Adversarial Attacks on Graph Neural Networks Via Node Injections: a Hierarchical Reinforcement Learning Approach

Total Page:16

File Type:pdf, Size:1020Kb

Adversarial Attacks on Graph Neural Networks Via Node Injections: a Hierarchical Reinforcement Learning Approach Adversarial Atacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach Yiwei Sun Suhang Wang∗ Xianfeng Tang The Pennsylvania State University The Pennsylvania State University The Pennsylvania State University University Park, PA, USA University Park, PA, USA University Park, PA, USA [email protected] [email protected] [email protected] Tsung-Yu Hsieh Vasant Honavar The Pennsylvania State University The Pennsylvania State University University Park, PA, USA University Park, PA, USA [email protected] [email protected] ABSTRACT ACM Reference Format: Graph Neural Networks (GNN) ofer the powerful approach to node Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant classifcation in complex networks across many domains including Honavar. 2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach. In Proceedings social media, E-commerce, and FinTech. However, recent studies of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. show that GNNs are vulnerable to attacks aimed at adversely im- ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380149 pacting their node classifcation performance. Existing studies of adversarial attacks on GNN focus primarily on manipulating the 1 INTRODUCTION connectivity between existing nodes, a task that requires greater Graphs, where nodes and their attributes denote real-world entities efort on the part of the attacker in real-world applications. In con- (e.g., individuals) and links encode relationships (e.g., friendship) trast, it is much more expedient on the part of the attacker to inject between entities, are ubiquitous in many application domains, in- adversarial nodes, e.g., fake profles with forged links, into existing cluding social media [1, 21, 35, 49, 50], e-commerce[16, 47], and graphs so as to reduce the performance of the GNN in classifying FinTech [24, 33]. Many real-wold applications are involve classify- existing nodes. ing the nodes in graph data based on the attributes of the nodes, and Hence, we consider a novel form of node injection poisoning their connectivity and attributes of the nodes that are connected to attacks on graph data. We model the key steps of a node injec- them in the graph. Thus, revealing a user’s level of risk in fnancial tion attack, e.g., establishing links between the injected adversarial platform such as AliPay1 can be formulated as a node classifcation nodes and other nodes, choosing the label of an injected node, etc. problem [24, 41]. Graph Neural Networks (GNNs) [13, 23, 26], cur- by a Markov Decision Process. We propose a novel reinforcement rently ofer the state-of-the art approach to node classifcation in learning method for Node Injection Poisoning Attacks (NIPA), to graph-structured data. sequentially modify the labels and links of the injected nodes, with- However, recent studies [12, 38, 44, 51] show that GNNs are vul- out changing the connectivity between existing nodes. Specifcally, nerable to poisoning attacks which add perturbation to the training we introduce a hierarchical Q-learning network to manipulate the graph. Since GNNs are trained based on node attributes and the link labels of the adversarial nodes and their links with other nodes in structure in the graph, an adversary can attack the GNNs by poi- the graph, and design an appropriate reward function to guide the soning the graph data used for training. For example, Nettack [51] reinforcement learning agent to reduce the node classifcation per- shows that by adding the adversarial perturbations on the node’s formance of GNN. The results of the experiments show that NIPA is attributes and the graph structure, classifcation accuracy of graph consistently more efective than the baseline node injection attack convolution network signifcantly drops. However, the success of methods for poisoning graph data on three benchmark datasets. such attack strategy requires that the adversary is able to control these nodes and manipulate its connectivity. In other words, poi- KEYWORDS soning the real-world graphs such as Facebook and twitter require Adversarial Attack; Graph Poisoning; Reinforcement learning; breaching the security of the database that stores the graph data, or manipulating the requisite members into adding or deleting their ∗ links to other selected members. Consequently, such attack strategy Corresponding Author is expensive and usually requires more budgets for the adversary to execute without being caught. This paper is published under the Creative Commons Attribution 4.0 International Thus, we need a more efcient way to poison the graphs to in- (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their crease the node misclassifcation rate of GNNs without changing the personal and corporate Web sites with the appropriate attribution. link structure between the existing nodes in the graph. Injecting fake WWW ’20, April 20–24, 2020, Taipei, Taiwan © 2020 IW3C2 (International World Wide Web Conference Committee), published nodes (users) to social networks with carefully crafted node labels under Creative Commons CC-BY 4.0 License. and connecting them to carefully chosen existing nodes ofers a ACM ISBN 978-1-4503-7023-3/20/04. https://doi.org/10.1145/3366423.3380149 1https://intl.alipay.com/ 673 WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar promising approach to accomplishing this objective. For example, !