A General Strategy for Knowledge Acquisition from Semantically Heterogeneous Data Sources

Total Page:16

File Type:pdf, Size:1020Kb

A General Strategy for Knowledge Acquisition from Semantically Heterogeneous Data Sources A General Strategy for Knowledge Acquisition from Semantically Heterogeneous Data Sources Doina Caragea Jie Bao and Vasant Honavar Department of Computing and Information Sciences Artificial Intelligence Research Lab Kansas State University Department of Computer Science 234 Nichols Hall, Manhattan, KS 66506 Iowa State University 226 Atanasoff Hall, Ames, IA 50011 Abstract (a) Data repositories are large in size, dynamic, and phys- With the advent of the Semantic Web, there is increased ically distributed. Consequently, it is neither desirable availability of meta data (ontologies) that make explicit nor feasible to gather all of the data in a centralized lo- the semantic commitments associated with the data cation for analysis. Hence, there is a need for efficient al- sources. Together with tools for specifying mappings gorithms for analyzing and exploring multiple distributed between ontologies, this has opened up for the first time, data sources without transmitting large amounts of data. the possibility of acquiring knowledge from such on- (b) Autonomously developed and operated data sources of- tology extended, semantically disparate data sources. Hence, there is an urgent need for machine learning ten differ in their structure and organization (e.g., rela- algorithms for building predictive models (e.g., classi- tional databases, flat files, etc.) and the operations that fiers) in a setting where there is no unique global in- can be performed on the data sources (e.g., types of terpretation of data from semantically disparate sources queries - relational queries, statistical queries, keyword and it is neither feasible nor desirable to collect data matches). Hence, there is a need for theoretically well- from such sources in a centralized data warehouse. We founded strategies for efficiently obtaining the informa- formulate the problem of learning classifiers from a set tion needed for analysis within the operational constraints of related, semantically heterogeneous data sources, un- imposed by the data sources. der the assumption that ontologies and mappings from a user ontology to the data source ontologies are given. (c) Autonomously developed data sources are semantically We design a general strategy for learning classifiers heterogeneous. The ontological commitments associated from such data sources by reducing the problem of with a data source (and hence its implied semantics) are learning to the problem of answering queries from se- typically determined by the data source designers, based mantically heterogeneous data and we show how to an- on their understanding of the intended use of the data. swer such queries. Very often, data sources that are created for use in one context or application find use in other contexts or ap- Introduction plications, and therefore, semantic differences among au- The availability of large amounts of data in many applica- tonomously designed, owned, and operated data reposito- tion domains offer unprecedented opportunities in computer ries are simply unavoidable. Therefore, effective use of assisted data-driven knowledge acquisition in a number of multiple sources of data in a given context requires recon- applications including, in particular, data-driven scientific ciliation of semantic differences. As a consequence, there discovery (e-Science) in bioinformatics, environmental in- has been significant community-wide efforts aimed at the constructionof ontologies(e.g., Gene Ontology - GO1 - in formatics, geo-informatics, neuro-informatics, health infor- 2 matics, etc. or data-driven decision making in business and biology, Unified Medical Language System - UMLS - in heath informatics, Semantic Web for Earth and Environ- commerce (e-Business and e-commerce). 