1

Journal of Scientific Research Vol. 56, 2012 : 1-18 , ISSN : 0447-9483 ANALYSIS OF FOLDS FROM THE CGGC ROCKS IN AND THEIR TECTONIC AND GEOMORPHIC IMPLICATIONS Vaibhava Srivastava and H. B. Srivastava CentreofAdvancedStudy,DepartmentofGeology BanarasHinduUniversity,Varanasi221005 Abstract The Precambrian rocks exposed in the southern part of Sonbhadra district of UttarPradeshrocksformapartofChhotanagpurplateauofthecentralpartof . Geologically it belongs to the Chhotanagpur Granite Gneiss Complex (CGGC)whichhaswitnessedmultipletectonicdeformations.Fromtheanalysis ofthefoldsofthisregionfourdeformationphaseshavebeenidentifiedforthe CGGCrocks.Thecharacteristicfoldinterferenceofdomeandbasintypehas rendered the present day topography of the Chhotanagpur plateau which is differentfromnearbyplateauxonotherPrecambrianrocksincentralIndia.

Introduction

Thestructuralfeaturesarethemanifestationsofthedeformingforcesthathaveacted ontherockbodiessincetheirformation.Eachrocktypepossessesdifferentmechanical andphysicalpropertieswhichvarywithconditionsunderwhichitdeforms.Therefore, diverse varieties of structures are displayed by the rocks which constitute the earth's crust. The systematic study of these structures i.e. the structural analysis reveals the deformationalhistoriesoftherockbodiesindifferentpartsofthecrust.Foldsarethose structureswhichdevelopduringtheductiledeformationofthelayeredrocksinresponse to the tectonic forces. Therefore the systematic studies and analysis can reveals many aspectsofthetectoniceventsthattherockshasundergone. TheSonbhadradistrictofUttarPradeshisconstitutedofvarietyofrockformations including those belonging to the Chhotanagpur Granite Gneiss Complex (CGGC), MahakoshalGroup,VindhyanSupergroupandGondwanaSupergroup(Fig.1)rangingin agefromArchaeantoPermian.Amongthese,theCGGCrocksareoldestandexhibit

2 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA

50 o o o 24N 25 N 84E Km 0 o 83 E Varanasi

r e v i r

a r

g e

n v i

a r

G n

o

o S 82 82 E o 96 E 96 INDIA Km 0 500 C.G. U.P. M.P. Alluvium Group Kaimur Vindhyan) (Upper Mahakoshal Group Mahakoshal Gondwana Gondwana Supergroup Semri Group Semri Vindhyan) (Lower Granite- Chhotanagpur Complex Gneiss o 72 E 72 o o 28 N 28 8 N 8

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 3 evidencesofmultiplephasesoftectonismwhichhaveresultedinacomplexgeologyin theregion.StudiesonthedifferentsectorsoftheChhotanagpurGraniteGneissComplex (DunnandDey,1942;Ghose,1983,1992;Mazumdar,1988,Banerji,1991;Bhattacharya et al., 1992; Ramchandran and Sinha, 1992) (Jain et al. 1995; Srivastava, 1996; SrivastavaandGairola,1997;1999;RoyandDevrajan,2000;AcharyaandRoy,2000; Roy et al .2000;RoyandHanumaPrasad,2001,2003;Acharyya2001,Acharyyaand Roy, 2003, Solanki et al , 2003; Srivastava and Gairola, 2004; Srivastava et al ., 2005; Mohan et al 2007; Kumar andAhmad,2007;Ramakrishnan andVaidyanadhan,2008, Maji et al .,2008;Sharma,2009;SinghandSrivastava,2011)havereportedsuperposed mesoscopic structures from different areas and revealed about the polyphased deformationwithacomplextectonichistoryoftheCGGCrocks. The different tectonic impulses varying in magnitude and direction have left their imprints in the tectonites of the present area in the forms of the mesoscopic and macroscopic structures which are well documented and preserved as indicators of the tectonichistory.Foldsareoneofthosestructureswhichcanpreservetherecordsofthe stressesandtheirdirectionsintherocksintheirgeometry.Inpresentworkthereforethe geometryoffoldsofthemultiplydeformedCGGCrockshavebeenstudiedindetailin ordertounraveltheintricaciesbroughtaboutdifferenttectonicepisodesinthesouthern part of Sonbhadra district of Uttar Pradesh. A possible relation of the tectonic and geomorphologiccharacteristicsoftheChhotanagpurplateauinSonbhadraareahasalso beensought.

