Animal Health Import Requirements for Aquatic Animals for Ornamental
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Insight Into Nutrition Effect on Spawning and Larvae Rearing of the Clam Ruditapes Decussatus L
First insight into nutrition effect on spawning and larvae rearing of the clam Ruditapes decussatus L. from Dakhla Bay 1Yassine Ouagajjou, 2Touryia El Aloua, 3Mohamed El Moussaoui, 1El Mustafa Ait Chattou, 4Adil Aghzar, 3Younes Saoud 1 National Institute of Fisheries Research, INRH, Casablanca, Morocco; 2 Faculty of Science, Chouaib Doukkali University, El Jadida 24000, Morocco; 3 Faculty of Science, Abdelmalek Essaadi University, Tétouan 93002, Morocco; 4 Higher School of Technology, Sultan Moulay Slimane University, Khénifra, Morocco. Corresponding author: Y. Ouagajjou, [email protected]; [email protected] Abstract. The local clam Ruditapes decussatus has been a widespread bivalve along the natural beds in Dakhla Bay (Morocco). But, nowadays its overexploitation during many years has prompted the depletion of its occurrence in many extents and also has limited the availability of natural spat. In this study, the influence of nutrition on spawning, fertilization and larvae rearing was assessed for the first time. The potential of oocytes accumulation and release was highly influenced by the quality of microalgae combination (F = 20.7, p < 0.001) rather than their availability (F = 4.092, p < 0.05). Nevertheless, the eggs fertilization was also significantly affected by diet and ration respectively (F = 7.347, p < 0.01 and F = 4.645, p < 0.05). For larvae rearing, as regards to physiological responses, small size strains Isochrysis galbana and Pavlova lutheri are the most suitable regimen during early larvae phase, while diatom Chaetoceros calcitrans and large size strain Tetraselmis chui are more appropriate during late larvae phase. Therefore, the mixture of the four microalgae was the only diet that led to metamorphosis and settlement throughout this experiment. -
The Development of Amphibola Crenata (Martyn)
The Development of Amphibola crenata (Martyn). By Winifred Clieyne Faruie, M.A., Geraldine, New Zealand. With 13 Text-figures. IN 1919 I gave an account of the general anatomy of this interesting New Zealand littoral Pulmonate, and in the course of that account showed that the genital duct is single ; it extends from ovotestis to genital pore in one undivided canal; in other words the different structures identified by Quoy and Gaimard, and by Hutton respectively, as oviduct do not exist.1 At the time when that article was published I was not in a position to state how the eggs were conveyed to the exterior, and proposed to gather material month by month till the date of egg-laying was determined and their method of passage was ascertained. As a result of numerous observations extending over two years I am now able to satisfy myself on these two points : (1) That the egg-cells descend by way of the hermaphrodite duct through the coiled non-glandular portion of the common duct. x On p. 84 I wrote : ' Sections across the right side of the body show no trace of a duct between the rectum and the genital duct, whereas sections across the genital duct itself show the existence of a deep fold in its wall, which serves to divide the duct into two portions, presumably, during the passage of the ova and spermatozoa.' I cut serial sections again across the same region when the animal was engaged in laying eggs, but with the same negative result: I can, therefore, only come to the conclusion that a distinct and separate oviduct does not exist, though unfortunately I was not able to detect ova actually in the lower region of the common duct. -
Pathogens and Parasites of the Mussels Mytilus Galloprovincialis and Perna Canaliculus: Assessment of the Threats Faced by New Zealand Aquaculture
Pathogens and Parasites of the Mussels Mytilus galloprovincialis and Perna canaliculus: Assessment of the Threats Faced by New Zealand Aquaculture Cawthron Report No. 1334 December 2007 EXECUTIVE SUMMARY The literature on pathogens and parasites of the mytilid genera Mytilus and Perna was surveyed with particular focus on M. galloprovincialis and P. canaliculus. Likely pathological threats posed to New Zealand mussel aquaculture were identified and recommendations were discussed under the following topics. Epidemiological differences between New Zealand Mytilus and Perna There is a paucity of data for this comparison. Comparability or otherwise would inform predictions as to the threat posed by overseas Mytilus parasites to New Zealand Perna and vice versa. Samples of P. canaliculus and M. galloprovincialis should be surveyed to establish any significant difference in parasite loads or pathology. Invasive dynamics and possible development of pathological threat The greatest potential threat to New Zealand Perna canaliculus aquaculture appears to be posed by parasites introduced by invading Mytilus species. These common ship-borne fouling organisms are a likely source of overseas pathogens, the most important