Texto Completo.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Texto Completo.Pdf TIAGO COELHO DE ASSIS LAGE IDENTIFICAÇÃO DE METABÓLITOS SECUNDÁRIOS E ESTUDO DE BIOATIVIDADES DE INTERESSE AGROQUÍMICO E FARMACOLÓGICO DE PLANTAS E LÍQUEN DA SERRA DO BRIGADEIRO – MG Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Agroquímica para obtenção do título de Doctor Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2014 FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T Lage, Tiago Coelho de Assis, 1981- L172i Identificação de metabólitos secundários e estudo de 2014 bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro / Tiago Coelho de Assis Lage. - Viçosa, MG, 2014. xxxiv, 296f. : il. (algumas color.) ; 29 cm. Inclui anexos. Orientador : Sergio Antonio Fernandes. Tese (doutorado) - Universidade Federal de Viçosa. Referências bibliográficas: f.237-275. 1. Produtos naturais. 2. Óleos essenciais. 3. Fungicida. 4. Formicida. 5. Antioxidante. I. Universidade Federal de Viçosa. Departamento de Química. Programa de Pós-graduação em Agroquímica. II. Título. CDD 22. ed. 547.71 2 de 3 06-05-2016 08:43 TIAGO COELHO DE ASSIS LAGE IDENTIFICAÇÃO DE METABÓLITOS SECUNDÁRIOS E ESTUDO DE BIOATIVIDADES DE INTERESSE AGROQUÍMICO E FARMACOLÓGICO DE PLANTAS E LÍQUEN DA SERRA DO BRIGADEIRO – MG Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Agroquímica para a obtenção do título de Doctor Scientiae. APROVADA: 10 de outubro de 2014. _________________________ ______________________ Vanderlúcia Fonseca de Paula João Paulo Viana Leite _________________________ _______________________________ Róbson Ricardo Teixeira Erik Daemon de S. Pinto (Coorientador) _____________________________ Sergio Antonio Fernandes (Orientador) Dedico este trabalho a todos os meus mestres, dentre eles, meus pais e meus irmãos, que foram os pilares onde primeiramente me sustentei para erguer meus conhecimentos. ii “A natureza do mistério está na mente de quem o contempla” (Marcelo Gleiser)” iii AGRADECIMENTOS Esta para mim é a parte mais difícil desta tese. Nunca vou conseguir agradecer de maneira apropriada o auxílio daqueles que se envolveram direta e indiretamente durante o tempo em que passei pelo doutorado. Sem a ajuda destas pessoas eu não seria capaz de realizar este trabalho. Agradeço a Deus e aos meus guias que me trouxeram inspiração e muita serenidade nos momentos mais difíceis pelos quais passei. Aos meus pais, José Ricardo e Marina, e meus irmãos, Matheus e Marco, que foram e sempre serão meu suporte e meu porto seguro. Também ao meu avô Joaquim Lage (in memoriam) e a minha Tia Milú que em muitos momentos também foram meus pais e sempre contribuíram para o meu crescimento pessoal e profissional. A Universidade Federal de Viçosa, ao Departamento de Química, CAPES, CNPq e FAPEMIG, por me permitirem realizar este trabalho. Ao professor Sergio Fernandes que confiou no meu trabalho desde a primeira vez que o procurei em meados de 2010 com um projeto de baixo dos braços sobre produtos naturais e, mesmo não sendo a sua área de atuação, me aceitou como aluno. Eu não tenho como descrever o quanto sou grato a ele por ter me orientado, incentivado e muitas vezes ter feito o papel de irmão mais velho, me aconselhando e apontando o melhor caminho para realizar as coisas que eu almejava. Além de orientador o considero como um grande amigo. Ao Ricardo Montanari, meu amigo mais próximo e praticamente meu coorientador. Sempre ao meu lado, não medindo esforços para auxiliar no planejamento, discussões científicas e produções acadêmicas que se originaram deste trabalho (também pela parceria etílica!). Ao Prof. Erik Daemon da UFJF que me aceitou (um químico!) em seu Laboratório de Artrópodes Parasitos, onde aprendi muito sobre carrapatos e que posteriormente se tornou meu coorientador, me auxiliando e me