Geological setting

TheChhotanagpurGraniteGneissComplexisrepresentedbytheGrouprocks in the present area (Mazumdar, 1988; Banerji, 1991). In the Sonbhadra district, the CGGC rocks are exposedinthe southof the WNWESE strikingSonNarmada South Fault.TherocksoftheCGGCarerepresentedbytheschist,gneiss,amphiboliteswith subordinategranite,migmatiteanddoleritesandmarbleatfewplaces.Theserockshave exhibitedmetamorphicgraderangingfromthebiotitezoneoftheGreenschistfaciesto theSillimaniteorthoclasezoneoftheUpperamphibolitefacieswithevidencesofpartial melting (Srivastava, 1996). Complex mesoscopic and macroscopic folds have been observedinalmostallfoliatedrocksofthestudyarea.Thereforethedataonfoldshave beencollectedfromfieldandanalysedinvariouswaysinthepresentwork.

Analysis of mesoscopic folds

The geometrical analysis is the structural geometry which forms the basis for the kinematicanddynamicanalyses.Hencethegeometricalanalysisisthefirstandforemost taskofthestructuralgeologist.Thegeometricalanalysisincludesthestudyofstructures, bothinthefieldandthelaboratory,whichcanbestudiedsystematicallybyconsidering thescaleofthestructuresandtheirhomogeneitywithrespecttodifferentdomains.On the basis of scale, the structures are classified as microscopic, mesoscopic and

4 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA macroscopic. In the present investigation the mesoscopic and the macroscopic fabric elements have provided sufficient material for the structural analysis. The structures developedduringtheinitialphasesoftectonismhavebeensuperimposedbythoseofthe laterphases.Sometimes,thesesuperimposedstructureshavecompletelyobliteratedthe earlier structures. In general, the tectonites of the present area represent the inherited, imposed and composite structures. Folds are perhaps the most common tectonic structuresdevelopedinthedeformedrocks.Foldsarethreedimensionalfeatures,formed by a combination of planar and linear structures when a set of Ssurfaces becomes curviplanar(TurnerandWeiss,1963). Mesoscopicfoldsrangingfromafewcentimetrestoafewmetresinamplitudeare welldeveloped in almostallrock types in the areaunder investigation. Thegeometric elements like the axial plane and fold axis can be easily measured with sufficient accuracywherethefoldsareplanecylindrical.Howeverwhenthefoldsexhibitcomplex geometry due to superposition, the measurement of data becomes difficult as the fold elementschangetheirorientationfromonespottoother.Therefore,validityofthedata onthischangingfoldgeometryisrestrictedtothatparticularspotonfoldwheredatais measured. The twodimensional and threedimensional study of the folds reveals that ideal planecylindricalfoldsonevenmesoscopicscalearerare.Theplanarlookingaxialplanes in profile section become curviplanar when traced along fold hinge line in three dimensions.Thus,majorityoffoldsinpresentareaarenonplanenoncylindrical. Thestyleandgeometryareimportantfeaturesforclassifyingthefoldsofdifferent generations(TurnerandWeiss,1963;Ramsay,1967;Hobbs et al., 1976).Inthepresent workanattempthasbeenmadetostudythefoldsonthebasisofstyle,orientationoffold elements,geometryandshapeofthefoldedlayers/surfaces. Fold Style Differentphasesofdeformationsresultintodifferentfoldstyles,hence,thestudyof fold profiles and their mutual relationship are important in deciphering the tectonic historyofanarea.Themesoscopicfoldsobservedintheareabelongtoisoclinal,tight, close,open,chevronandptygmatictypes.Quitesometimes,thesefoldsarenotintheir ideal form and are affected by later deformational episodes. These folds, which are developed on some prominent Ssurfaces (S 1, S 2, S 3 and S 4), have also shown superposition of one style over another. The study of superposition of folds, leads to concludethatingeneral,theisoclinalandtightisoclinalfoldsrepresentthefirstphase offolding(F 1),thetightandclosefoldsrepresentsecond(F 2)andtheopenfoldsareof third generation (F 3). The sharp hinged chevron folds and kink bands are of fourth generation(F 4). However,itshouldbekeptinmindthatallthesefolds(F 1,F 2,F 3&F 4)areliableto change their shape and style as well in their multilayered structure due to successive

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 5 tectonismofthelaterphases.Thevariationinthefoldstylemayalsobelinkedwiththe compositional difference of layers. For example, the thicker quartz layers in a F 2 fold mayshowanopenfoldstyle,whilethethinlybeddedschistshowstheclosestyle.The developmentofptygmaticfoldsonisolatedquartzlayersistheresultofhighcompetence contrastbetweenthelayerandmatrix,inembeddingthem.