3 Machine learning techniques (Mitchell 1997; Duda, Hart, mental Terminology - SWEET - in geospatial informat- & Stork 2000), in addition to traditional statistical tech- ics). However, collaborative scientific discovery applica- niques (Casella & Berger 2001), offer some of the most cost- tions often require users to be able to analyze data from effective approaches to analyzing, exploring and extracting various perspectives. There is no single privileged per- knowledge (features, correlations, and other complex rela- spective that can serve all users, or for that matter, even tionships and hypotheses that describe potentially interest- a single user, in every context. Hence, there is a need ing regularities) from such data sources. However, the ap- for methods that can dynamically and efficiently extract plicability of current knowledge acquisition techniques is and integrate information needed for knowledge acquisi- challenged by the nature and the scale of the data available. tion, from semantically heterogeneous data, from a user’s More precisely: 1www.geneontology.org Copyright c 2006, American Association for Artificial Intelli- 2www.nlm.nih.gov/research/umls gence (www.aaai.org). All rights reserved. 3sweet.jpl.nasa.gov perspective, based on user-specified ontologies and user- On the Semantic Web, it is unrealistic to assume the exis- specified mappings between ontologies. tence of a single global ontology that corresponds to a uni- Against this background,we note that a large class of data versally agreed upon set of ontological commitments for all sources on the Semantic Web can be viewed (at a certain users. Instead, it is much more realistic to allow each user level of abstraction) as a collection of semantically disparate or a community of users to choose the ontological commit- relational data sources that are semantically related, froma ments that they deem useful in a specific context. A user on- user’s point of view, in the context of a specific knowledge tology OU , together with a set of interoperation constraints acquisition task. We design a general strategy for learning IC, and the associated set of mappings {ψi|i = 1,p} classifiers from multiple semantically disparate, geograph- from the user ontology OU to the data source ontologies ically distributed, relational data sources on the Semantic O1 · · · Op define a user view (Caragea et al. 2005b). In Web. the relational setting considered in this paper, the interop- The rest of the paper is organized as follows: We first eration constraints can be equality constraints or inclusion introduce the concepts and definitions needed to formulate constraints and can be defined at the concept level (between the problem addressed. Next, we formulate the problem of related concepts), property level (between related attributes learning from semantically heterogeneous data and describe or relations) and at the attribute value level (between related a general strategy for transforming algorithms for learning attribute values). classifiers from relational data into algorithms for learn- ing classifiers from semantically disparate, relational data Bibliography Example sources, using ontologies and mappings between ontologies, We will use an example from the bibliography domain in a setting where it is neither feasible nor desirable to inte- to illustrate the main notions introduced above. Consider grate all the data available into a single relational data ware- the problem of classifying computer science research pa- house. We conclude with a summary and a brief discussion pers into categories from a topic hierarchy (e.g., Arti- of related work. ficial Intelligence, Networking, Data Mining, Relational Data Mining, etc.) (McCallum et al. 2000) . A Concepts and Definitions user interested in a document classification task, might Ontology-Extended Data Sources and User Views consider using several data sources, such as CiteULike (http://www.citeulike.org/) from UMBC; the Collection of We define an ontology-extended relational data source 4 (OERDS) as a tuple D = {D,S,O}, where D is the ac- Computer Science Bibliographies from University of Karl- tual data set in the data source, S represents the data source sruhe; MIT Libraries (http://libraries.mit.edu/index.html), schema and O represents the data source ontology (Bonatti, INRIA Reference Database (http://ontoweb.org/), etc., for Deng, & Subrahmanian 2003; Caragea et al. 2005b). learning classifiers. The Ontology Alignment Evalu- In the relational model, each data source consists of a set ation Initiative (OAEI) has made available a Test Li- brary (http://oaei.inrialpes.fr/2005/benchmarks/) that con- of concepts X1, · · · ,X anda set of properties of these con- n tains representative ontologies for the data sources above. cepts P1, · · · , P . Each concept has associated with it, a set m In this case, the structure ontologies define the relevant con- of attributes denoted by A(Xi) and a set of k-ary relations (k > 1) denoted by R(X ). Each attribute A takes val- cepts, such as Reference, Book, Article, Journal, i i Conference, etc.) relationships