$# !"# !%# in the fnancial platform, there is signifcant fnancial incentives for adversaries to attack the GNNs and manipulate the risks level of the real users. However, it is impossible for an attacker to breach the database. In contrast, an attacker could easily sign up fake ac- counts, create the social identity of the profles and send friendship requests to the real members. And as the social users always want to have the social infuence[9, 31], they tend to accept the friendship %/,$0 1-$23 &'(() $**$%+,- .($-* $**$%+,- requests from the others. With some of the real users accept the friendship from the attacker, the fake accounts are connected to the real users and thus such social network is poisoned. Once the Figure 1: (a) is the toy graph where the color of a node rep- GNNs are trained on the corrupted graph, the propagation of the resents its label; (b) shows the node injection poisoning at- fake information will misclassify the predicted level of risks on real tack performed by a naive attacker; (c) shows the node injec- users. Such node injection poisoning attacks are easier and less tion poisoning attack performed by a smart attacker using expensive to execute compared to those that require manipulating a smart strategy. The injected nodes are circled with dashed the links between existing nodes in the graph. Though promising, line. the work on such attacks are limited. Therefore, in this paper, we investigate a novel problem of graph The rest of the paper is organized as follows: Section 2 reviews poisoning attack by node injection. In essence, we are faced with the related work on adversarial attacks and reinforcement learning two challenges: (i) How to mathematically model and efectively on graph data; Section 3 formally defnes the non-target-specifc establish links between an injected adversarial (fake) node to ex- node injection poisoning attack problem. Section 4 presents NIPA, isting nodes in the original graph or to other injected adversarial our proposed solution; Section 5 describes our experimental results; nodes. As shown in Figure 1, both the attackers in (b) and (c) want section 6 concludes with a summary and an outline of promising to inject two fake nodes into the clean graph in (a). Obviously, directions for future work. the "smart attacker" who carefully designs the links and labels of the dashed line injected nodes could better poison the clean graph 2 RELATED WORK than the "dummy attack" who establish the links and generate the labels at random; and (ii) How to efciently solve the optimiza- Our study falls in the general area of data poisoning attacks on tion problem as the graph is discrete and highly-nonlinear. In an machine learning [4], that aim to corrupt the data so as to adversely attempt to solve these two challenges, we propose a novel frame- impact the performance of the predictive model that is trained on work named NIPA, to perform the Node Injection Poisoning Attack. the data. Such attacks have been extensively studied in the case As sequentially adding the adversarial connections and designing of non graph-structured data in supervised [3, 29] and reinforce- adversarial labels of the injected fake nodes could be naturally ment [18, 22, 25] learning. Specifcally, recent work has shown that formulated as the Markov decision process (MDP), NIPA adopts Q- deep neural networks are particularly vulnerable to data poison- learning algorithms, which have shown great successes for solving ing attacks [8, 19, 20, 37]. However, little attention has been given such problems [7, 36, 43]. The adopt of Q-learning also naturally to understanding how to poisoning the graph structured data. In solves the challenge of discrete optimization as now we concert the this paper, our focus is on such attacks on classifers trained on discrete edge adding process as actions in reinforcement learning graph-structured data. framework. To reduce the searching space, NIPA adopt a hierarchi- cal Q-learning network to decompose the actions. To cope with the 2.1 Adversarial Attacks on GNN graph highly-nonlinearity, NIPA comprises of deep Q network and The previous works [19, 37] have shown the intriguing properties GNN based state representation method. These components could of neural networks as they are "vulnerable to adversarial examples" learn the semantic structure of the graph and convert the discrete in computer vision domain. For example, in [19], the authors show graph structure to latent representations.
