminal dimer, when assembled as a latent complex [13]. It is of interest to consider the fact that during animal evolution, this principle of “masking” the mature dimeric ligand by the N-terminal part of the pro-peptide (LAP), in other members of the TGF-β family, has diverged so that the inhibitory polypeptides are actually expressed by a completely distinct gene. A good example of this difference is the inhibitory protein noggin that binds and inactivates a group of the BMPs [13]. Concomitant to the processing of the TGF-β polypeptide, crosslinking of the N-terminal LAP to other secreted proteins takes place (Figure1). Two major families of proteins directly crosslink to the latent form of TGF-β in a cell type-specific or biological context-dependent manner; these are the latent TGF-β binding proteins (LTBPs) and the leucine rich repeat containing (LRRC) 32/33 proteins [14,16,17]. The LTBPs (such as LTBP1 and LTBP3 which interact with all three LAP-TGF-β1, -2, -3; LTBP4, which interacts with LAP-TGF-β1; LTBP2 which interacts with pro-myostatin/pro-GDF-8) are extracellular proteins, and upon secretion, mediate deposition of latent TGF-βs to the extracellular matrix (ECM) [14]. Via their ability to crosslink with additional proteins of the ECM, e.g., fibrillins and fibronectins, LTBPs provide the scaffolding units that tether latent TGF-βs to the ECM (Figure1)[14]. The second group of latent TGF-β crosslinkers, the LRRC32/33 proteins are transmembrane proteins. LRRC32, also known as glycoprotein A repetitions predominant (GARP), is primarily expressed in immune cells, such as regulatory T cells (Treg) and crosslinks to latent TGF-β [16]. Similarly, LRRC33, primarily expressed in the plasma membrane of immune modulators of the brain, the microglial cells, Biomolecules 2020, 10, 487 3 of 38 also tethers latentBiomolecules TGF- 2020β, 10[,17 x ]. Whether incorporated into the complex ECM environment3 of 38 or associated with the plasmaenvironment membrane or associated of cells with that the regulateplasma membrane immunity, of cells thethat disulfide-linkedregulate immunity, the latent disulfide- TGF-βs depend on mechanismslinked of activationlatent TGF-βs anddepend release on mechanisms of their matureof activation dimeric and release ligands, of their as mature discussed dimeric below. ligands, as discussed below. 3´ 3´ 3´ 3´ Ribosome SRP C C C C 5´ N 5´ N 5´ N 5´ N Translocon SRP receptor Signal peptidase ER lumen Cytoplasm Monomer Dimer LLC C LTBP ER lumen N Secretory vesicle Trans-Golgi lumen LLC LLC C N Furin LLC C N C LLC LTBP C N N Exocytosis Cytoplasm LLC C ECM N N LLC LLC LLC N C N N N C C N N C Fibrillin N N C C Fibronectin C Fibrillin C Fibronectin C Figure 1. BiosynthesisFigure 1. Biosynthesis and extracellular and extracellular deposition deposition of of transforming
Recommended publications
  • Activation of Smad Transcriptional Activity by Protein Inhibitor of Activated STAT3 (PIAS3)
    Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3) Jianyin Long*†‡, Guannan Wang*†‡, Isao Matsuura*†‡, Dongming He*†‡, and Fang Liu*†‡§ *Center for Advanced Biotechnology and Medicine, †Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, and ‡Cancer Institute of New Jersey, 679 Hoes Lane, Piscataway, NJ 08854 Communicated by Allan H. Conney, Rutgers, The State University of New Jersey, Piscataway, NJ, November 17, 2003 (received for review August 22, 2003) Smad proteins play pivotal roles in mediating the transforming of many transcription factors through distinct mechanisms. growth factor ␤ (TGF-␤) transcriptional responses. We show in this PIAS1 and PIAS3 bind and inhibit STAT1 and STAT3 DNA- report that PIAS3, a member of the protein inhibitor of activated binding activities, respectively (19, 20). PIASx␣ and PIASx␤ STAT (PIAS) family, activates TGF-␤͞Smad transcriptional re- were identified through interactions with the androgen receptor sponses. PIAS3 interacts with Smad proteins, most strongly with and the homeodomain protein Msx2, respectively (21, 22). Smad3. PIAS3 and Smad3 interact with each other at the endog- PIASx␣ and PIASx␤ inhibit IL12-mediated and STAT4- enous protein level in mammalian cells and also in vitro, and the dependent gene activation (23). PIAS1, PIAS3, PIASx␣, and association occurs through the C-terminal domain of Smad3. We PIASx␤ also regulate transcriptional activation by various ste- further show that PIAS3 can interact with the general coactivators roid receptors (21, 24–26). PIASy has been shown to antagonize p300͞CBP, the first evidence that a PIAS protein can associate with the activities of STAT1 (27), androgen receptor (28), p53 (29), p300͞CBP.