between classes (see Fig- ues in a set V(Ai). The concepts and the properties of the concepts (attributes and relations) define the schema of a re- ure 2 for class hierarchies contained in the INRIA, MIT lational data source. A data set D is an instantiation I(S) and a user ontology, respectively), and properties of the of a schema S (Getoor et al. 2001). concepts such as Article author Author; Article Article Author Article The ontology O of an OERDS D consists of two parts: cites ; position; journal Journal, etc. The properties in these ontologies include structure ontology, OS , that defines the semanticsof the data source schema (concepts and properties of the concepts that both attributes (e.g., position)
Recommended publications
  • Dear Colleague Letter: OFR-NSF Partnership in Support of Research Collaborations in Finance Informatics
    National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 NSF 13-093 Dear Colleague Letter: Date: May 14, 2013 The Directorate for Computer and Information Science and Engineering (CISE) of the National Science Foundation (NSF) and the Office of Financial Research (OFR) of the Department of Treasury share an interest in advancing basic and applied research centered on Computational and Information Processing Approaches to and Infrastructure in support of, Financial Research and Analysis and Management (CIFRAM). The complexity of modern financial instruments presents many challenges in recognizing and regulating Systemic Risk. The topic has been the subject of a recent National Academy of Science Report titled "Technical Capabilities Necessary for Systemic Risk Regulation: Summary of a Workshop." The CISE directorate and the Computing Community Consortium have sponsored workshops on Knowledge Representation and Information Management for Financial Risk Management and on Next-Generation Financial Cyberinfrastructure aimed at identifying research opportunities and challenges in CIFRAM. NSF and OFR have established a collaboration (hereafter referred to as CIFRAM) to identify and fund a small number of exploratory but potentially transformative CIFRAM research proposals. The collaboration enables OFR to support a broad range of financial research related to OFR’s mission, including research on potential threats to financial stability. It also assists OFR with the goal of promoting and encouraging collaboration between the government, the private sector, and academic institutions interested in furthering financial research and analysis. The collaboration enables the NSF to nurture fundamental CISE research on a variety of topics including algorithms, informatics, knowledge representation, and data analytics needed to advance the current state of the art in financial research and analysis.
    [Show full text]
  • Calendar of Events APRIL 6–7 Workshop on Lexical Semantics Systems (WLSS–98)
    AI Magazine Volume 19 Number 1 (1998) (© AAAI) E-mail: [email protected] Calendar of Events APRIL 6–7 Workshop on Lexical Semantics Systems (WLSS–98). Pisa, Italy ■ Contact: Alessandro Lenci Scuola Normale Superiore College Park, MD 20742 Laboratorio di linguistica March 1998 Piazza dei Cavalieri 7 MARCH 23–27 56126 Pisa, Italy MARCH 16–20 Practical Application Expo-98. Voice: +39 50 509219 Fourth World Congress on Expert London. Fax: +39 50 563513 Systems. Mexico City, Mexico celi.sns.it/~wlss98 ■ Contact: Tenth International Symposium on Steve Cartmell Artificial Intelligence. Mexico City, Practical Application Company APRIL 6–8 Mexico PO Box 173, Blackpool 1998 International Symposium on ■ Sponsor: Lancs. FY2 9UN Physical Design (ISPD–98). Mon- ITESM Center for Artificial United Kingdom terey, CA Intelligence Voice: +44 (0)1253 358081 ■ Sponsors: ■ Contact: Fax: +44 (0)1253 353811 ACM SIGDA, in cooperation with Rogelio Soto E-mail: [email protected] IEEE Circuits and Systems Society Program Chair, ITESM www.demon.co.uk/ar/Expo98/ and IEEE Computer Society Centro de Inteligencia Artificial ■ Contact: Av. Eugenio Garza Sada #2501 Sur D. F. Wong Monterrey, N. L. 64849, Mexico Technical Program Chair, ISPD–98 Voice: (52–8) 328-4197 University of Texas at Austin Fax: (52-8) 328-4189 April 1998 Department of Computer Sciences E-mail: [email protected]. Austin, TX 78712 APRIL 1–4 itesm.mx E-mail: [email protected] Second European Conference on www.ee.iastate.edu/~ispd98 Cognitive Modeling (ECCM–98). MARCH 16–20 Nottingham, UK International Workshop on APRIL 14–17 ■ Intelligent Agents on the Internet Contact: Fourteenth European Meeting on and Web.
