Swamp Tickseed (Coreopsis Nudata)

Total Page:16

File Type:pdf, Size:1020Kb

Swamp Tickseed (Coreopsis Nudata) Swamp tickseed (Coreopsis nudata) For definitions of botanical terms, visit en.wikipedia.org/wiki/Glossary_of_botanical_terms. Swamp tickseed is a short-lived perennial with charming pink and yellow blooms. The flower is comprised of vivid purplish-pink ray florets that can be up to 1” long and are notched. They surround a compact center of bright yellow disk florets. Leaves are linear and more abundant at the base of the stem, becoming smaller and fewer as they ascend it. Stems are slender, glabrous and may be branched. The fruit is an elliptic-shaped achene. Swamp tickseed occurs naturally in wet prairies, bogs, seepage slopes, wet flatwoods and roadside ditches. It blooms in spring (typically April and May) and is attractive to bees, although butterflies and other pollinators are known to visit them. Birds eat its seeds. One of 14 species of Coreopsis native to Florida, Swamp tickseed is the only one that is pink. It is often confused with the non-native Cosmos bipinnatus. Photo by Vince Lamb The genus Coreopsis comes from the Greek koris, or “bug,” and opsis, or “appearance,” and refers to the shape of the seed (as does the common name “tickseed”). The species name nudata means “nude” or “without leaf.” Family: Asteraceae (Aster, daisy or composite family) Native range: Panhandle, several counties in the northern peninsula To see where natural populations of Swamp tickseed have been vouchered, visit www.florida.plantatlas.usf.edu. Hardiness: Zone 8 Soil: Wet sand, loam or muck Exposure: Full to partial sun Growth habit: 3–5’ tall Propagation: Seeds Garden tips: Swamp tickseed is easy to grow from seed. It requires consistent soil moisture to persist. Swamp tickseed plants are occasionally available at nurseries that specialize in native plants. Visit PlantRealFlorida.org to find a native nursery on your area. Florida Wildflower Foundation • 225 S. Swoope Ave., Suite 110, Maitland, FL 32751 • 407-622-1606 • www.FlaWildflowers.org.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Coreopsideae Daniel J
    Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae.
    [Show full text]
  • Cosmos (C. Bipinnatus) Annual Flower
    Cosmos (C. bipinnatus) Annual Flower Also known as Mexican Aster, Cut Leaf Cosmos Cosmos bipinnatus Asteraceae Family A tall annual that fills space rapidly, Cosmos is renowned for its profuse blooms and generous self-seeding habit. Perfect for providing large splashes of pastel color in the garden. Site Characteristics Plant Traits Special Considerations Sunlight: Lifecycle: annual Special characteristics: . full sun Ease-of-c a r e : easy . aggressive - Self-seeds . part shade prolifically. Height: 1 to 6 feet . non-invasive Soil conditions: . native to North America - Spread: 1 to 2 feet Mexico . requires well-drained soil . tolerates low fertility Bloom time: Attracts: Does not do well in rich soil, . mid-summer . butterflies becoming leggy and weak. Prefers . late summer neutral to alkaline pH and warm . early fall Special uses: weather. mid-fall . cut flowers Flowers from July until frost. direct-seeding . wildflowers Flower color: . red . violet . white . pink Hybrids are available in many different shades of these basic colors, mostly pastels. Foliage color: medium green Foliage texture: fine Very lacy, airy foliage. Shape: u p r i g h t Shape in flower: same as above Growing Information How to plant: Propagate by seed - Scatter seeds outdoors where desired after frost danger has passed, or start indoors 4 to 6 weeks before the last frost. The plants self seed prolifically. Germination temperature: 70 F to 75 F Days to emergence: 7 to 14 Maintenance and care: May require staking. May be weedy due to self seeding. Deadhead to prolong flowering. More growing information: How to Grow Annuals Varieties Look for dwarfs, various flower colors and plant heights.
    [Show full text]
  • Rare Plants of Louisiana
    Rare Plants of Louisiana Agalinis filicaulis - purple false-foxglove Figwort Family (Scrophulariaceae) Rarity Rank: S2/G3G4 Range: AL, FL, LA, MS Recognition: Photo by John Hays • Short annual, 10 to 50 cm tall, with stems finely wiry, spindly • Stems simple to few-branched • Leaves opposite, scale-like, about 1mm long, barely perceptible to the unaided eye • Flowers few in number, mostly born singly or in pairs from the highest node of a branchlet • Pedicels filiform, 5 to 10 mm long, subtending bracts minute • Calyx 2 mm long, lobes short-deltoid, with broad shallow sinuses between lobes • Corolla lavender-pink, without lines or spots within, 10 to 13 mm long, exterior glabrous • Capsule globe-like, nearly half exerted from calyx Flowering Time: September to November Light Requirement: Full sun to partial shade Wetland Indicator Status: FAC – similar likelihood of occurring in both wetlands and non-wetlands Habitat: Wet longleaf pine flatwoods savannahs and hillside seepage bogs. Threats: • Conversion of habitat to pine plantations (bedding, dense tree spacing, etc.) • Residential and commercial development • Fire exclusion, allowing invasion of habitat by woody species • Hydrologic alteration directly (e.g. ditching) and indirectly (fire suppression allowing higher tree density and more large-diameter trees) Beneficial Management Practices: • Thinning (during very dry periods), targeting off-site species such as loblolly and slash pines for removal • Prescribed burning, establishing a regime consisting of mostly growing season (May-June) burns Rare Plants of Louisiana LA River Basins: Pearl, Pontchartrain, Mermentau, Calcasieu, Sabine Side view of flower. Photo by John Hays References: Godfrey, R. K. and J. W. Wooten.