    [Show full text]
  • Nodal Signaling Is Required for Mesodermal and Ventral but Not For
    © 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 830-842 doi:10.1242/bio.011809 RESEARCH ARTICLE Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava Eric Röttinger1,2,3,*, Timothy Q. DuBuc4, Aldine R. Amiel1,2,3 and Mark Q. Martindale4 ABSTRACT early fate maps of direct and indirect developing hemichordates, are Nodal signaling plays crucial roles in vertebrate developmental similar to those of indirect-developing echinoids (Colwin and processes such as endoderm and mesoderm formation, and axial Colwin, 1951; Cameron et al., 1987; Cameron et al., 1989; Cameron patterning events along the anteroposterior, dorsoventral and left- and Davidson, 1991; Henry et al., 2001). While the bilaterally right axes. In echinoderms, Nodal plays an essential role in the symmetric echinoderm larvae exhibit strong similarities to establishment of the dorsoventral axis and left-right asymmetry, but chordates in axial patterning and germ layer specification events, not in endoderm or mesoderm induction. In protostomes, Nodal adult body plan comparisons in echinoderms have been difficult due signaling appears to be involved only in establishing left-right to their unique adult pentaradial symmetry. However, both the larval asymmetry. Hence, it is hypothesized that Nodal signaling has and adult body plans of enteropneust hemichordates are bilaterally been co-opted to pattern the dorsoventral axis of deuterostomes and symmetric, and larvae from indirect developing hemichordates for endoderm, mesoderm formation as well as anteroposterior such as Ptychodera flava (P. flava) share similarities in patterning in chordates. Hemichordata, together with echinoderms, morphology, axial organization, and developmental fate map with represent the sister taxon to chordates.
    [Show full text]
  • Tgfβ-Regulated Gene Expression by Smads and Sp1/KLF-Like Transcription Factors in Cancer VOLKER ELLENRIEDER
    ANTICANCER RESEARCH 28 : 1531-1540 (2008) Review TGFβ-regulated Gene Expression by Smads and Sp1/KLF-like Transcription Factors in Cancer VOLKER ELLENRIEDER Signal Transduction Laboratory, Internal Medicine, Department of Gastroenterology and Endocrinology, University of Marburg, Marburg, Germany Abstract. Transforming growth factor beta (TGF β) controls complex induces the canonical Smad signaling molecules which vital cellular functions through its ability to regulate gene then translocate into the nucleus to regulate transcription (2). The expression. TGFβ binding to its transmembrane receptor cellular response to TGF β can be extremely variable depending kinases initiates distinct intracellular signalling cascades on the cell type and the activation status of a cell at a given time. including the Smad signalling and transcription factors and also For instance, TGF β induces growth arrest and apoptosis in Smad-independent pathways. In normal epithelial cells, TGF β healthy epithelial cells, whereas it can also promote tumor stimulation induces a cytostatic program which includes the progression through stimulation of cell proliferation and the transcriptional repression of the c-Myc oncogene and the later induction of an epithelial-to-mesenchymal transition of tumor induction of the cell cycle inhibitors p15 INK4b and p21 Cip1 . cells (1, 3). In the last decade it has become clear that both the During carcinogenesis, however, many tumor cells lose their tumor suppressing and the tumor promoting functions of TGF β ability to respond to TGF β with growth inhibition, and instead, are primarily regulated on the level of gene expression through activate genes involved in cell proliferation, invasion and Smad-dependent and -independent mechanisms (1, 2, 4).