of which are probably Marteilia spp. and disseminated haemic neoplasia. Hybridisation of invasive and local mussels presents a further potential pathology hazard by production of a more susceptible reservoir host thus giving the potential for production of more infected hosts and greater water load of transmission stages. Such an increase in transmission stages might be a cause of concern for Perna canaliculus whose susceptibility is currently unknown. Studies on Marteilia and haemic neoplasia are required to address the following questions: Is Perna canaliculus susceptible to either of these pathogens? What are the current prevalences of these pathogens in local mytilids? What species of mussels are entering New Zealand waters? Do they include Mytilus spp. -
Ecological Status of Okains Bay Estuary
Ecological status of Okains Bay estuary Report No R08/53 ISBN: 978-1-86937-853-0 Lesley Bolton-Ritchie June 2008 Report R08/53 ISBN 978-86937-853-0 58 Kilmore Street PO Box 345 Christchurch Phone (03) 365 3828 Fax (03) 365 3194 75 Church Street PO Box 550 Timaru Phone (03) 688 9069 Fax (03) 688 9067 Website: www.ecan.govt.nz Customer Services Phone 0800 324 636 Ecological status of Okains Bay estuary Executive Summary This report presents detailed information on the ecological status of the Okains Bay estuary. The Okains Bay estuary is the tidally influenced lower 2.8 km of the Opara Stream. Over the last 150 years it has been highly impacted by sedimentation and modification of the estuary margins, and it has potentially been supplied with considerable quantities of nutrients. That is, the present estuarine environment is not in a pristine state. It is likely that the size and depth of the present-day stream channel and the size and extent of the aquatic vegetation, mud/sand and sand flats reflect past impacts on this estuary. The present day impacts include unnatural disturbance particularly by vehicle use, high recreational use particularly over the summer months and nutrient and sediment inputs. This estuary has three main habitat types. These are: • saltmarsh - approximately 21.5% of the area • mud/sand flats (firm, soft and very soft mud/sand) - approximately 35% of the area • sand flats (firm, soft and mobile sand) – approximately 29% of the area There are also areas of live cockles and/or cockle shell, artificial structures including roads and fences and the stream channel. -
WO 2018/117868 Al 28 June 2018 (28.06.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/117868 Al 28 June 2018 (28.06.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A23L 33/18 (2016.01) A61K 35/612 (2015.01) kind of national protection available): AE, AG, AL, AM, C12P 21/06 (2006.01) A61K 35/616 (2015.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C12P 7/64 (2006 .0 1) A 61K 35/618 (2015.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, A61K 35/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (21) International Application Number: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/NZ20 17/050 167 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 20 December 2017 (20.12.2017) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 727786 20 December 2016 (20.12.2016) NZ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: SANFORD LIMITED [NZ/NZ]; 22 Jellicoe EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Street, Freemans Bay, Auckland, 1010 (NZ). -
Impacts of the Invasive Ascidian Didemnum Vexillum on Green-Lipped Mussel Perna Canaliculus Aquaculture in New Zealand
Vol. 4: 17–30, 2013 AQUACULTURE ENVIRONMENT INTERACTIONS Published online June 18 doi: 10.3354/aei00069 Aquacult Environ Interact OPENPEN ACCESSCCESS Impacts of the invasive ascidian Didemnum vexillum on green-lipped mussel Perna canaliculus aquaculture in New Zealand Lauren M. Fletcher1,2,*, Barrie M. Forrest1, James J. Bell2 1Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand 2School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand ABSTRACT: Biofouling can pose a significant threat to shellfish aquaculture, as fouling organisms are often strong spatial competitors that are able to reach high densities or biomass in relatively short time frames. This study investigated the potential impacts of the colonial ascidian Didem- num vexillum on cultured New Zealand green-lipped mussels Perna canaliculus at one farm in the Marlborough Sounds region. Three size classes of mussels were examined: small (20 to 40 mm shell length at deployment), medium (40 to 60 mm), and large (60 to 70 mm). Replicate 4 m mussel lines were assigned to 1 of 3 treatments: (1) ambient fouling, (2) fouling enhanced by D. vexillum fragment inoculation (in addition to ambient fouling), or (3) control lines that were kept free of D. vexillum. After 15 mo, subsections of lines (0.5 m length) were processed to determine the effects of fouling cover on mussel density within lines, as well as on individual mussel size and condition. A highly significant negative relationship was shown between D. vexillum biomass and mussel density for small mussels, and to a lesser extent for medium mussels. Values of mussel condition indices were similar across size classes and across fouling treatments within each size class. -