orientando. iv Tenho um profundo agradecimento a Camila Bauchspiess, que me deu sempre muito amor, companheirismo e foi fundamental para que eu conseguisse terminar este trabalho. Sem ela ao meu lado e o seu amor, praticamente incondicional, a vida seria muito triste. Ao Prof. Laércio Zambolim pelos ensinamentos e conselhos que recebi ao longo desses anos, que desde os tempos de mestrado me permite utilizar seu laboratório para os testes contra fungos fitopatogênicos. Ao Prof. Róbson Ricardo Teixeira, que sempre me ajudou com seus conselhos e conhecimentos em química orgânica, a quem admiro como um exemplo de professor. A Profa. Terezinha Della Lucia que me abriu as portas do seu laboratório de formigas cortadeiras e me permitiu realizar os testes de atividade formicida. A Profa. Luzia Modolo da UFMG que me recebeu no seu Grupo de Estudos em Bioquímica de Plantas e permitiu que eu realizasse parte dos testes de atividades antioxidante. Ao Prof. Ângelo de Fátima da UFMG e a Dra. Luciana Silva da Fundação Ezequiel Dias que foram os responsáveis por realizar os testes de atividade antiproliferativa. Ao Prof. Adão Sabino e a Profa. Rosemeire Brond da UFMG pela gentileza em obter os espectros de massas de alta resolução e pela realização dos experimentos de rotação específica, respectivamente. Ao Prof. José Ricardo da UFG pela gentileza em realizar o experimento de Difração de Raios-X. Gostaria de agradecer aos Professores Róbson Teixeira, Antonio Demuner e Ademar da Silva que muito contribuíram com suas valiosas sugestões para a finalização deste trabalho. Aos membros da banca, Prof. Róbson Teixeira, Profa. Vanderlúcia Fonseca e Prof. João Paulo Leite. Suas contribuições serão fundamentais para o meu crescimento profissional. v Tenho um agradecimento imenso aos Professores Paulo Tostes, Ivoni de Freitas e Luisa del Carmen que foram os grandes responsáveis pelo início da minha caminhada científica. Agradeço, em especial, a Profa. Mayura Rubinger, que foi minha orientadora de mestrado. Ela foi a responsável por me moldar e me dar base e confiança para seguir na carreira acadêmica. Sem o seu esforço naquela época eu não teria condições de me estabelecer como pesquisador. Não posso me esquecer dos meus amigos do laboratório 428! A Natália Liberto, que ao longo de 14 anos tem sido minha companheira de bancada, desde os tempos de CEFET-MG, neste período me aturou e me brindou com sua amizade e valiosos conselhos. Ao Jefferson (Geraldão), que trabalhou comigo durante sua iniciação científica, tenho certeza que aprendi mais com ele do que ele comigo. A Maria do Socorro, pela amizade, pelos conselhos e ensinamentos sobre GC-MS. A Ju, pela amizade e pelas suas trapalhadas que sempre me divertiam, além da boa vontade de discutir espectros de RMN e química orgânica comigo. Agradeço aos amigos João, Wagner, Angélica, Anyela, Diego, Cássia, Raíssa, Ruth, Ingredy, Francielle, Adalberto, Michelle, Poliana, Fabíola, Marcos, Sarah, Paula, Varejão e Eugênia pela paciência comigo durante estes anos e que fizeram meus dias mais felizes, mais engraçados e por estarem a todo o tempo dispostos a discutir resultados e tirar dúvidas. Aos parceiros e amigos dos laboratórios pelo qual passei para realizar os diversos testes de atividade biológica: Ueder Lopes, Lívia Horta, Caio Monteiro, Viviane Zeringota, Tatiane Senra, Tatiane Lopes, Fernanda Calmon, Renata Matos, Ralph Maturano, Laila Gandra e Joel, vocês foram responsáveis por uma parte muito importante do meu crescimento profissional e por isso sou muito grato. Aos Técnicos José Luiz, Márcio e Cristiane, que sempre solícitos me ajudaram bastante realizando boa parte das análises cromatográficas e espectroscópicas. Aos funcionários do DEQ: Shyrlei, Irani, Heverton, Ademir, Karl, Eduardo, Chicão e todos os demais que sempre se empenharam em