Orientation of Fold Elements

Theattitudeoftheaxialplanesandthefoldhinge linesarethesimplest andchief geometricaldevicesonthebasisofwhichtheorientationofafoldcanbeunderstood.In order to express the three dimensional orientation of these elements of folds of the investigated area, Fleuty's (1964) diagram has been used to classify the small plane cylindrical folds (Fig. 2). The plots reveal that there is a wide range of orientation of theseelementsoffoldsinthetectonitesofthepresentareaandinfact,theplotsfallin almostallsectorsoftheFleutydiagram.Thislargevariationinthefoldorientationmay be attributed to the fact that the folds have been modified due to the later phases of deformation.Thesedeformationalphaseshavenotonlybroughtaboutagreatdiversityin theorientationoffoldelementsbutalsoaffectedthecylindricityofthefolds.Asaresult quitealargenumberofdata(Fig.2)shownoncylindricityeveninmesoscopicscaleand fall outside the diagram. It is evident from Fig. 2 that the steeply inclined gently plunging folds (17.68%) are the most dominant class in the CGGC rocksfollowed by reclined folds (14.63%). The noncylindrical folds (folds outside the limits of Fleuty diagram)arealsoquiteabundantinthearea. Fig. 2 Fleutydiagramshowingorientationoffoldelementsofthestudyarea.

6 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA

Dip of Axial Surface (in degree) 80 60 30 10

0

)

e e

r 10

g

e

d

n

i

(

e 30

n

i

L

e

g

n

i

h

d

l o

F 60

f

o

e

g

n u

l 80 P 90 Fold Profile Geometry Thedevelopmentofageometricalclassificationofthefoldedlayerisbasedondip isogonpattern,variationoftherelativeorthogonalandaxialsurfaceparallelthicknesses ontheprofilesection(Ramsay,1967;Hudelston,1973;RamsayandHuber,1987).Such aclassificationplaysanimportantroleinthestudyoffoldmorphologyandinelucidating theprincipalfoldingmechanism(Ramsay,1967).Itisalsopossibletostudythechanges intheshapeofdifferentfoldedlayersonthefoldprofile.Theshapeofanyonelayerin thefoldedstructuredependsontherelationshipofboundingsurfacesofthelayerandin particular, the relative rates of change of the inclination of these bounding surfaces. Therefore, studyof several profilesectionsof the foldwill notonly give abetter idea aboutfoldmorphologyinthreedimensions,butalsohelpinunderstandingthepossible mechanisminvolvedinitsevolution. The geometrical classification of fold morphology is also significant in terms of strain(Hobbs,1971).Elliott(1965)gavetheconceptof`dipisogon'asthecurvejoining pointsofequaldip(α)onadjacentfoldedsurfacesonthefoldprofiles.Thedipisogons form a series of continuous curved lines on the profile section and exhibit a pattern whichmayrangefromstronglyconvergenttostronglydivergentfromouterarctowards innerarcofthefold.Ramsay(1967)dividedthefoldsintothreefundamentalclasseson thebasisofpatternsoftheisogons.However,hehasalsotakenintoaccountthethickness parameters(t’ αand T’ α) into this classificationanddivided thefolds into1A(strongly convergent dip isogons), 1B (parallel fold), 1C (weakly convergent isogons), Class 2 (parallelisogons)andclass3(Divergentisogons).AccordingtoRamsay(1967),thefolds ofclass1Aand3indicatedifferentialcompressionintheirevolutionwhileclass1Band 1Csuggestaflexureslipmechanism,andclass2suggestsaslipmechanisminthefold

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 7 formation. The thickness parameters, which involves measurement of data on the orthogonal distance(calledasorthogonalthickness`t')andalongtheaxialsurface(`T')betweenthe tangents drawn at equal dip angle (α) on the fold profile, were introduced by Ramsay (1967).He(1967)utilisedtheratiost' α(=t α/t o)andT' α(=T α/T o)andthedipangleαfor graphicallyclassifyingthefolds(Ramsay1967;RamsayandHuber,1987).Althoughthe fold classes recognised by t' α/α and T' α/α plots are same as recognised by dip isogon patterns, but the importance of thickness based classification is more over the other, whichisbasedmerelyonthevisualinterpretation.Thethicknessparametersaresensitive toevenslightchangeinthefoldgeometry.Zagorčev(1993)modifiedtheclassification ofRamsay(1967)byafurthersubdivisionof1Ainto1A1,1A2&1A3andclass3into 3A,3B&3Csubclasses. Forthegeometricalclassificationofthefoldsofthearea,tracingsoftheprofilesare used, which have been taken either directly from the field, field photographs or hand specimenfolds.Carewastakenineachcasesothattheprofilesections(Fig.3)under analysis,asfaraspossible,wereperpendiculartothefoldhinge.Dipisogonsdrawnat 10 ointervalontheprofilesectionsofthefoldsofthestudyareahavebeengiveninFig.3.