Recommended publications
  • Dear Colleague Letter: OFR-NSF Partnership in Support of Research Collaborations in Finance Informatics
    National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 NSF 13-093 Dear Colleague Letter: Date: May 14, 2013 The Directorate for Computer and Information Science and Engineering (CISE) of the National Science Foundation (NSF) and the Office of Financial Research (OFR) of the Department of Treasury share an interest in advancing basic and applied research centered on Computational and Information Processing Approaches to and Infrastructure in support of, Financial Research and Analysis and Management (CIFRAM). The complexity of modern financial instruments presents many challenges in recognizing and regulating Systemic Risk. The topic has been the subject of a recent National Academy of Science Report titled "Technical Capabilities Necessary for Systemic Risk Regulation: Summary of a Workshop." The CISE directorate and the Computing Community Consortium have sponsored workshops on Knowledge Representation and Information Management for Financial Risk Management and on Next-Generation Financial Cyberinfrastructure aimed at identifying research opportunities and challenges in CIFRAM. NSF and OFR have established a collaboration (hereafter referred to as CIFRAM) to identify and fund a small number of exploratory but potentially transformative CIFRAM research proposals. The collaboration enables OFR to support a broad range of financial research related to OFR’s mission, including research on potential threats to financial stability. It also assists OFR with the goal of promoting and encouraging collaboration between the government, the private sector, and academic institutions interested in furthering financial research and analysis. The collaboration enables the NSF to nurture fundamental CISE research on a variety of topics including algorithms, informatics, knowledge representation, and data analytics needed to advance the current state of the art in financial research and analysis.
    [Show full text]
  • Calendar of Events APRIL 6–7 Workshop on Lexical Semantics Systems (WLSS–98)
    AI Magazine Volume 19 Number 1 (1998) (© AAAI) E-mail: [email protected] Calendar of Events APRIL 6–7 Workshop on Lexical Semantics Systems (WLSS–98). Pisa, Italy ■ Contact: Alessandro Lenci Scuola Normale Superiore College Park, MD 20742 Laboratorio di linguistica March 1998 Piazza dei Cavalieri 7 MARCH 23–27 56126 Pisa, Italy MARCH 16–20 Practical Application Expo-98. Voice: +39 50 509219 Fourth World Congress on Expert London. Fax: +39 50 563513 Systems. Mexico City, Mexico celi.sns.it/~wlss98 ■ Contact: Tenth International Symposium on Steve Cartmell Artificial Intelligence. Mexico City, Practical Application Company APRIL 6–8 Mexico PO Box 173, Blackpool 1998 International Symposium on ■ Sponsor: Lancs. FY2 9UN Physical Design (ISPD–98). Mon- ITESM Center for Artificial United Kingdom terey, CA Intelligence Voice: +44 (0)1253 358081 ■ Sponsors: ■ Contact: Fax: +44 (0)1253 353811 ACM SIGDA, in cooperation with Rogelio Soto E-mail: [email protected] IEEE Circuits and Systems Society Program Chair, ITESM www.demon.co.uk/ar/Expo98/ and IEEE Computer Society Centro de Inteligencia Artificial ■ Contact: Av. Eugenio Garza Sada #2501 Sur D. F. Wong Monterrey, N. L. 64849, Mexico Technical Program Chair, ISPD–98 Voice: (52–8) 328-4197 University of Texas at Austin Fax: (52-8) 328-4189 April 1998 Department of Computer Sciences E-mail: [email protected]. Austin, TX 78712 APRIL 1–4 itesm.mx E-mail: [email protected] Second European Conference on www.ee.iastate.edu/~ispd98 Cognitive Modeling (ECCM–98). MARCH 16–20 Nottingham, UK International Workshop on APRIL 14–17 ■ Intelligent Agents on the Internet Contact: Fourteenth European Meeting on and Web.