Healthy Estuary and Rivers of the City Water Quality and Ecosystem Health Monitoring Programme of Ihutai
Healthy Estuary and Rivers of the City Water quality and ecosystem health monitoring programme of Ihutai The sediments and biota of the Estuary of the Heathcote and Avon Rivers/Ihutai and tidal reaches of the Avon/Ōtākaro and Heathcote/Ōpawaho rivers Summary report on data collected in 2014 R15/131 ISBN 978-0-908316-70-0 (print) 978-0-908316-71-7 (web) Report prepared by Lesley Bolton-Ritchie June 2015 Data collected by EOS Ecology, for Christchurch City Council R15/131 ISBN 978-0-908316-70-0 (print) 978-0-908316-71-7 (web) PO Box 345 Christchurch 8140 Phone (03) 365 3828 Fax (03) 365 3194 75 Church Street PO Box 550 Timaru 7940 Phone (03) 687 7800 Fax (03) 687 7808 Website: www.ecan.govt.nz Customer Services Phone 0800 324 636 Healthy Estuary and Rivers of the City Water quality and ecosystem health monitoring programme of Ihutai Table of contents 1 Introduction ..................................................................................................... 1 2 Sampling .......................................................................................................... 2 2.1 Sampling sites ................................................................................................................. 2 2.2 Collection of samples ...................................................................................................... 3 2.2.1 Sediments .......................................................................................................... 3 2.2.2 Biota .................................................................................................................. -
Figure 8 Distribution of Ecologically Significant Intertidal Communities Found in the Southern Kaipara (From Hewitt and Funnell 2005)
Figure 8 Distribution of ecologically significant intertidal communities found in the Southern Kaipara (from Hewitt and Funnell 2005). TP354: Review of Environmental Information on the Kaipara Harbour Marine Environment 21 Figure 9 Interpolated plots of the distribution of total numbers of individuals (A), number of taxa (B), and number of orders (C) found in the cores taken from the intertidal sites (from Hewitt and Funnell 2005). A B C TP354: Review of Environmental Information on the Kaipara Harbour Marine Environment 22 Figure 10 Distribution of subtidal epibenthic habitats found in the Southern Kaipara (from Hewitt and Funnell 2005). TP354: Review of Environmental Information on the Kaipara Harbour Marine Environment 23 Figure 11 Distribution of ecologically significant subtidal communities found in the Southern Kaipara (from Hewitt and Funnell 2005). TP354: Review of Environmental Information on the Kaipara Harbour Marine Environment 24 Figure 12 Interpolated plots of the distribution of total numbers of individuals (A), number of taxa (B), and number of orders (C) found in grabs taken from the subtidal sites (from Hewitt and Funnell 2005). A B C TP354: Review of Environmental Information on the Kaipara Harbour Marine Environment 25 3.2.2 Northern Kaipara Harbour The intertidal and subtidal areas of the northern Kaipara are influenced by several relatively large rivers including the Arapaoa River, Otamatea River, Oruawharo River and Wairoa River (Figure 1). Compared to the southern Kaipara, the northern Kaipara has been studied in far less spatial detail. Several studies have focused on benthic communities within discrete locations (e.g. the Otamatea River; see Robertson et al. -
Executive Summary
EXECUTIVE SUMMARY The New Zealand aquaculture industry is presently dominated by the production of Greenshell™ mussels in terms of total yield, water-space utilisation and total revenue. However, there has been recent emphasis by a number of mussel farmers in the Marlborough Sounds to amend permits and consents so that other bivalve species can be farmed. In response to this, the Ministry of Fisheries commissioned the Cawthron Institute to use available information to perform a desktop investigation into the marginal differences between the environmental interactions of a range of bivalve species to underpin stocking density guidelines. A hazard assessment was used to identify the major environmental interactions between bivalves and the surrounding marine environment and this highlighted several major risk pathways, several of which were through the feeding and excretory behaviour of the bivalve crop. Marginal differences between the transfer of material by the different species were therefore investigated using a range of feeding models and environmental data from the Marlborough Sounds and Glenhaven Aquaculture Centre. The key result from analysis of the marginal differences between a range of bivalve species was that mussels generally appear to exhibit the highest clearance and excretion rates of the bivalves considered. Similarly, biodeposition intensity greater than 400 g/day/1000ind occurred most frequently in mussels (40%) followed by, scallops (33%), cupped oysters (29%), flat oysters (11%), and finally clams/cockles (6%). Overall, it appears that based on the model utilised here, the substitution of mussels, specifically Perna canaliculus, with any of the other alternate species/groups proposed would not be likely to increase either the clearance of the surrounding water, the biodeposition of suspended matter or the amount of dissolved ammonia through excretion. -