8 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA ( f ) ( c ) ( b ) (e ) (a ) (d )

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 9 (a) (b) 60 90 4 5 3 1 2 a 1.5 0.5 (t' ) (a) 1 5 3 (a) 2 4

90 60 30 00 30

10 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA

Although the patterns of the isogons from outer arc towards inner arc, even in a quarter wave sector of the fold (single or multilayered) is not definite, yet it can be noticedthatmostofthetimes,theisogonsshowaweaklyconvergentnature,andthus, suchfoldsbelongto1CclassofRamsay(1967).However,stronglyconvergent,parallel anddivergentpatternsofisogonsarealsopresentandhence,thefoldsalsobelongto1A, 1B,2and3types.Thechangingpatternofisogonsinamultilayersequenceorevenin singlelayerispossiblyduetomechanicalanisotropyandcompositionaldifferenceofthe layers. Thethicknessparametersontheprofilesectionofthesefoldshavebeenmeasured along the dip isogons as described by Ramsay and Huber (1987). The orthogonal thicknessratiost' α(=t α/t o)werecalculatedfromthosedata.Thet' αvalueagainstchange ofangle(α)hasbeenplottedforeachfoldtorepresentthevariationingeometryofeach layeroffoldswithchangeinαvalues.Inthesegraphs(Fig.4)theleftlimbsofthefolds havebeenplottedontheleftsideofthegraphandtherightlimbsontherighthandside. Thus,thet' αvsαplots,whichhavebeenjoinedbyafreehandcurve,notonlydescribe the change in geometry of the individual layer or layers but also give a good visual interpretationofthesymmetryofthesechangesintheleftandrightlimbsofthefold. Fig. 5 FrequencyofdifferentfoldtypesofthestudyareaasperclassificationofZagorčev (1993). o 50 60 -90 isogons o 30 -60 isogons o n= 475 00 -30 isogons

) 40 (on 86 QWS)

%

n

i (

30

y

c

n e

u 20

q

e r F 10

00 1A1 1A2 1A3 1B 1C 2 3A 3B 3C Fold types

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 11

Thet' αvsαplotsoffoldsofthestudyarea(Fig.4)suggestthatmajorityofthelayers arenotrestrictedtoanyparticularclassofZagorčev(1993)andtheyshowchangeintheir geometryfromoneclasstoanother.Therefore,inordertofindthemostabundantclassof folds,thet' αvsαcurveshavebeenstatisticallyanalysed.Suchananalysishasbeendone onthebasisofrelativelengthsofeachofthesecurvesfallinginthezonesofvariousfold classesofZagorčev(1993).Atotalof475isogonsdatahavebeenstudiedon86quarter wavesectorsofthefolds.Thefrequencyintermsofpercentageofthedifferentclassesof thefoldsisshownwiththehelpofbardiagraminFig.5.Eachbarthusrepresented,is divided into 3 sectors (Fig. 5) each of which represent the relative abundance of that particularclassoffoldbetween030 o,3060 oand6090 odipisogons. Fig.5revealsthatthefoldsoftheareaalthoughbelongtoallthe9classesi.e.1A1, 1A2,1A3,1B,1C,2,3A,3Band3CofZagorčev(1993),yetthefrequencyofclass1Cis themostdominantfollowedby3A.Besidesthese,othernoticeableclassesare1Band 3C.Itisalsotobenotedthatwhilethemajorpartsof1Cand3Aclassesofareacomes fromisogonsbeyond30 o,particularlyfrombetween3060 o,manyotherfoldclasseslike 1A1,1A2,1B,3Band3Cmoreorlessrestrictthemselveswithin030 oisogonlines.The isogonsbeyond60 oarepresentonlyin1Cand3Aclasses.Thegreaterabundanceof1C classoffoldsinthepresentareasuggeststhatthefoldshavebeensubjectedtoflattening strainaftertheirformation.