    [Show full text]
  • Mississippi Natural Heritage Program Special Plants - Tracking List -2018
    MISSISSIPPI NATURAL HERITAGE PROGRAM SPECIAL PLANTS - TRACKING LIST -2018- Approximately 3300 species of vascular plants (fern, gymnosperms, and angiosperms), and numerous non-vascular plants may be found in Mississippi. Many of these are quite common. Some, however, are known or suspected to occur in low numbers; these are designated as species of special concern, and are listed below. There are 495 special concern plants, which include 4 non- vascular plants, 28 ferns and fern allies, 4 gymnosperms, and 459 angiosperms 244 dicots and 215 monocots. An additional 100 species are designated “watch” status (see “Special Plants - Watch List”) with the potential of becoming species of special concern and include 2 fern and fern allies, 54 dicots and 44 monocots. This list is designated for the primary purposes of : 1) in environmental assessments, “flagging” of sensitive species that may be negatively affected by proposed actions; 2) determination of protection priorities of natural areas that contain such species; and 3) determination of priorities of inventory and protection for these plants, including the proposed listing of species for federal protection. GLOBAL STATE FEDERAL SPECIES NAME COMMON NAME RANK RANK STATUS BRYOPSIDA Callicladium haldanianum Callicladium Moss G5 SNR Leptobryum pyriforme Leptobryum Moss G5 SNR Rhodobryum roseum Rose Moss G5 S1? Trachyxiphium heteroicum Trachyxiphium Moss G2? S1? EQUISETOPSIDA Equisetum arvense Field Horsetail G5 S1S2 FILICOPSIDA Adiantum capillus-veneris Southern Maidenhair-fern G5 S2 Asplenium
    [Show full text]
  • Phylogenetic Distribution of an Endogenous Strain of Dahlia
    Phylogenetic distribution of an endogenous strain K.L. Caudle and E.T. Gillock Department of Biological Sciences, of Dahlia mosaic virus in members of Asteraceae Fort Hays State University, Hays, KS INTRODUCTION OBJECTIVES & HYPOTHESES DISCUSSION Dahlia Mosaic Virus (DMV) is a double-stranded Determine the host range of DMV-D10 by sampling Asteraceae There was no phylogenetic relationship when DNA viral pathogen belonging to the family members including Dahlia variabilis determining absence or presence of DMV-D10 in Caulimoviridae (Pahalawatta et al., 2008). Symptoms • Cosmos bipinnatus and Dahlia variabilis belong to the Coreopsideae tribe samples. The DMV-D10 movement protein was associated with DMV include vein clearing in the in Asteraceae; therefore, we hypothesized DMV-D10 was most likely to present in Callistephus chinensis, which belongs to leaves (Figure 1a), flower breaking (Figure 1b), and the Astereae tribe, Centaurea cyanus, belonging to the stunted growth (Abdel-Salam et al., 2010). DMV is be present in these species compared to others based on phylogeny. Cardueae tribe, and Dahlia variabilis, belonging to most commonly observed in horticultural and wild • In contrast, we hypothesized members in the Astereae, Cardueae, and the Coreopsideae tribe. This indicates DMV-D10 or varieties of the genus Dahlia. Additionally, a new Tageteae tribe would be less likely to be infected with DMV-D10 based a related DMV virus was present in some samples, strain of this virus called DMV-D10 was first on phylogenetic relationship with Coreopsideae. but not all of them. Past studies indicate DMV-D10 Aster observed in Dahlia variabilis growing in Egypt spreads via vertical transmission from parent to offspring (Pahalawatta et al., 2008).