    [Show full text]
  • Technology and Engineering International Journal of Recent
    International Journal of Recent Technology and Engineering ISSN : 2277 - 3878 Website: www.ijrte.org Volume-7 Issue-5S2, JANUARY 2019 Published by: Blue Eyes Intelligence Engineering and Sciences Publication d E a n n g y i n g o e l e o r i n n h g c e T t n e c Ijrt e e E R X I N P n f L O I O t T R A o e I V N O l G N r IN n a a n r t i u o o n J a l www.ijrte.org Exploring Innovation Editor-In-Chief Chair Dr. Shiv Kumar Ph.D. (CSE), M.Tech. (IT, Honors), B.Tech. (IT), Senior Member of IEEE Professor, Department of Computer Science & Engineering, Lakshmi Narain College of Technology Excellence (LNCTE), Bhopal (M.P.), India Associated Editor-In-Chief Chair Dr. Dinesh Varshney Professor, School of Physics, Devi Ahilya University, Indore (M.P.), India Associated Editor-In-Chief Members Dr. Hai Shanker Hota Ph.D. (CSE), MCA, MSc (Mathematics) Professor & Head, Department of CS, Bilaspur University, Bilaspur (C.G.), India Dr. Gamal Abd El-Nasser Ahmed Mohamed Said Ph.D(CSE), MS(CSE), BSc(EE) Department of Computer and Information Technology, Port Training Institute, Arab Academy for Science, Technology and Maritime Transport, Egypt Dr. Mayank Singh PDF (Purs), Ph.D(CSE), ME(Software Engineering), BE(CSE), SMACM, MIEEE, LMCSI, SMIACSIT Department of Electrical, Electronic and Computer Engineering, School of Engineering, Howard College, University of KwaZulu- Natal, Durban, South Africa. Scientific Editors Prof.
    [Show full text]
  • Node Injection a Acks on Graphs Via Reinforcement Learning
    Node Injection Aacks on Graphs via Reinforcement Learning Yiwei Sun, , Suhang Wangx , Xianfeng Tang, Tsung-Yu Hsieh, Vasant Honavar Pennsylvania State University fyus162, szw494, xut10 ,tuh45 ,[email protected] ABSTRACT (a) (b) (c) Real-world graph applications, such as advertisements and prod- uct recommendations make prots based on accurately classify the label of the nodes. However, in such scenarios, there are high incentives for the adversaries to aack such graph to reduce the node classication performance. Previous work on graph adversar- ial aacks focus on modifying existing graph structures, which is clean graph dummy attacker smart attacker infeasible in most real-world applications. In contrast, it is more practical to inject adversarial nodes into existing graphs, which can Figure 1: (a) is the toy graph where the color of a node repre- also potentially reduce the performance of the classier. sents its label; (b) shows the poisoning injection attack per- In this paper, we study the novel node injection poisoning aacks formed by a dummy attacker; (c) shows the poisoning in- problem which aims to poison the graph. We describe a reinforce- jection attack performed by a smart attacker. e injected ment learning based method, namely NIPA, to sequentially modify nodes are circled with dashed line. the adversarial information of the injected nodes. We report the results of experiments using several benchmark data sets that show the superior performance of the proposed method NIPA, relative to Recent works [12, 32, 35] have shown that even the state-of-the- the existing state-of-the-art methods. art graph classiers are susceptible to aacks which aim at adversely impacting the node classication accuracy.