Analysis of macroscopic folds Thetermmacroscopicstructureisappliedtothestructuresoflargedimensionswhich cannotbestudiedinasingleoutcrop.Thegeometryandorientationofsuchlargescale structures can be established by the interpretations based on a detailed study of mesoscopicstructures. The mesoscopic structures give clear indication that thepresent areahasundergonerepeatedfoldingandfaulting. Analysis of macroscopic folding is usually focused upon the most prominent Ssurface,generallysomekindoflithologiclayeringinthetectonites.Wheremorethan oneSsurfacehasbeenfoldedmacroscopically,eachshouldbeinvestigated(Turnerand Weiss,1963).Theobjectofanalysisistodeterminethepatternofpreferredorientationof themostprominentSsurfaceineachofseveraldomainshomogeneouswithrespectto thatSsurface.Inthestudyarea,thoughthereisawidevarietyofrocktypesandsomeof which could provide macroscopic bands, yet a clear picture of the different folding patterndoesnotemergefromthegeologicalmap(Fig.1)orsatelliteimageries.Therefore, inordertoobtainaclearpictureofthemacroscopicstructures,itwasessentialtoanalyse theSsurfacesstatistically,indifferentsegments(calledassubarea)ofthearea,which havebeendemarcatedonthebasisofhomogeneityofthefold. Toanalysethedatastatistically,thepolestotheSsurfaceswereplottedonthelower hemisphereoftheequalareanet.Theplotswerecontouredtoobtainbestfitgirdleand consequently,theßaxis.Inthepresentarea,likemanyothermetamorphicterrains,the original bedding planes are more or less completely obliterated. Therefore, first

12 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA generation of macroscopic folds can not be analysed directly. However the second generationfoldswhicharedevelopedintheareahavebeenanalysedwiththehelpofS 2 surfaces,whichincludestheschistosityandgneissosityoftherocksofthearea. Second Generation Folds ToanalysemacroscopicfoldsonS 1andS 2,theareahasbeenstudiedbydividingit into 20 subareas. In the present work, best possible efforts were made to identify the subareaswhicharestatisticallyhomogenouswithrespecttoaparticularprominentfold of that domain, but it was not possible everywhere to obtain subareas having a single girdle for poles to S 2. This is perhaps due to strong interference of folds of different generations.Theinferredmacroscopicfoldaxisofsecondgeneration(ß2),thusobtained indifferentsubareaaregiveninTable1. Table 1 Orientationofinferredmacroscopicfoldaxes(ß 2)indifferentsubareasofthestudyarea. Subarea Plungeofß 2Subarea Plungeofß 2 Subarea Plungeofß 2 No No

I 30/128,0/90270 VIII 5/105 XV 60/290,50/225

II 30/33 IX 65/342,60/165 XVI 20/210

III 78/346,8/253 X 50/175,30/125 XVII 35/275

IV 8/60,70/295 XI 80/290,18/93 XVIII 28/60

V 70/345,8/255 XII 50/205 XIX 14/238

VI 14/92,38/120 XIII 72/170 XX 70/270,5/57

VII 12/253,65/146 XIV 15/90,0/60240 Thedataofß 2inthesubareas(Table1)showthatonly8outof20subareascouldbe obtainedtohaveastatisticalhomogeneitywithrespecttoonlyoneπSgirdle.Infactthe interferenceoffoldsissopronouncedthatithasresultedinmoreorlessdomeandbasin structures(type1interferencepatternofRamsay,1967).Bhattacharya et al. (1992)also reportthedomeandbasinstructuresintheCGGCnearvillagesNawatolainSonbhadra district.Inthepresentarea,infact,theß 2valuesofthesubareaareindicativeofthemost dominant trend of the fold in that particular domain. A synoptic ß 2 diagram has been prepared(Fig.6),inwhichoccurrenceofß 2alongtwosmallcirclegirdles(polestowhich o o o o are 23 /N07 W and 14 /S18 E) suggest that, the F 2 folds in the CGGC are formed by flexureslipmechanism.

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 13

Third Generation Folds The Macroscopic analysis of earlier formed folds suggests that the rocks of the presentareahaveundergonelaterepisodesofdeformation.Thiscanalsobeinferredby the differing orientations of ß 2 in different subareas (Fig.6). Therefore, to analyse the macroscopicfoldsofthirdgeneration,newsubareasweredemarcatedthistime,onthe basisoforientationofaxialplanes(S 3)oftheF 2folds.OnthebasisofS 3,theareahas beensubdividedinto6subareas(Fig.7)toobtaintheorientationofmacroscopicfoldaxis ofthirdgeneration(ß3).Theseplotsareshownoverthesatelliteimageofsouthernpartof Sonbhadra district of Uttar Pradesh in which Chhotanagpur Granite Gneiss Complex (CGGC)rocksareexposed.InallthesubareastheS 3dataarescatteredalongtwogreat circlegirdleswhichsuggeststhatthereisstronginterferenceoffoldsofthirdgeneration overthepreviousones.Thethirdgenerationfoldshavenotonlyaffectedandrotatedthe earlierformedfolds,buttheythemselvesareaffectedbythefoldgeometriesofearlier folds.ThecarefulobservationrevealsthatthereisalwayspresenceofaNW–SEstriking greatcircleinallthesubareas.ThissuggeststhattheF 3foldaxistrendwasperpendicular to the above strike. However, the F 3 fold axis may plunge NE or SW because of the interferenceofpreviouslyformedfolds.Thesynopticß3diagram(Fig.8)whichhasbeen preparedbyplottingofallthe12ß 3polesfromallsubareasshowinFig.7.Thisdiagram (Fig.8)revealsthattheß 3plotsarescatteredalongtwogirdles(Fig.8),inwhichoneis verticalwithNESWstrike(maybeasmallcirclegirdle)andtheothergreatcirclegirdle o o strikesN62 Eanddips62 northerly.ThismayindicatethattheF 3foldsinCGGCwere formedbyslipaswellasflexureslipmechanism. Fig. 6 Synoptic β2diagramforthestudyarea. N