    [Show full text]
  • Using ITS Sequences Suggests Lability in Reproductive Characters
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 33 (2004) 127–139 www.elsevier.com/locate/ympev Phylogeny of Coreopsideae (Asteraceae) using ITS sequences suggests lability in reproductive characters Rebecca T. Kimballa,*, Daniel J. Crawfordb a Department of Zoology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA b Department of Ecology and Evolutionary Biology, The Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045-2106, USA Received 3 November 2003; revised 14 April 2004 Available online 7 July 2004 Abstract Relationships among the 21 genera within the tribe Coreopsideae (Asteraceae) remain poorly resolved despite phylogenetic stud- ies using morphological and anatomical traits. Recent molecular phylogenies have also indicated that some Coreopsideae genera are not monophyletic. We used internal transcribed spacer (ITS) sequences from representatives of 19 genera, as well as all major lin- eages in those genera that are not monophyletic, to examine phylogenetic relationships within this group. To examine the affects of alignment and method of analysis on our conclusions, we obtained alignments using five different parameters and analyzed all five alignments with distance, parsimony, and Bayesian methods. The method of analysis had a larger impact on relationships than did alignments, although different analytical methods gave very similar results. Although not all relationships could be resolved, a num- ber of well-supported lineages were found, some in conflict with earlier hypotheses. We did not find monophyly in Bidens, Coreopsis, and Coreocarpus, though other genera were monophyletic for the taxa we included. Morphological and anatomical traits which have been used previously to resolve phylogenetic relationships in this group were mapped onto the well-supported nodes of the ITS phy- logeny.
    [Show full text]
  • TAXON:Cosmos Bipinnatus SCORE:9.0 RATING:High Risk
    TAXON: Cosmos bipinnatus SCORE: 9.0 RATING: High Risk Taxon: Cosmos bipinnatus Family: Asteraceae Common Name(s): garden cosmos Synonym(s): Bidens formosa (Bonato) Sch. Bip. Mexican aster Coreopsis formosa Bonato Assessor: No Assessor Status: Assessor Approved End Date: 24 Feb 2014 WRA Score: 9.0 Designation: H(HPWRA) Rating: High Risk Keywords: Naturalized, Garden Weed, Annual, Bee-Pollinated, Self-incompatible Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed 304 Environmental weed 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing
    [Show full text]
  • Recommended Xeriscape Plant List for Salina
    Recommended Xeriscape Plant List for Salina Large Deciduous Shrubs (over 8’) Autumn Olive Elaeagnus umbellata Chokecherry Prunus virginiana Common Buckthorn Rhamnus cathartica Elderberry Sambucus canadensis Lilac Syringa vulgaris Ninebark Physocarpus opulifolius Rough-leafed Dogwood Cornus drummondii Sandhill Plum Prunus angustifolia Siberian Pea Shrub Caragana arborescen Staghorn Sumac Rhus typhina Wahoo Enonymus atropurpureus Western Sandcherry Prunus besseyi Wild Plum Prunus americana Medium Deciduous Shrubs (4’ to 8’) Butterfly Bush Buddleia davidii Dwarf Ninebark Physocarpus opulifolius nanus Flowering Quince Chaenomeles speciosa Fragrant Sumac Rhus aromatica Serviceberry Amelanchier spp. Shining Sumac Rhus copallina Three Leaf Sumac Rhus trilobata Small Deciduous Shrubs (under 4’) Alpine Currant Ribes alpinum Bluemist Spirea Caryopteris clandonensis Coralberry, Buckbrush Symphoricarpos orbiculatus False Indigo Amorpha fruticosa Golden Currant Ribes odoratum Golden St. Johnswort Hypericum frondosum Gooseberry Ribes missouriense Gro-Low Fragrant Sumac Rhus aromatica. ‘GroLow’ Landscape Roses Rosa many varieties Leadplant Amorpha canescens New Jersey Tea Ceanothus ovatus Prairie Rose Rosa suffulta Pygmy Pea Shrub Caragana pygmaea Russian Sage Perovskia atriplicifolia Large Evergreen Shrubs Eastern Redcedar Juniperus virginiana Mugho Pine Pinus mugo Medium Evergreen Shrubs Junipers Juniperus various species Page 1 of 3 Small Evergreen Shrubs Compact Mugho Pine Pinus mugo various cultivars Juniper Juniperus various species Soapweed Yucca
    [Show full text]
  • Mädchenaugen