Larval Cryopreservation As New Management Tool for Threatened Clam Fisheries
www.nature.com/scientificreports OPEN Larval cryopreservation as new management tool for threatened clam fsheries P. Heres, J. Troncoso & E. Paredes* Cryopreservation is the only reliable method for long-term storage of biological material that guarantees genetic stability. This technique can be extremely useful for the conservation of endangered species and restock natural populations for declining species. Many factors have negatively afected the populations of high economical value shellfsh in Spain and, as a result, many are declining or threatened nowadays. This study was focused on early-life stages of Venerupis corrugata, Ruditapes decussatus and Ruditapes philippinarum to develop successful protocols to enhance the conservation efort and sustainable shellfshery resources. Firstly, common cryoprotecting agents (CPAs) were tested to select the suitable permeable CPA attending to toxicity. Cryopreservation success using diferent combinations of CPA solutions, increasing equilibrium times and larval stages was evaluated attending to survival and shell growth at 2 days post-thawing. Older clam development stages were more tolerant to CPA toxicity, being ethylene- glycol (EG) and Propylene-glycol (PG) the least toxic CPAs. CPA solution containing EG yielded the highest post-thawing survival rate and the increase of equilibration time was not benefcial for clam larvae. Cryopreservation of trochophores yielded around 50% survivorship, whereas over 80% of cryopreserved D-larvae were able to recover after thawing. Te Japanese carpet shell (Ruditapes philippinarum (Adams & Reeve, 1850)), the grooved carpet shell (Ruditapes decussatus (Linnaeus, 1758)) and the slug carpet shell (Venerupis corrugata (Gmelin, 1971)) belong to phylum Mollusca, class Bivalvia, which comprises around 20,000 aquatic and marine species. Tese clams are laterally comprised with two lateral valves. -
Assessment of the Scale of Marine Ecological Effects of Seabed Mining in the South Taranaki Bight: Zooplankton, Fish, Kai Moana, Sea Birds, and Marine Mammals
Assessment of the scale of marine ecological effects of seabed mining in the South Taranaki Bight: Zooplankton, fish, kai moana, sea birds, and marine mammals Prepared for Trans-Tasman Resources Ltd September 2015 Prepared by: Alison MacDiarmid David Thompson Janet Grieve For any information regarding this report please contact: Neville Ching Contracts Manager +64-4-386 0300 [email protected] National Institute of Water & Atmospheric Research Ltd Private Bag 14901 Kilbirnie Wellington 6241 Phone +64 4 386 0300 NIWA CLIENT REPORT No: WLG2015-13 Report date: September 2015 NIWA Project: TTR15301 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Executive summary ............................................................................................................. 6 1 Introduction ............................................................................................................. -
A Global Representative System Of
A GLOBAL REPRESENTATIVE SYSTEM OF. MARTNE PROTE CTED AREAS Public Disclosure Authorized ; ,a,o k. @ S~~ ~r' ~~~~, - ( .,t, 24762 Volume 4 Public Disclosure Authorized .. ~fr..'ne .. G~,eat Barrier R M P.'k Authority Public Disclosure Authorized £S EM' '' , 0Th.o1,, ;, Public Disclosure Authorized a a b . ' Gtat Barrier Rdeef Mnarine Park Authori ''*' i' . ' ; -, a5@ttTh jO The'Wor1&~B'ank .~ ' a K ' ;' 6''-7 Th WorId>Conserutsibn Union (IUCN) $-. , tA,, -h, . §,; . A Global Representative System of Marine Protected Areas Principal Editors Graeme Kelleher, Chris Bleakley, and Sue Wells Volume IV The Great Barrier Reef Marine Park Authority The World Bank The World Conservation Union (IUCN) The International Bank for Reconstruction and Development/THE WORLD BANK 1818 H Street, N.W. Washington, D.C. 20433, U.S.A. Manufactured in the United States of America First printing May 1995 The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. This publication was printed with the generous financial support of the Government of The Netherlands. Copies of this publication may be requested by writing to: Environment Department The World Bank Room S 5-143 1818 H Street, N.W. Washington, D.C. 20433, U.S.A. WORLD CNPPA MARINE REGIONS 0 CNPPAMARINE REGION NUMBERS - CNPPAMARINE REGION BOUNDARIES / > SJ/) a l ti c \~~~~~~~~~~~~~~~~~ali OD ' 0 Nort/h@ / North East %f , Nrkwestltsni North Eastt IPaa _?q g Nrharr etwcific \ t\ / , .............