    [Show full text]
  • 5956.Full.Pdf
    Cancer Therapy: Preclinical Radiation and Transforming Growth Factor-B Cooperate inTranscriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene Jurre Hageman,1Bart J. Eggen,3 Tom Rozema,1, 2 Kevin Damman,1 Harm H. Kampinga,1and Robert P. Coppes1, 2 Abstract Radiation-induced fibrosis is an important side effect in the treatment of cancer. Profibrotic pro- teins, such as plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-h (TGF-h), and tissue type inhibitor of metalloproteinases-1 (Timp-1), are thought to play major roles in the development of fibrosis via the modulation of extracellular matrix integrity.We did a detailed anal- ysis of transcriptional activation of these profibrotic genes by radiation and TGF-h. Irradiation of HepG2 cells led to a high increase in PAI-1mRNA levels and a mild increase in Timp-1mRNA lev- els. In contrast,TGF-h1and Smad7 were not increased. Radiation and TGF-h showed strong co- operative effects in transcription of the PAI-1 gene. The TGF-b1 gene showed a mild cooperative activation, whereas Timp-1and Smad7 were not cooperatively activated by radiation and TGF-h. Analysis using the proximal 800 bp of the human PAI-1promoter revealed a dose-dependent increase of PAI-1levels between 2 and 32 Gy g-rays that was independent of latent TGF-h acti- vation. Subsequent site-directed mutagenesis of the PAI-1promoter revealed that mutation of a p53-binding element abolished radiation-induced PAI-1 transcription. In line with this, PAI-1 was not activated in p53-null Hep3B cells, indicating that p53 underlies the radiation-induced PAI-1activation and the cooperativity with theTGF-h/Smad pathway.
    [Show full text]
  • Cerberus–Nodal–Lefty–Pitx Signaling Cascade Controls Left–Right Asymmetry in Amphioxus
    Cerberus–Nodal–Lefty–Pitx signaling cascade controls left–right asymmetry in amphioxus Guang Lia,1, Xian Liua,1, Chaofan Xinga, Huayang Zhanga, Sebastian M. Shimeldb,2, and Yiquan Wanga,2 aState Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; and bDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom Edited by Marianne Bronner, California Institute of Technology, Pasadena, CA, and approved February 21, 2017 (received for review December 14, 2016) Many bilaterally symmetrical animals develop genetically pro- Several studies have sought to dissect the evolutionary history of grammed left–right asymmetries. In vertebrates, this process is un- Nodal signaling and its regulation of LR asymmetry. Notably, der the control of Nodal signaling, which is restricted to the left side asymmetric expression of Nodal and Pitx in gastropod mollusc by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest embryos plays a role in the development of LR asymmetry, in- diverging chordate lineage, has profound left–right asymmetry as cluding the coiling of the shell (5, 6). Asymmetric expression of alarva.WeshowthatCerberus, Nodal, Lefty, and their target Nodal and/or Pitx has also been reported in some other lopho- transcription factor Pitx are sequentially activated in amphioxus trochozoans, including Pitx in a brachiopod and an annelid and embryos. We then address their function by transcription activa- Nodal in a brachiopod (7, 8). These data can be interpreted to tor-like effector nucleases (TALEN)-based knockout and heat-shock suggest an ancestral role for Nodal and Pitx in regulating bilat- promoter (HSP)-driven overexpression.