    [Show full text]
  • AAAI-12 Conference Committees
    AAAI 2012 Conference Committees Chairs and Cochairs AAAI Conference Committee Chair Dieter Fox (University of Washington, USA) AAAI­12 Program Cochairs Jörg Hoffmann (Saarland University, Germany) Bart Selman (Cornell University, USA) IAAI­12 Conference Chair and Cochair Markus Fromherz (ACS, a Xerox Company, USA) Hector Munoz‐Avila (Lehigh University, USA) EAAI­12 Symposium Chair David Kauchak (Middlebury College, USA) Special Track on Artificial Intelligence and the Web Cochairs Denny Vrandecic (Institute of Applied Informatics and Formal Description Methods, Germany) Chris Welty (IBM Research, USA) Special Track on Cognitive Systems Cochairs Matthias Scheutz (Tufts University, USA) James Allen (University of Rochester, USA) Special Track on Computational Sustainability and Artificial Intelligence Cochairs Carla P. Gomes (Cornell University, USA) Brian C. Williams (Massachusetts Institute of Technology, USA) Special Track on Robotics Cochairs Kurt Konolige (Industrial Perception, Inc., USA) Siddhartha Srinivasa (Carnegie Mellon University, USA) Turing Centenary Events Chair Toby Walsh (NICTA and University of New South Wales, Australia) Tutorial Program Cochairs Carmel Domshlak (Technion Israel Institute of Technology, Israel) Patrick Pantel (Microsoft Research, USA) Workshop Program Cochairs Michael Beetz (University of Munich, Germany) Holger Hoos (University of British Columbia, Canada) Doctoral Consortium Cochairs Elizabeth Sklar (Brooklyn College, City University of New York, USA) Peter McBurney (King’s College London, United Kingdom)
    [Show full text]
  • An Incremental Learning Algorithm with Confidence Estimation For
    990 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004 An Incremental Learning Algorithm with Confidence Estimation for Automated Identification of NDE Signals Robi Polikar, Member, IEEE, Lalita Udpa, Senior Member, IEEE, Satish Udpa, Fellow, IEEE, and Vasant Honavar, Member, IEEE Abstract—An incremental learning algorithm is intro- • applications calling for analysis of large volumes of duced for learning new information from additional data data; and/or that may later become available, after a classifier has al- • applications in which human factors may introduce ready been trained using a previously available database. The proposed algorithm is capable of incrementally learn- significant errors. ing new information without forgetting previously acquired knowledge and without requiring access to the original Such NDE applications are numerous, including but are database, even when new data include examples of previ- not limited to, defect identification in natural gas trans- ously unseen classes. Scenarios requiring such a learning mission pipelines [1], [2], aircraft engine and wheel compo- algorithm are encountered often in nondestructive evalua- nents [3]–[5], nuclear power plant pipings and tubings [6], tion (NDE) in which large volumes of data are collected in batches over a period of time, and new defect types may [7], artificial heart valves, highway bridge decks [8], optical become available in subsequent databases. The algorithm, components such as lenses of high-energy laser generators named Learn++, takes advantage of synergistic general- [9], or concrete sewer pipelines [10] just to name a few. ization performance of an ensemble of classifiers in which A rich collection of classification algorithms has been each classifier is trained with a strategically chosen subset of the training databases that subsequently become avail- developed for a broad range of NDE applications.
    [Show full text]
  • Conference Program Contents AAAI-14 Conference Committee
    Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14) Twenty-Sixth Conference on Innovative Applications of Artificial Intelligence (IAAI-14) Fih Symposium on Educational Advances in Artificial Intelligence (EAAI-14) July 27 – 31, 2014 Québec Convention Centre Québec City, Québec, Canada Sponsored by the Association for the Advancement of Artificial Intelligence Cosponsored by the AI Journal, National Science Foundation, Microso Research, Google, Amazon, Disney Research, IBM Research, Nuance Communications, Inc., USC/Information Sciences Institute, Yahoo Labs!, and David E. Smith In cooperation with the Cognitive Science Society and ACM/SIGAI Conference Program Contents AAAI-14 Conference Committee AI Video Competition / 7 AAAI acknowledges and thanks the following individuals for their generous contributions of time and Awards / 3–4 energy to the successful creation and planning of the AAAI-14, IAAI-14, and EAAI-14 Conferences. Computer Poker Competition / 7 Committee Chair Conference at a Glance / 5 CRA-W / CDC Events / 4 Subbarao Kambhampati (Arizona State University, USA) Doctoral Consortium / 6 AAAI-14 Program Cochairs EAAI-14 Program / 6 Carla E. Brodley (Northeastern University, USA) Exhibition /24 Peter Stone (University of Texas at Austin, USA) Fun & Games Night / 4 IAAI Chair and Cochair General Information / 25 David Stracuzzi (Sandia National Laboratories, USA) IAAI-14 Program / 11–19 David Gunning (PARC, USA) Invited Presentations / 3, 8–9 EAAI-14 Symposium Chair and Cochair Posters / 4, 23 Registration / 9 Laura