    [Show full text]
  • Technology and Engineering International Journal of Recent
    International Journal of Recent Technology and Engineering ISSN : 2277 - 3878 Website: www.ijrte.org Volume-7 Issue-5S2, JANUARY 2019 Published by: Blue Eyes Intelligence Engineering and Sciences Publication d E a n n g y i n g o e l e o r i n n h g c e T t n e c Ijrt e e E R X I N P n f L O I O t T R A o e I V N O l G N r IN n a a n r t i u o o n J a l www.ijrte.org Exploring Innovation Editor-In-Chief Chair Dr. Shiv Kumar Ph.D. (CSE), M.Tech. (IT, Honors), B.Tech. (IT), Senior Member of IEEE Professor, Department of Computer Science & Engineering, Lakshmi Narain College of Technology Excellence (LNCTE), Bhopal (M.P.), India Associated Editor-In-Chief Chair Dr. Dinesh Varshney Professor, School of Physics, Devi Ahilya University, Indore (M.P.), India Associated Editor-In-Chief Members Dr. Hai Shanker Hota Ph.D. (CSE), MCA, MSc (Mathematics) Professor & Head, Department of CS, Bilaspur University, Bilaspur (C.G.), India Dr. Gamal Abd El-Nasser Ahmed Mohamed Said Ph.D(CSE), MS(CSE), BSc(EE) Department of Computer and Information Technology, Port Training Institute, Arab Academy for Science, Technology and Maritime Transport, Egypt Dr. Mayank Singh PDF (Purs), Ph.D(CSE), ME(Software Engineering), BE(CSE), SMACM, MIEEE, LMCSI, SMIACSIT Department of Electrical, Electronic and Computer Engineering, School of Engineering, Howard College, University of KwaZulu- Natal, Durban, South Africa. Scientific Editors Prof.
    [Show full text]
  • Node Injection a Acks on Graphs Via Reinforcement Learning
    Node Injection Aacks on Graphs via Reinforcement Learning Yiwei Sun, , Suhang Wangx , Xianfeng Tang, Tsung-Yu Hsieh, Vasant Honavar Pennsylvania State University fyus162, szw494, xut10 ,tuh45 ,[email protected] ABSTRACT (a) (b) (c) Real-world graph applications, such as advertisements and prod- uct recommendations make prots based on accurately classify the label of the nodes. However, in such scenarios, there are high incentives for the adversaries to aack such graph to reduce the node classication performance. Previous work on graph adversar- ial aacks focus on modifying existing graph structures, which is clean graph dummy attacker smart attacker infeasible in most real-world applications. In contrast, it is more practical to inject adversarial nodes into existing graphs, which can Figure 1: (a) is the toy graph where the color of a node repre- also potentially reduce the performance of the classier. sents its label; (b) shows the poisoning injection attack per- In this paper, we study the novel node injection poisoning aacks formed by a dummy attacker; (c) shows the poisoning in- problem which aims to poison the graph. We describe a reinforce- jection attack performed by a smart attacker. e injected ment learning based method, namely NIPA, to sequentially modify nodes are circled with dashed line. the adversarial information of the injected nodes. We report the results of experiments using several benchmark data sets that show the superior performance of the proposed method NIPA, relative to Recent works [12, 32, 35] have shown that even the state-of-the- the existing state-of-the-art methods. art graph classiers are susceptible to aacks which aim at adversely impacting the node classication accuracy.
