Graham Priest's 'Dialetheism'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Charity and Error-Theoretic Nominalism Hemsideversion
Published in Ratio 28 (3), pp. 256-270, DOI: 10.1111/rati.12070 CHARITY AND ERROR-THEORETIC NOMINALISM Arvid Båve Abstract I here investigate whether there is any version of the principle of charity both strong enough to conflict with an error-theoretic version of nominalism about abstract objects (EN), and supported by the considerations adduced in favour of interpretive charity in the literature. I argue that in order to be strong enough, the principle, which I call “(Charity)”, would have to read, “For all expressions e, an acceptable interpretation must make true a sufficiently high ratio of accepted sentences containing e”. I next consider arguments based on (i) Davidson’s intuitive cases for interpretive charity, (ii) the reliability of perceptual beliefs, and (iii) the reliability of “non-abstractive inference modes”, and conclude that none support (Charity). I then propose a diagnosis of the view that there must be some universal principle of charity ruling out (EN). Finally, I present a reason to think (Charity) is false, namely, that it seems to exclude the possibility of such disagreements as that between nominalists and realists. Nominalists about abstract objects have given remarkably disparate answers to the question: how, if there are no abstract objects, should we view statements that seem to involve purported reference to or quantification over such objects?1 According to the 1 I define nominalism as the view not merely that there are no abstract objects, but also that nothing is an abstract object, contra certain “noneists” like Graham Priest (2005), who accept the Arvid Båve error-theoretic variant of nominalism (EN), these statements should be taken at face value, both semantically and pragmatically, i.e., taken both as literally entailing that there are abstract objects, and also as used and interpreted literally by ordinary speakers. -
Dialetheists' Lies About the Liar
PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false. -
Quantified Modality and Essentialism
Quantified Modality and Essentialism Saul A. Kripke This is the accepted version of the following article: Kripke, S. A. (2017), Quantified Modality and Essentialism. Noûs, 51: 221-234. doi: 10.1111/nous.12126, Which has been published in final form at https://doi.org/10.1111/nous.12126. 1 Quantified Modality and Essentialism1 Saul A. Kripke It is well know that the most thoroughgoing critique of modal logic has been that of W.V. Quine. Quine’s position, though uniformly critical of quantified modal systems, has nevertheless varied through the years from extreme and flat rejection of modality to a more nearly moderate critique. At times Quine urged that, for purely logico-semantical reasons based on the problem of interpreting quantified modalities, a quantified modal logic is impossible; or, alternatively, that it is possible only on the basis of a queer ontology which repudiates the individuals of the concrete world in favor of their ethereal intensions. Quine has also urged that even if these objections have been answered, modal logic would clearly commit itself to the metaphysical jungle of Aristotelian essentialism; and this essentialism is held to be a notion far more obscure than the notion of analyticity upon which modal logic was originally to be based. 1 There is a long story behind this paper. It was written for a seminar given by Quine himself in the academic year 1961/2, and discussed in class over a period of several weeks. Some years later, I was surprised to hear from Héctor-Neri Castañeda that it had received wider circulation among philosophers. -
Starting the Dismantling of Classical Mathematics
Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem. -
Relevant and Substructural Logics
Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore. -
Absolute Contradiction, Dialetheism, and Revenge
THE REVIEW OF SYMBOLIC LOGIC,Page1of15 ABSOLUTE CONTRADICTION, DIALETHEISM, AND REVENGE FRANCESCO BERTO Department of Philosophy, University of Amsterdam and Northern Institute of Philosophy, University of Aberdeen Abstract. Is there a notion of contradiction—let us call it, for dramatic effect, “absolute”— making all contradictions, so understood, unacceptable also for dialetheists? It is argued in this paper that there is, and that spelling it out brings some theoretical benefits. First it gives us a foothold on undisputed ground in the methodologically difficult debate on dialetheism. Second, we can use it to express, without begging questions, the disagreement between dialetheists and their rivals on the nature of truth. Third, dialetheism has an operator allowing it, against the opinion of many critics, to rule things out and manifest disagreement: for unlike other proposed exclusion-expressing-devices (for instance, the entailment of triviality), the operator used to formulate the notion of absolute contradiction appears to be immune both from crippling expressive limitations and from revenge paradoxes—pending a rigorous nontriviality proof for a formal dialetheic theory including it. Nothing is, and nothing could be, literally both true and false. [. ] That may seem dogmatic. And it is: I am affirming the very thesis that [the dialetheists] have called into question and—contrary to the rules of debate—I decline to defend it. Further, I concede that it is indefensible against their challenge. They have called so much into question that I have no foothold on undisputed ground. So much the worse for the demand that philosophers always must be ready to defend their theses under the rules of debate. -