b 2 Pole to synoptic b 2 girlde

14 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA

t

l

u

a

F

h

t

I

u

o

I

S I

a

d

x

a

e

l m

r

a

p

V

a I

I

I

r I

N m

-

n d

o

o

C p

a

S

u

s

h

o

s

r

i

b

e

G

n n

l

a

G

o

h

e

s

S

t

V

i

o

n

k

a

o

r

h

G

a

r

t

M

u

o

h

p

I

o

r

V

g

k

a

a

u

g

n

n

s

i

a

t e

t

t

o

R

a

h

h

h r

h

i

o

C

C

v

d

r

. n

e

a

P

s

.

h

i e

R R M

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 15

Fig. 8 Synoptic β3 diagramforthestudyarea.

N

b3from different subareas Pole to synoptic b 3 girdle Tectonic and Geomorphic Implications The superposed folding is a common phenomenon found in many low to mediumgrademetamorphicterrainsoftheworld.Thesuperposedfoldingintherocksof ChhotanagpurGraniteGneissComplex(Ghose,1983,Sarkar,1988;Banerji,1991)has beenrecognisedbymanyworkers.Thefoldingepisodesthathaveactedmultiplyinthese rockshaveresultedintocomplexgeologyoftheregion.Inthepresentareaamaximum of3setssuperposedfoldinghasbeenobservedinsingleoutcrop.Basedonsuperposition patterns asobservedonthemesoscopicandmacroscopicscales,followingconclusions aredrawnfordevelopmentalsequenceofthefoldsoftheCGGCrocksoccurringinthe SonbhadradistrictofUttarPradesh. Thetightisoclinaltoisoclinalfoldsdevelopedduringthefirstphaseoffolding(F 1) on bedding plane (S 1). The bedding plane is completely obliterated however, isoclinal foldingrepresentingF 1foldinghavealsobeenobservedintheamphibolitesandafew

16 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA quartzbandsingneiss.Theschistosity(S 2)developedparalleltotheaxialplaneofthese folds.Duringthesecondphaseoffolding(F 2)tighttoclosefoldsdevelopedonthelimbs ofF 1foldsandS 2planes.ThesecondphaseoffoldingcausedrotationofS 1andS2along the axial plane of the second generation fold (S 3). The F 1 and F 2 which are the most dominantfoldingepisodeswerefollowedbyamildfoldingepisodeF 3whenopenfolds developed.Thechevronandkinkbandswhichshowsharpandacutehingesarefound characteristicallyinthethinlyfoliatedrocks. They have been recognised as F 4 folds in the present study, which are more developednearfaultzones.TheinterferencebetweenF 2andF 3foldshasresultedinthe developmentofdomesandbasinswhicharenumerousinnumbers.Asaresultwhenwe observetheterraininsatelliteimagerieswedonotseeanyprominentridgesorvalleysin the area unlike the adjacent deformed Mahakoshal Group of rocks (Fig.6). Rather the topographyisdevelopedinsuchawaythatnumeroussmallhillocksorisolatedmounds areobservedintheareathatrepresentthedomalpartsmanyatimes,asresidualhillswith radialpatternsofdrainages. Similarly, the basinal part is represented by ponds or reservoirs. The domes are developedwheretheanticlinalaxisofonefoldhasinterferencewithantilclinalaxisof anotherfold.Thebasinsaresimilarly,resultsoftheinterferenceofsynclinalaxesofthe two folds. The interference of anticlines of one fold and syncline of another fold has resultedintoretardationofamplitudesofboththefoldswavesandasaresulttheground becomesflatter. This way the development of Chhotanagpur plateau can be understood which is having numerous hillocks. This way the Chhotanagpur plateau is different from the undeformedUpperVindhyanplateaulyinginnearbyareasinthesameregionincentral India.