    [Show full text]
  • AAAI-12 Conference Committees
    AAAI 2012 Conference Committees Chairs and Cochairs AAAI Conference Committee Chair Dieter Fox (University of Washington, USA) AAAI­12 Program Cochairs Jörg Hoffmann (Saarland University, Germany) Bart Selman (Cornell University, USA) IAAI­12 Conference Chair and Cochair Markus Fromherz (ACS, a Xerox Company, USA) Hector Munoz‐Avila (Lehigh University, USA) EAAI­12 Symposium Chair David Kauchak (Middlebury College, USA) Special Track on Artificial Intelligence and the Web Cochairs Denny Vrandecic (Institute of Applied Informatics and Formal Description Methods, Germany) Chris Welty (IBM Research, USA) Special Track on Cognitive Systems Cochairs Matthias Scheutz (Tufts University, USA) James Allen (University of Rochester, USA) Special Track on Computational Sustainability and Artificial Intelligence Cochairs Carla P. Gomes (Cornell University, USA) Brian C. Williams (Massachusetts Institute of Technology, USA) Special Track on Robotics Cochairs Kurt Konolige (Industrial Perception, Inc., USA) Siddhartha Srinivasa (Carnegie Mellon University, USA) Turing Centenary Events Chair Toby Walsh (NICTA and University of New South Wales, Australia) Tutorial Program Cochairs Carmel Domshlak (Technion Israel Institute of Technology, Israel) Patrick Pantel (Microsoft Research, USA) Workshop Program Cochairs Michael Beetz (University of Munich, Germany) Holger Hoos (University of British Columbia, Canada) Doctoral Consortium Cochairs Elizabeth Sklar (Brooklyn College, City University of New York, USA) Peter McBurney (King’s College London, United Kingdom)
    [Show full text]
  • An Incremental Learning Algorithm with Confidence Estimation For
    990 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004 An Incremental Learning Algorithm with Confidence Estimation for Automated Identification of NDE Signals Robi Polikar, Member, IEEE, Lalita Udpa, Senior Member, IEEE, Satish Udpa, Fellow, IEEE, and Vasant Honavar, Member, IEEE Abstract—An incremental learning algorithm is intro- • applications calling for analysis of large volumes of duced for learning new information from additional data data; and/or that may later become available, after a classifier has al- • applications in which human factors may introduce ready been trained using a previously available database. The proposed algorithm is capable of incrementally learn- significant errors. ing new information without forgetting previously acquired knowledge and without requiring access to the original Such NDE applications are numerous, including but are database, even when new data include examples of previ- not limited to, defect identification in natural gas trans- ously unseen classes. Scenarios requiring such a learning mission pipelines [1], [2], aircraft engine and wheel compo- algorithm are encountered often in nondestructive evalua- nents [3]–[5], nuclear power plant pipings and tubings [6], tion (NDE) in which large volumes of data are collected in batches over a period of time, and new defect types may [7], artificial heart valves, highway bridge decks [8], optical become available in subsequent databases. The algorithm, components such as lenses of high-energy laser generators named Learn++, takes advantage of synergistic general- [9], or concrete sewer pipelines [10] just to name a few. ization performance of an ensemble of classifiers in which A rich collection of classification algorithms has been each classifier is trained with a strategically chosen subset of the training databases that subsequently become avail- developed for a broad range of NDE applications.
    [Show full text]
  • Conference Program Contents AAAI-14 Conference Committee
    Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14) Twenty-Sixth Conference on Innovative Applications of Artificial Intelligence (IAAI-14) Fih Symposium on Educational Advances in Artificial Intelligence (EAAI-14) July 27 – 31, 2014 Québec Convention Centre Québec City, Québec, Canada Sponsored by the Association for the Advancement of Artificial Intelligence Cosponsored by the AI Journal, National Science Foundation, Microso Research, Google, Amazon, Disney Research, IBM Research, Nuance Communications, Inc., USC/Information Sciences Institute, Yahoo Labs!, and David E. Smith In cooperation with the Cognitive Science Society and ACM/SIGAI Conference Program Contents AAAI-14 Conference Committee AI Video Competition / 7 AAAI acknowledges and thanks the following individuals for their generous contributions of time and Awards / 3–4 energy to the successful creation and planning of the AAAI-14, IAAI-14, and EAAI-14 Conferences. Computer Poker Competition / 7 Committee Chair Conference at a Glance / 5 CRA-W / CDC Events / 4 Subbarao Kambhampati (Arizona State University, USA) Doctoral Consortium / 6 AAAI-14 Program Cochairs EAAI-14 Program / 6 Carla E. Brodley (Northeastern University, USA) Exhibition /24 Peter Stone (University of Texas at Austin, USA) Fun & Games Night / 4 IAAI Chair and Cochair General Information / 25 David Stracuzzi (Sandia National Laboratories, USA) IAAI-14 Program / 11–19 David Gunning (PARC, USA) Invited Presentations / 3, 8–9 EAAI-14 Symposium Chair and Cochair Posters / 4, 23 Registration / 9 Laura