Existence: an Unholy Trinity. an Account of Indeterminate Existence
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Existence: An Unholy Trinity. An account of Indeterminate Existence Salas Sanchez-Bennasar Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/105 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] EXISTENCE: AN UNHOLY TRINITY An Account of Indeterminate Existence by Salas Sanchez-Bennasar A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 ©2014 SALAS SANCHEZ-BENNASAR All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. __________Arnold Koslow_____________ Date ______________ _____________________________________ Chair of Examining Committee _________Iakovos Vasiliou______________ Date ______________ _____________________________________ Executive Officer __________Graham Priest (Advisor)___________ ____________John Greenwood___________ ____________Rohit Parikh____________ ______________Stewart Shapiro___________ Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract -
How to Adopt a Logic
How to adopt a logic Daniel Cohnitz1 & Carlo Nicolai2 1Utrecht University 2King’s College London Abstract What is commonly referred to as the Adoption Problem is a challenge to the idea that the principles for logic can be rationally revised. The argument is based on a reconstruction of unpublished work by Saul Kripke. As the reconstruction has it, Kripke essentially extends the scope of William van Orman Quine’s regress argument against conventionalism to the possibility of adopting new logical principles. In this paper we want to discuss the scope of this challenge. Are all revisions of logic subject to the regress problem? If not, are there interesting cases of logical revisions that are subject to the regress problem? We will argue that both questions should be answered negatively. FIRST DRAFT 1 1 Introduction What is commonly referred to as the Adoption Problem is a challenge to the idea that the principles for logic can be rationally revised. The argument is based on a reconstruction of unpublished work by Saul Kripke.1 As the reconstruction has it, Kripke essentially extends the scope of William van Orman Quine’s regress argument (Quine, 1976) against conventionalism to the possibility of adopting new logical principles. In this paper we want to discuss the scope of this challenge. Are all revisions of logic subject to the regress problem? If not, are there interesting cases of logical revisions that are subject to the regress problem? We will argue that both questions should be answered negatively. Kripke’s regress does not arise for all rules of inference and not even for the adoption of those rules that are of relevance for the discussion of the rational revisability of logic. -
Evil and the Ontological Disproof
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2017 Evil and the Ontological Disproof Carl J. Brownson III The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2155 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] EVIL AND THE ONTOLOGICAL DISPROOF by CARL BROWNSON A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, City University of New York 2017 1 © 2017 CARL BROWNSON All Rights Reserved ii Evil and the Ontological Disproof by Carl Brownson This manuscript has been read and accepted for the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date Graham Priest Chair of Examining Committee Date Iakovos Vasiliou Executive Officer Supervisory Committee: Stephen Grover, advisor Graham Priest Peter Simpson Nickolas Pappas Robert Lovering THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Evil and the Ontological Disproof by Carl Brownson Advisor: Stephen Grover This dissertation is a revival of the ontological disproof, an ontological argument against the existence of God. The ontological disproof, in its original form, argues that God is impossible, because if God exists, he must exist necessarily, and necessary existence is impossible. The notion of necessary existence has been largely rehabilitated since this argument was first offered in 1948, and the argument has accordingly lost much of its force. -
Accepting a Logic, Accepting a Theory