    [Show full text]
  • Arxiv:1909.00384V2 [Cs.LG] 8 Aug 2020 1 Introduction
    DEEPHEALTH:REVIEW AND CHALLENGES OF ARTIFICIAL INTELLIGENCE IN HEALTH INFORMATICS APREPRINT Gloria Hyunjung Kwak Pan Hui Department of Computer Science and Engineering Department of Computer Science and Engineering The Hong Kong University of Science and Technology The Hong Kong University of Science and Technology Hong Kong Hong Kong [email protected] [email protected] August 11, 2020 ABSTRACT Artificial intelligence has provided us with an exploration of a whole new research era. As more data and better computational power become available, the approach is being implemented in various fields. The demand for it in health informatics is also increasing, and we can expect to see the potential benefits of its applications in healthcare. It can help clinicians diagnose disease, identify drug effects for each patient, understand the relationship between genotypes and phenotypes, explore new phenotypes or treatment recommendations, and predict infectious disease outbreaks with high accuracy. In contrast to traditional models, recent artificial intelligence approaches do not require domain-specific data pre-processing, and it is expected that it will ultimately change life in the future. Despite its notable advantages, there are some key challenges on data (high dimensionality, heterogeneity, time dependency, sparsity, irregularity, lack of label, bias) and model (reliability, interpretability, feasibility, security, scalability) for practical use. This article presents a comprehensive review of research applying artificial intelligence in health informatics, focusing on the last seven years in the fields of medical imaging, electronic health records, genomics, sensing, and online communication health, as well as challenges and promising directions for future research. We highlight ongoing popular approaches’ research and identify several challenges in building models.
    [Show full text]
  • Accelerating Science a Grand Challenge for AI?
    Accelerating Science A Grand Challenge for AI? CCC Task Force on Convergence of Data and Computing Vasant Honavar, Mark Hill, Kathy Yelick Presentation to DARPA Defense Science Office March 16, 2017 Computing Community Consortium The mission of Computing Research Association's Computing Community Consortium (CCC) is to catalyze the computing research community and enable the pursuit of innovative, high-impact research. Promote Audacious Thinking: Computing Research Community Open Community Initiated Visioning Workshops National Agency Blue Sky Visioning Blue Sky Ideas tracks at conferences Priorities Requests Ideas Calls Inform Science Policy Outputs of visioning activities Council-Led Community Task Forces – e.g., Artificial Intelligence, Data Workshops Visioning and Computing, Health, Internet of Things, Privacy Reports • White Papers Engage the Community: Roadmaps • New Leaders CCC Blog - http://cccblog.org/ Computing Research in Action Videos Funding Science Policy Public Research “Highlight of the Week” Agencies Leadership Promote Leadership and Service: Computing Innovation Fellows Project Leadership in Science Policy Institute Accelerating Science: A Grand Challenge for AI? • Discussion based in part on: – Accelerang Science: A Compu3ng Research Agenda. A Compu3ng Community Consor3um White Paper, Vasant Honavar, Mark Hill, and Katherine Yelick, 2016 hJp://cra.org/crn/2016/03/3501/ – AAAI Fall Symposium on Accelerang Science: A Grand Challenge for AI • Other related events: – NSF Workshop on Discovery Informacs, February 2012 –
    [Show full text]
  • BRAIN-Lightning-Introductions-Slides