    [Show full text]
  • Adversarial Attacks on Graph Neural Networks Via Node Injections: a Hierarchical Reinforcement Learning Approach
    Adversarial Atacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach Yiwei Sun Suhang Wang∗ Xianfeng Tang The Pennsylvania State University The Pennsylvania State University The Pennsylvania State University University Park, PA, USA University Park, PA, USA University Park, PA, USA [email protected] [email protected] [email protected] Tsung-Yu Hsieh Vasant Honavar The Pennsylvania State University The Pennsylvania State University University Park, PA, USA University Park, PA, USA [email protected] [email protected] ABSTRACT ACM Reference Format: Graph Neural Networks (GNN) ofer the powerful approach to node Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant classifcation in complex networks across many domains including Honavar. 2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach. In Proceedings social media, E-commerce, and FinTech. However, recent studies of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. show that GNNs are vulnerable to attacks aimed at adversely im- ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380149 pacting their node classifcation performance. Existing studies of adversarial attacks on GNN focus primarily on manipulating the 1 INTRODUCTION connectivity between existing nodes, a task that requires greater Graphs, where nodes and their attributes denote real-world entities efort on the part of the attacker in real-world applications. In con- (e.g., individuals) and links encode relationships (e.g., friendship) trast, it is much more expedient on the part of the attacker to inject between entities, are ubiquitous in many application domains, in- adversarial nodes, e.g., fake profles with forged links, into existing cluding social media [1, 21, 35, 49, 50], e-commerce[16, 47], and graphs so as to reduce the performance of the GNN in classifying FinTech [24, 33].
    [Show full text]
  • Arxiv:1909.00384V2 [Cs.LG] 8 Aug 2020 1 Introduction
    DEEPHEALTH:REVIEW AND CHALLENGES OF ARTIFICIAL INTELLIGENCE IN HEALTH INFORMATICS APREPRINT Gloria Hyunjung Kwak Pan Hui Department of Computer Science and Engineering Department of Computer Science and Engineering The Hong Kong University of Science and Technology The Hong Kong University of Science and Technology Hong Kong Hong Kong [email protected] [email protected] August 11, 2020 ABSTRACT Artificial intelligence has provided us with an exploration of a whole new research era. As more data and better computational power become available, the approach is being implemented in various fields. The demand for it in health informatics is also increasing, and we can expect to see the potential benefits of its applications in healthcare. It can help clinicians diagnose disease, identify drug effects for each patient, understand the relationship between genotypes and phenotypes, explore new phenotypes or treatment recommendations, and predict infectious disease outbreaks with high accuracy. In contrast to traditional models, recent artificial intelligence approaches do not require domain-specific data pre-processing, and it is expected that it will ultimately change life in the future. Despite its notable advantages, there are some key challenges on data (high dimensionality, heterogeneity, time dependency, sparsity, irregularity, lack of label, bias) and model (reliability, interpretability, feasibility, security, scalability) for practical use. This article presents a comprehensive review of research applying artificial intelligence in health informatics, focusing on the last seven years in the fields of medical imaging, electronic health records, genomics, sensing, and online communication health, as well as challenges and promising directions for future research. We highlight ongoing popular approaches’ research and identify several challenges in building models.
    [Show full text]
  • Accelerating Science a Grand Challenge for AI?