    Mädchenaugen Die Mädchenaugen (Coreopsis), auch Schöngesicht genannt, sind eine Pflanzengattung innerhalb der Familie Mädchenaugen der Korbblütler (Asteraceae). Nach dem aktuellen Umfang der Gattung kommen alle Arten nur in der Neuen Welt vor. Einige Sorten werden oft als Zierpflanzen kultiviert. Inhaltsverzeichnis Beschreibung Erscheinungsbild und Blätter Blütenstände und Blüten Früchte Chromosomensätze Coreopsis lanceolata, Zuchtform Systematik und Verbreitung Nutzung Systematik Quellen Euasteriden II Einzelnachweise Ordnung: Asternartige (Asterales) Weblinks Familie: Korbblütler (Asteraceae) Unterfamilie: Asteroideae Beschreibung Tribus: Coreopsideae Gattung: Mädchenaugen Wissenschaftlicher Name Coreopsis L. Erscheinungsbild und Blätter Bei Coreopsis-Arten handelt es sich um einjährige oder ausdauernde krautige Pflanzen, seltener auch um Halbsträucher oder um Sträucher. Die meisten Arten erreichen Wuchshöhen von Sektion Gyrophyllum: Quirlblättriges Mädchenauge (Coreopsis verticillata) Illustration des Hohen 10 bis 80 Zentimetern, mit fein fiederteiligen Laubblättern Mädchenauges (Coreopsis tripteris) manche Arten erreichen Wuchshöhen von bis zu 2 Metern oder auch höher. Viele Arten bilden Rhizome oder die Sprossbasis ist verdickt, wenige der Arten (Coreopsis auriculata) können sich mit unter- oder oberirdischen Ausläufern ausbreiten. Bei den meisten Arten wird je Exemplar nur ein selbständig aufrechter Stängel gebildet, die mehr oder weniger auf ihrer gesamten Länge oder erst im oberen Bereich verzweigt sind.[1] Die Laubblätter können
    [Show full text]
  • Distribución Geográfica Y Riqueza Del Género Cosmos (Asteraceae: Coreopsideae)
    Revista Mexicana de Biodiversidad 84: 536-555, 2013 536 Vargas-Amado et al.- DistribuciónDOI: geográfica 10.7550/rmb.31481 de Cosmos Distribución geográfica y riqueza del género Cosmos (Asteraceae: Coreopsideae) Geographic distribution and richness of the genus Cosmos (Asteraceae: Coreopsideae) 1, 3 1, 3 1 2 2 Georgina Vargas-Amado , Arturo Castro-Castro , Mollie Harker , José Luis Villaseñor , Enrique Ortiz y Aarón Rodríguez1 1Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Apartado postal 139, 45105 Zapopan, Jalisco, México. 2Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-233, 04510 México, D. F., México. 3Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Universidad de Guadalajara. Apartado postal 139, 45105 Zapopan, Jalisco, México. [email protected] Resumen. Cosmos es uno de los géneros monofiléticos más diversos de la tribu Coreopsideae (Asteraceae). El grupo incluye 35 especies y 4 taxa infraespecíficos restringidos al continente americano. El objetivo del presente trabajo fue evaluar la distribución geográfica y la riqueza de Cosmos a través de un sistema de información geográfica (SIG). Se estimó el área de distribución geográfica de los taxa con más de un registro. También se evaluó la riqueza de las especies de Cosmos por región política, provincia geológica y una cuadrícula de 80 × 80 km. Por último, se valoraron los patrones de distribución geográfica por hábito de crecimiento. Se encontraron 3 zonas de alta riqueza, todas en México, en los estados de Jalisco, Durango y México. Las hierbas anuales, las hierbas perennes y los sufrútices mostraron patrones de distribución geográfica diferente.
    [Show full text]
  • With Cosmos Bipinnatus Phyllody Disease in Iran
    Journal of Plant Protection Research ISSN 1427-4345 RAPID COMMUNICATION Association of ’Candidatus Phytoplasma aurantifolia’ with Cosmos bipinnatus phyllody disease in Iran Mehrnoosh Nikooei1*, Chamran Hemmati2, Abdoolnabi Bagheri3 1 Department of Agriculture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran 2 Young Researcher and Elite Clubs, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran 3 Plant Protection Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran Vol. 57, No. 3: 314–317, 2017 Abstract DOI: 10.1515/jppr-2017-0037 In 2017 growing season numerous examinations of Cosmos bipinnatus in Hormozgan prov- ince, Iran revealed the disease symptoms similar to those associated with phytoplasmas. Received: May 11, 2017 Phytoplasmas were detected from all symptomatic plants by the specific polymerase chain Accepted: August 31, 2017 reaction (PCR) utilizing phytoplasma universal primer pairs. Amplification, sequencing and BLAST analysis of 16S rDNA fragment (ca. 1.2 kb) demonstrated that C. bipinnatus *Corresponding address: plants were infected by a phytoplasma belonging to the 16SrII group. This is the first report [email protected] of association of a ‘Candidatus Phytoplasma aurantifolia’-related strain with C. bipinnatus phyllody in Iran. Key words: ‘Candidatus Phytoplasma aurantifolia’, Cosmos bipinnatus, Mexican aster, phyllody, phytoplasma Phytoplasmas, cell wall-less phytopathogenic bacteria, and stunting (Fig. 1) were observed in several C. bip- belonging to the Mollicutes class (Firrao et al. 2005) are innatus plants in urban green space of Bandar Abbas, associated with numerous devastating diseases in orna- Hormozgan province, Iran. mental plants worldwide.
    [Show full text]