    [Show full text]
  • The Genetic Factors of Bilaterian Evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen a Panfilio2,3, Thomas Wiehe1
    RESEARCH ARTICLE The genetic factors of bilaterian evolution Peter Heger1*, Wen Zheng1†, Anna Rottmann1, Kristen A Panfilio2,3, Thomas Wiehe1 1Institute for Genetics, Cologne Biocenter, University of Cologne, Cologne, Germany; 2Institute for Zoology: Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany; 3School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom Abstract The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo- Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship. *For correspondence: [email protected] Introduction The taxon Bilateria consists of multicellular animals
    [Show full text]
  • Sensing Relative Signal in the Tgf-Β/Smad Pathway PNAS PLUS
    Sensing relative signal in the Tgf-β/Smad pathway PNAS PLUS Christopher L. Fricka,1, Clare Yarkaa, Harry Nunnsa, and Lea Goentoroa,1 aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Edited by Arup K. Chakraborty, Massachusetts Institute of Technology, Cambridge, MA, and approved February 3, 2017 (received for review July 12, 2016) How signaling pathways function reliably despite cellular varia- Smad4. In their heteromeric form, the Smad proteins are retained tion remains a question in many systems. In the transforming more strongly in the nucleus through reduced export rate, as well as, growth factor-β (Tgf-β) pathway, exposure to ligand stimulates as proposed recently (11), accelerated import rate. Thus, ligand nuclear localization of Smad proteins, which then regulate target activation leads to a net accumulation of the Smad complex in gene expression. Examining Smad3 dynamics in live reporter cells, the nucleus, where it regulates target genes. we found evidence for fold-change detection. Although the level The Tgf-β pathway is a particularly interesting system for of nuclear Smad3 varied across cells, the fold change in the level of testing for fold-change detection because it is known that the nuclear Smad3 was a more precise outcome of ligand stimulation. expression levels of its components vary considerably from cell to The precision of the fold-change response was observed through- cell. A recent study using proximity ligation assay in fixed cells out the signaling duration and across Tgf-β doses, and significantly revealed that the levels of Smad3/4 and Smad2/4 complexes vary increased the information transduction capacity of the pathway.
    [Show full text]
  • ISM1 Regulates NODAL Signaling and Asymmetric Organ Morphogenesis During Development
    Published Online: 6 June, 2019 | Supp Info: http://doi.org/10.1083/jcb.201801081 Downloaded from jcb.rupress.org on June 6, 2019 ARTICLE ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development Liliana Osório1,2*,XueweiWu1,2*, Linsheng Wang1,2*, Zhixin Jiang1,2,CarlosNeideck1,2, Guojun Sheng3,4, and Zhongjun Zhou1,2 Isthmin1 (ISM1) was originally identified as a fibroblast group factor expressed in Xenopus laevis embryonic brain, but its biological functions remain unclear. The spatiotemporal distribution of ISM1, with high expression in the anterior primitive streak of the chick embryo and the anterior mesendoderm of the mouse embryo, suggested that ISM1 may regulate signaling by the NODAL subfamily of TGB-β cytokines that control embryo patterning. We report that ISM1 is an inhibitor of NODAL signaling. ISM1 has little effect on TGF-β1, ACTIVIN-A, or BMP4 signaling but specifically inhibits NODAL-induced phosphorylation of SMAD2. In line with this observation, ectopic ISM1 causes defective left-right asymmetry and abnormal heart positioning in chick embryos. Mechanistically, ISM1 interacts with NODAL ligand and type I receptor ACVR1B through its AMOP domain, which compromises the NODAL–ACVR1B interaction and down-regulates phosphorylation of SMAD2. Therefore, we identify ISM1 as an extracellular antagonist of NODAL and reveal a negative regulatory mechanism that provides greater plasticity for the fine-tuning of NODAL signaling. Introduction The TGF-β superfamily includes a large number of secreted whereas GDF3 is an essential coligand for NODAL signaling in signaling factors that are essential for embryonic development, germ layer formation and LR patterning during early develop- tissue homeostasis, and human diseases such as cancer ment (Levine et al., 2009; Peterson et al., 2013; Pelliccia et al., (Wakefield and Hill, 2013).
    [Show full text]
  • Vg1-Nodal Heterodimers Are the Endogenous Inducers of Mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5*
    RESEARCH ARTICLE Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5* 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; 2Center for Brain Science, Harvard University, Cambridge, United States; 3Broad Institute of MIT and Harvard, Cambridge, United States; 4Harvard Stem Cell Institute, Cambridge, United States; 5FAS Center for Systems Biology, Harvard University, Cambridge, United States Abstract Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta- related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. DOI: https://doi.org/10.7554/eLife.28183.001 Introduction *For correspondence: tessa. [email protected] (TGM); The induction of mesoderm and endoderm (mesendoderm) during embryogenesis and embryonic [email protected] (AFS) stem cell differentiation generates the precursors of the heart, liver, gut, pancreas, kidney and other internal organs.