    Accelerating Science A Grand Challenge for AI? CCC Task Force on Convergence of Data and Computing Vasant Honavar, Mark Hill, Kathy Yelick Presentation to DARPA Defense Science Office March 16, 2017 Computing Community Consortium The mission of Computing Research Association's Computing Community Consortium (CCC) is to catalyze the computing research community and enable the pursuit of innovative, high-impact research. Promote Audacious Thinking: Computing Research Community Open Community Initiated Visioning Workshops National Agency Blue Sky Visioning Blue Sky Ideas tracks at conferences Priorities Requests Ideas Calls Inform Science Policy Outputs of visioning activities Council-Led Community Task Forces – e.g., Artificial Intelligence, Data Workshops Visioning and Computing, Health, Internet of Things, Privacy Reports • White Papers Engage the Community: Roadmaps • New Leaders CCC Blog - http://cccblog.org/ Computing Research in Action Videos Funding Science Policy Public Research “Highlight of the Week” Agencies Leadership Promote Leadership and Service: Computing Innovation Fellows Project Leadership in Science Policy Institute Accelerating Science: A Grand Challenge for AI? • Discussion based in part on: – Accelerang Science: A Compu3ng Research Agenda. A Compu3ng Community Consor3um White Paper, Vasant Honavar, Mark Hill, and Katherine Yelick, 2016 hJp://cra.org/crn/2016/03/3501/ – AAAI Fall Symposium on Accelerang Science: A Grand Challenge for AI • Other related events: – NSF Workshop on Discovery Informacs, February 2012 –
    [Show full text]
  • BRAIN-Lightning-Introductions-Slides
    Lightning Introductions Research Interfaces between Brain Science and Computer Science December 3-5, 2014 Charles Anderson / Colorado State Brain-Computer Interfaces www.cs.colostate.edu/eeg Sanjeev Arora / Princeton Computational complexity, designing algorithms for NP-hard problems, provably correct and efficient algorithms for ML (esp. unsupervised learning) (Panel Moderator: Computing and the brain.) Satinder Singh Baveja / Michigan • Reinforcement Learning: Architectures for converting payoffs/rewards to closed-loop behavior in AIs and Humans • Optimal rewards theory, or, Where do reward (functions) come from? • Computationally Rational models for explaining animal behavior and for deriving brain mechanisms. Andrew Bernat / CRA How might computer science and brain science get the resources they need? Matt Botvinick / Princeton •Cognitive/computational neuroscience • fMRI, behavioral methods, neurophysiology • Computational modeling (deep learning, reinforcement learning, graphical models) •Perspective: Computation as a Rosetta Stone •A common language in which to understand both behavior/cognition and neural function Randal Burns / JHU CS->Brain: Data-Intensive Web-services • scale infrastructure to capture high-throughput imaging (1TB/day) • integrated visualization and analytics • semantic/spatial queries of brain structure/function BRAIN->CS: Inspiration for new data organization and indexing techniques Miyoung Chun / Kavli Foundation The benefits are mutual: • Understanding the brain will have tremendous impacts on • hardware
    [Show full text]
  • Faculty Early Career Development
    Core Techniques and Technologies for Advancing Big Data Science & Engineering (BIGDATA) NSF 12-499 Vasant Honavar Program Director Information & Intelligent Systems (IIS) Division Computer and Information Science and Engineering (CISE) Directorate National Science Foundation BIGDATA Webinar Direct questions to [email protected] Vasant Honavar, May 2012 1 Big Data Research and Development Initiative • Big Data Senior Steering Group – chartered in spring 2011 under the Networking and Information Technology R&D (NITRD) Program – Members from DARPA, DOD OSD, DHS, DOE-Science, HHS, NARA, NASA, NIST, NOAA, NSA, and USGS – Co-chaired by NIH and NSF • White House Big Data Launch – March 29, 2012 • Long-term, National Big Data R&D with four major components: – Foundational research to develop new techniques and technologies to derive knowledge from data – New cyberinfrastructure to manage, curate, and serve data to research communities – New approaches for education and workforce development – Challenges and competitions to create new data analytic ideas, approaches, and tools from a more diverse stakeholder population BIGDATA Webinar Direct questions to [email protected] Vasant Honavar, May 2012 2 The Big Data Team Suzi Iacono, NSF, Karin Remington, NIH NITRD Big Data Steering Group • Vasant G. Honavar, NSF - CISE • Peter Lyster, NIH - NIGMS • Jia Li, NSF - MPS • Karin A. Remington, NIH - NIGMS • Dane Skow, NSF – OCI • Jerry Li, NIH - NCI • Peter H. McCartney, NSF - BIO • Vinay M. Pai, NIH - NIBIB • Doris L. Carver, NSF - EHR • Karen Skinner, NIH
    [Show full text]