    Lightning Introductions Research Interfaces between Brain Science and Computer Science December 3-5, 2014 Charles Anderson / Colorado State Brain-Computer Interfaces www.cs.colostate.edu/eeg Sanjeev Arora / Princeton Computational complexity, designing algorithms for NP-hard problems, provably correct and efficient algorithms for ML (esp. unsupervised learning) (Panel Moderator: Computing and the brain.) Satinder Singh Baveja / Michigan • Reinforcement Learning: Architectures for converting payoffs/rewards to closed-loop behavior in AIs and Humans • Optimal rewards theory, or, Where do reward (functions) come from? • Computationally Rational models for explaining animal behavior and for deriving brain mechanisms. Andrew Bernat / CRA How might computer science and brain science get the resources they need? Matt Botvinick / Princeton •Cognitive/computational neuroscience • fMRI, behavioral methods, neurophysiology • Computational modeling (deep learning, reinforcement learning, graphical models) •Perspective: Computation as a Rosetta Stone •A common language in which to understand both behavior/cognition and neural function Randal Burns / JHU CS->Brain: Data-Intensive Web-services • scale infrastructure to capture high-throughput imaging (1TB/day) • integrated visualization and analytics • semantic/spatial queries of brain structure/function BRAIN->CS: Inspiration for new data organization and indexing techniques Miyoung Chun / Kavli Foundation The benefits are mutual: • Understanding the brain will have tremendous impacts on • hardware
    [Show full text]
  • Faculty Early Career Development
    Core Techniques and Technologies for Advancing Big Data Science & Engineering (BIGDATA) NSF 12-499 Vasant Honavar Program Director Information & Intelligent Systems (IIS) Division Computer and Information Science and Engineering (CISE) Directorate National Science Foundation BIGDATA Webinar Direct questions to [email protected] Vasant Honavar, May 2012 1 Big Data Research and Development Initiative • Big Data Senior Steering Group – chartered in spring 2011 under the Networking and Information Technology R&D (NITRD) Program – Members from DARPA, DOD OSD, DHS, DOE-Science, HHS, NARA, NASA, NIST, NOAA, NSA, and USGS – Co-chaired by NIH and NSF • White House Big Data Launch – March 29, 2012 • Long-term, National Big Data R&D with four major components: – Foundational research to develop new techniques and technologies to derive knowledge from data – New cyberinfrastructure to manage, curate, and serve data to research communities – New approaches for education and workforce development – Challenges and competitions to create new data analytic ideas, approaches, and tools from a more diverse stakeholder population BIGDATA Webinar Direct questions to [email protected] Vasant Honavar, May 2012 2 The Big Data Team Suzi Iacono, NSF, Karin Remington, NIH NITRD Big Data Steering Group • Vasant G. Honavar, NSF - CISE • Peter Lyster, NIH - NIGMS • Jia Li, NSF - MPS • Karin A. Remington, NIH - NIGMS • Dane Skow, NSF – OCI • Jerry Li, NIH - NCI • Peter H. McCartney, NSF - BIO • Vinay M. Pai, NIH - NIBIB • Doris L. Carver, NSF - EHR • Karen Skinner, NIH
    [Show full text]
  • Where Mathematics, Computer Science
    Brie¯y Noted ªGrammar inference, automata induction, ªOur volume has two goals. One is to and language acquisitionº by Rajesh G. present some recent results in active areas of Parekh and Vasant Honavar the three domains that converge in the new ªThe symbolic approach to ANN-based nat- ®eld. The other one is to celebrate the 50th ural language processingº by Michael Wit- birthday of Gheorghe PÆaun, who, from for- brock mal language theory, promoted the new re- ªThe subsymbolic approach to ANN-based natural language processingº by Georg search area and made seminal contributions Dorffner to it.... All the papers are contributed by ªThe hybrid approach to ANN-based natural Gheorghe PÆaun's collaborators, colleagues, language processingº by Stefan Wermter friends, and students in the ®ve continents, ªCharacter recognition with syntactic neural who wanted to show in this way their recog- networksº by Simon Lucas nition to him for his tremendous work. We ªCompressing texts with neural netsº by have collected 38 papers by 75 authors here. Downloaded from http://direct.mit.edu/coli/article-pdf/27/4/603/1797713/coli.2000.27.4.603b.pdf by guest on 29 September 2021 JÈurgen Schmidhuber and Stefan Heil (Another set of 38 papers by 65 authors will ªNeural architectures for information re- be published soon in the future.)ºÐFrom the trieval and database queryº by Chun- editors' preface Hsien Chen and Vasant Honavar ªText data miningº by Dieter Merkl ªText and discourse understanding: The DIS- Recent Advances in Natural Language CERN systemº by Risto
    [Show full text]