1 To appear in Romina Padró and Yale Weiss (eds.), Saul Kripke on Modal Logic. New York: Springer. Accepting a Logic, Accepting a Theory Timothy Williamson Abstract: This chapter responds to Saul Kripke’s critique of the idea of adopting an alternative logic. It defends an anti-exceptionalist view of logic, on which coming to accept a new logic is a special case of coming to accept a new scientific theory. The approach is illustrated in detail by debates on quantified modal logic. A distinction between folk logic and scientific logic is modelled on the distinction between folk physics and scientific physics. The importance of not confusing logic with metalogic in applying this distinction is emphasized. Defeasible inferential dispositions are shown to play a major role in theory acceptance in logic and mathematics as well as in natural and social science. Like beliefs, such dispositions are malleable in response to evidence, though not simply at will. Consideration is given to the Quinean objection that accepting an alternative logic involves changing the subject rather than denying the doctrine. The objection is shown to depend on neglect of the social dimension of meaning determination, akin to the descriptivism about proper names and natural kind terms criticized by Kripke and Putnam. Normal standards of interpretation indicate that disputes between classical and non-classical logicians are genuine disagreements. Keywords: Modal logic, intuitionistic logic, alternative logics, Kripke, Quine, Dummett, Putnam Author affiliation: Oxford University, U.K. Email: [email protected] 2 1. Introduction I first encountered Saul Kripke in my first term as an undergraduate at Oxford University, studying mathematics and philosophy, when he gave the 1973 John Locke Lectures (later published as Kripke 2013). -
Possibilities and Paradox: an Introduction to Modal and Many-Valued Logic
Possibilities and Paradox: An Introduction to Modal and Many-Valued Logic. By J.C. BEALL and BAS C. VAN FRAASSEN. Oxford University Press, 2003. xv + 233 pp. $29.95 paper Non-classical logics play a prominent role in many areas of philosophy nowadays—philosophy of mind, metaphysics, and philosophy of language, to mention a few. Unfortunately, much of the discussion of non-classical sys- tems has been confined to highly specialized publications and has therefore been inaccessible to the philosophy undergraduate student. Until recently, there were only a few books on the market suitable for the beginner (one of them is Graham Priest’s excellent An Introduction to Non-Classical Logic, Cambridge University Press, 2001). Given the importance of the topic, an- other good textbook on non-classical logics would be very welcome. Beall and van Fraassen have helped to fill this gap in the current liter- ature with their new and detailed introduction to modal and many-valued logics. Possibilities and Paradox exposes, in an accessible way, the basic concepts and techniques of a variety of non-classical systems, including stan- dard modal, conditional, intuitionistic, relevance, and paraconsistent logic. All that is required from the reader is familiarity with elementary classical logic. The stated aim of the book “is to give students a basic grounding in philosophical logic, in a way that connects with motivations they derive from elsewhere in philosophy” (p. ix). Indeed the text is very successful in achieving this goal: it covers a wide range of technical material with- out neglecting philosophical issues associated with the development of such systems. -
Paradox and Foundation Zach Weber Submitted in Total Fulfilment of The
Paradox and Foundation Zach Weber Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy May 2009 School of Philosophy, Anthropology and Social Inquiry The University of Melbourne This is to certify that - the thesis comprises only my original work towards the PhD, - due acknowledgement has been made in the text to all other material used, - the thesis is less than 100,000 words in length. Preface Dialethic paraconsistency is an approach to formal and philosophical theories in which some but not all contradictions are true. Advancing that program, this thesis is about paradoxes and the foundations of mathematics, and is divided accordingly into two main parts. The first part concerns the history and philosophy of set theory from Cantor through the independence proofs, focusing on the set concept. A set is any col- lection of objects that is itself an object, with identity completely determined by membership. The set concept is called naive because it is inconsistent. I argue that the set concept is inherently and rightly paradoxical, because sets are both intensional and extensional objects: Sets are predicates in extension. All consistent characterizations of sets are either not explanatory or not coherent. To understand sets, we need to reason about them with an appropriate logic; paraconsistent naive set theory is situated as a continuation of the original foundational project. The second part produces a set theory deduced from an unrestricted compre- hension principle using the weak relevant logic DLQ, dialethic logic with quantifiers. I discuss some of the problems involved with embedding in DLQ, especially related to identity and substitution.