    [Show full text]
  • The New Role of TGF-Β Superfamily Signaling in Melanoma
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 The new role of TGF-฀ superfamily signaling in melanoma Tuncer, Eylül Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-148195 Dissertation Published Version Originally published at: Tuncer, Eylül. The new role of TGF-฀ superfamily signaling in melanoma. 2017, University of Zurich, Faculty of Science. The New Role of TGF-β Superfamily Signaling in Melanoma Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Eylül Tuncer Aus der Türkei Promotionskommission Prof. Dr. Lukas Sommer (Leitung und Vorsitz der Dissertation) Prof. Dr. med. Onur Boyman Prof. Dr. med. Markus Manz Prof. Dr. Burkhard Becher Zürich, 2017 Table of Contents Table of Contents ......................................................................................................... 2 1. Summary .................................................................................................................. 5 2. Zusammenfassung ..................................................................................................... 6 3. Introduction .............................................................................................................. 8 3.1 Definition and Epidemiology of Cutaneous Melanoma ................................................ 8 3.2 Clinical
    [Show full text]
  • The Regulation of Mesodermal Progenitor Cell Commitment to Somitogenesis Subdivides the Zebrafish Body Musculature Into Distinct Domains
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains Daniel P. Szeto1 and David Kimelman2 Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA The vertebrate musculature is produced from a visually uniform population of mesodermal progenitor cells (MPCs) that progressively bud off somites populating the trunk and tail. How the MPCs are regulated to continuously release cells into the presomitic mesoderm throughout somitogenesis is not understood. Using a genetic approach to study the MPCs, we show that a subset of MPCs are set aside very early in zebrafish development, and programmed to cell-autonomously enter the tail domain beginning with the 16th somite. Moreover, we show that the trunk is subdivided into two domains, and that entry into the anterior trunk, posterior trunk, and tail is regulated by interactions between the Nodal and bone morphogenetic protein (Bmp) pathways. Finally, we show that the tail MPCs are held in a state we previously called the Maturation Zone as they wait for the signal to begin entering somitogenesis. [Keywords: Bmp signaling; Nodal; T-box genes; MZoep; somite] Supplemental material is available at http://www.genesdev.org. Received March 29, 2006; revised version accepted May 12, 2006. The mesodermal progenitor cells (MPCs) are a popula- the presomitic mesoderm (Griffin and Kimelman 2002) tion of undifferentiated progenitor cells that originate in (this zone is not the same as the maturation front at the the early gastrula embryo (for review, see Schier et al.
    [Show full text]
  • Reproductionreview
    REPRODUCTIONREVIEW Focus on TGF-b Signalling The structural basis of TGF-b, bone morphogenetic protein, and activin ligand binding S Jack Lin1, Thomas F Lerch2, Robert W Cook1, Theodore S Jardetzky2 and Teresa K Woodruff1,3 1Department of Neurobiology and Physiology, 2Department of Biochemistry, Molecular Biology and Cell Biology, 3Department of Medicine, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA Correspondence should be addressed to T K Woodruff; Email: [email protected] Abstract The transforming growth factor-b (TGF-b) superfamily is a large group of structurally related growth factors that play prominent roles in a variety of cellular processes. The importance and prevalence of TGF-b signaling are also reflected by the complex network of check points that exist along the signaling pathway, including a number of extracellular antagonists and membrane- level signaling modulators. Recently, a number of important TGF-b crystal structures have emerged and given us an unprecedented clarity on several aspects of the signal transduction process. This review will highlight these latest advances and present our current understanding on the mechanisms of specificity and regulation on TGF-b signaling outside the cell. Reproduction (2006) 132 179–190 Introduction expressed in tissue-specific patterns and can function in an endocrine, paracrine, and autocrine manner. The transforming growth factor-b (TGF-b) superfamily is Receptor specificity, tissue distribution, and expression a large group of structurally related ligands that regulate levels may all affect the resultant cellular responses. a variety of cellular processes, including cell-cycle Cellular responses to most TGF-b ligands are progression, cell differentiation, reproductive function, transduced through interactions with two single mem- development, motility, adhesion, neuronal growth, bone brane-spanning serine–threonine kinase receptors, morphogenesis, wound healing, and immune surveil- lance (reviewed in Kingsley 1994, Hogan 1996, called type I and type II receptors (Derynck 1994).
    [Show full text]