REFERENCES Acharyya, S. K. (2001): Geodynamic setting of the Central Indian Tectonic Zone in central, easternandnortheasternIndia. Geol. Surv. Ind. Spl.Pub.,No.64,pp.1735. Acharyya,S.K.,andRoy,A.(2000):TectonothermalhistoryoftheCentralIndianTectonicZone and reactivation of major faults/shear zones, Journal of Geological Society of India , Vol.55,pp.239–256. Acharyya,S.K.andRoy,A.(2003):TheNatureof Mesoproterozoic Central Indian Tectonic Zone withExhumedandReworked OlderGranulites Gondwana Research, Vol. 6(2), pp.197214. Banerji, A. K. (1991): Geology of the Chhotanagpur region Ind. Jour. Geol ., Vol. 63(4), pp.275282. Bhattacharya,A.K.,Gorikhan,R.A.,Khazanchi,B.N.,Fahmi,S.,Singh,J.andKaul,R.(1992):

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 17

Uranium mineralisation hosted by migmatitemoblizates and breccia zone in the northwesternpartofChhotanagpurGraniteGneissComplex,Rihandvalley,Sonbhadra district,UttarPradesh. Ind. Jour. Geol.,64(3),pp.259275. Dunn, J. A. and Dey, A. K. (1942): The geology and petrology of Eastern Singhbhum and surroundingareas. Mem. Geol. Surv. Ind .,Vol.69(2),pp.281456. Elliott, D. (1965): The quantitative mapping of directional minor structures. J. Geol . Vol. 73, pp.865880. Fleuty,M.J.(1964):Thedescriptionoffolds. Proc. Geol. Assn. Engl .,Vol.75,pp.461492. Ghose,N.C.(1983):Geology,tectonicsandtheevolutionoftheChhotanagpur GraniteGneiss Complex, Eastern India, In Structure and Tectonics of the Precambrian rocks (Ed. S. Sinha Roy), Recent. Res. Geol .,HindustanPublishingCorp.,Delhi,Vol.10,pp.271247. Ghose,N.C.(1992):ChhotanagpurGneissGranuliteComplex,EasternIndia:Presentstatusand futureprospect. Ind. Jour. Geol. Vol.64(1),pp.100121. Hobbs, B. E., Means. W. D. and Williams, P. F. (1976): An outline of structural Geology . JohnWilley&SonsInc.NewYork. Hudleston,P.J.(1973):Foldmorphologyandsomegeometricalimplicationsoftheoriesoffold development. Tectonophysic, Vol.16,pp.146. Jain, S. C., Nair, K. K. K. and Yedekar, D. B. (1995): Geology of the SonNarmadaTapti lineamentzoneincentralIndia.Geoscientific studies of Son-Narmada-Tapti Lineament Zone. Geol. Surv. Ind. Spl.Pub .,No.10,pp.1154. Kumar,A.andAhmad,T.(2007):GeochemistryofmaficdykesinpartofChotanagpurgneissic complex: Petrogenetic and tectonic implications Geochemical Journal , Vol. 41, pp.173186. Maji, A. K., Goona S., Bhattacharya A., Mishra B., Mahato S., and Bernhardt, H. J. (2008): Proterozoic polyphase metamorphism in the Chhotanagpur Gneissic Complex (India), andimplicationfortranscontinentalGondwanalandcorrelation, Precambrian Research, Vol.162,pp.385–402. Mazumdar,S.K.(1988):CrustalevolutionoftheChhotanagpurGneissicComplexandtheMica belt of . In Precambrian of Eastern Indian shield (Ed. D. Mukhopadhyay), Mem.Geol. Soc. Ind .,Vol.8,pp.4983. Mohan,K,Srivastava,V.andSingh,C.K.(2007):Patternandgenesisoflineamentinandacross SonNarmada lineament zone in a part of Central India around Renukoot, distt. Sonbhadra,U.P. Journal of Indian Society of Remote Sensing ,Vol.35(2),pp.193200. Ramachandran, S. and Sinha, R. P. (1992): Pegmatites of Bihar Mica Belt in relation to Chhotanagpur Granite Gneissand theircolumbitetantalite potential. Ind . Jour. Geol., 64(3),pp.276283. Ramakrishnan,M.,Vaidyanadhan,R.(2008):GeologyofIndia:Vol.1&2,GeologicalSocietyof

18 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA

India,. Ramsay,J.G.(1967):FoldingandFracturingofRocks.McGrawHill,NewYork. Ramsay,J.G.andHuber,M.I.(1987):ThetechniquesofmodernStructuralGeology : Foldsand Fractures,Vol.2,AcademicPressInc.London. Roy, A. and Devarajan, M. K. (2000): A reappraisal of the stratigraphy and tectonics of the ProterozoicMahakoshalBelt,CentralIndia.InPrecambraincrustofeasternandcentral India, Geol. Surv. Ind. Spl. Pub., No.57,pp.7977. Roy,A.andHanumaPrasad,M.(2001):PrecambrianofCentralIndia:apossibleTectonicmodel. Geol. Surv. Ind. Spl. Pub .,No.64,pp.177–197. Roy,A.,andHanumaPrasad,M.(2003):TectonothermaleventsinCentralIndianTectonicZone (CITZ) and its implications in Rodinian crustal assembly. Journal of Asian Earth Sciences Vol.22,pp.115–129. Roy, A., Ramachandra, H. M., Bandopadhyay, B. K. (2000): Supracrustal belts and their significanceinthecrustalevolutionofCentralIndia. Geol. Surv. Ind., Spl. Pub. No.55, pp.361–380. Sarkar,A.N.(1988):TectonicevolutionoftheChhotanagpurPlateauandGondwanabasinsin EasternIndia:Aninterpretationbasedonsuprasubduction geological processes. Mem. Geol. Soc. Ind. ,8,pp.127146. Sharma,R.S.(2009):CratonsandFoldBeltsofIndia.SpringerVerlag. SinghC.K.andSrivastava,V.(2011):MorphotectonicsoftheAreaAround Renukoot,district Sonbhadra, U.P. Using Remote Sensing and GIS Techniques, Journal of the Indian Society of Remote Sensing ,Vol.39(2),pp.235240. SinghC.K.andSrivastava,V.(2011):MorphotectonicsoftheAreaAround Renukoot,district Sonbhadra, U.P. Using Remote Sensing and GIS Techniques, Journal of the Indian Society of Remote Sensing .Vol.39(2),pp.235240. Solanki,J.N.,Sen,B.,Soni,M.K.,Tomar,N.S.Pant.N.C.(2003):Granulitesfromsoutheastof ,Sidhidistrict,MadhyaPradeshinNWextension of Chhotanagpur geneissic Complex:Petrorgraphyandgeothermobarometricestimation.InRoy,A.andMohabey, D.M.(eds).AdvancesinPrecambrianofCentralIndia, Gondwana Geological Magzine , Vol.7,pp.297311. Srivastava,V.andGairola,V.K.(1997):Harmonicclassificationofmultilayeredfolds:example fromcentralIndia . Journal of Structural Geology ,Vol.19(1),pp.107112. Srivastava,V.(1996):StructureandTectonicsoftheareaaroundRantola,districtSonbhadra,U.P. Jour. Scientific Research ,Vol.46,pp.219231. Srivastava, V. and Gairola, V. K. (1999): Geometric Classification of multilayered folds. Tectonophysics, Vol.301,pp.159171. Srivastava,V.andGairola,V.K.(2004):2Dand3DstrainanalysesintheChhotanagpurGranite

THE CGGC ROCKS IN SONBHADRA DISTRICT UTTAR PRADESH 19

GneissComplesnearSonNarmadaSouthFault,CentralIndia,InPrecambrianGeology andMineralWealthofCentralIndia(Ed.V.K.Khanna),Rec. Res. Econ. Geol .,Vol.2, pp.727. Srivastava,V.,Gairola,V.K.andSingh,C.K.(2005):StructuralAnalysisoftheChhotanagpur GraniteGneissComplexandMahakoshalGroupinthevicinityofSonNarmadaSouth Fault, west of Dudhi, Central India (Ext. Abst.) Internat. Conf. on Precambrian continentalgrowthandtectonics ,,pp.151153. Turner,F.J.andWeiss,L.E.(1963):Structuralanalysisofmetamorphictectonites.McGrawHill, NewYork. Zagorčev, I.S. (1993): The geometric classification of folds and distribution of fold types in naturalrocks. Jour. Struct. Geol.,Vol.15(35),pp.243251. Fig. 1 Locationmapofstudyarea. Fig. 3 Dipisogonsontheprofilesectionsoftherepresentativefoldsofthestudyarea.

Fig. 4Orthogonalthicknessparametert’ αversusdipangleαplotsforfoldsshowninfig.3.The leftandrightquarterwavesectors ofthefoldsareplotted ontheleftandright ofthet’ α axis respectively.AandSrepresentantiformandsynformrespectivelyand1,2,3etc.arethelayer numbers. Fig.7 πS3diagramindifferentsubareasofthestudy areaplacedovertheLandsatimage.

20 VAIBHAVA SRIVASTAVA AND H. B. SRIVASTAVA