atender a todos nós. vi Aos meus grandes amigos, que são os irmãos que pude escolher, que me acolheram em Viçosa e se tornaram minha família aqui desde 2008: Katalin, Firmino, Lílian, Vivi, Leandro, Rony, Marcos Túlio e Marcão. Ao Eder Tavares, um dos meus melhores amigos e irmão que Viçosa me deu. Ao longo destes anos me ensinou muita coisa e dentre elas a valorizar a amizade verdadeira. Sempre me incentivou a buscar conhecimentos, acreditando que um dia, assim como ele, eu também veria a luz no fim do túnel. Aos amigos Igor, Chipan, Pedroca, Jaca, Guto, Léo, Renan, Leandro e Nayane com quem tive o prazer de dividir uma república, que em diferentes etapas foram uma parte muito importante da minha vivência aqui em Viçosa. A la Profesora Susana Zacchino de la Universidad Nacional de Rosario, que como una madre me acogió y me dio la dirección para hacer los ensayos contra los hongos patogénicos. Nunca podré corresponder a ella, como merecería, por todo que he aprendido en su grupo, por la amistad y por su generosidad conmigo. A la profesora Marcela y el Profesor Maximiliano Sortino por la orientación sobre los hongos, por sacar mis dudas y por los acertados aportes que enriquecieron mi trabajo y también por la orientación sobre los vinos! Al profesor Marcos Derita y Profesora Silvia Lopéz por sus valiosas sugerencias y por la amistad. A las chicas muy queridas, Laura Svetaz, Estefanía Butassi y Agustina Postigo quiero expresar mi más sincero agradecimiento por el apoyo invalorable en el laboratorio y por la amistad. Yo he aprendido un montón con ustedes. Y a los amigos del laboratorio de farmacognosia: Nathalie, Mario, Pablo, Ayelen, Gastón, Sandra, Melina que han contribuido con mi trabajo brindándome su
Recommended publications
  • UV-B Absorbing and Bioactive Secondary Compounds in Lichens Xanthoria Elegans and Xanthoria Parietina: a Review
    CZECH POLAR REPORTS 10 (2): 252-262, 2020 UV-B absorbing and bioactive secondary compounds in lichens Xanthoria elegans and Xanthoria parietina: A review Vilmantas Pedišius Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus university, Vileikos g. 8-212, LT-44404, Kaunas, Lithuania Abstract Secondary metabolites are the bioactive compounds of plants which are synthesized during primary metabolism, have no role in the development process but are needed for defense and other special purposes. These secondary metabolites, such as flavonoids, terpenes, alkaloids, anthraquinones and carotenoids, are found in Xanthoria genus li- chens. These lichens are known as lichenized fungi in the family Teloschistaceae, which grows on rock and produce bioactive compounds. A lot of secondary compounds in plants are induced by UV (100-400 nm) spectra. The present review showcases the present identified bioactive compounds in Xanthoria elegans and Xanthoria parietina lichens, which are stimulated by different amounts of UV-B light (280-320 nm), as well as the biochemistry of the UV-B absorbing compounds. Key words: UV-B, Xanthoria parietina, Xanthoria elegans, parietin, phenolic compounds, carotenoids, anthraquinone DOI: 10.5817/CPR2020-2-19 Introduction UV-B light plays an important role in membranes and DNA (Gu et al. 2010, nature, yet it may cause adverse effects Yavaş et al. 2020). For example, enhanced in high amounts of it. Chlorofluorocarbons concentrations of the indole 1-methoxy-3- are mainly responsible for the depletion indolylmethyl glucosinolate were reported of ozone layer which results in an increase to result in the formation of DNA adducts of UV-B (280 to 320 nm) irradiation of (Glatt et al.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0056643 A1 Bachynsky Et Al
    US 2010.0056643A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0056643 A1 Bachynsky et al. (43) Pub. Date: Mar. 4, 2010 (54) CHEMICALLY INDUCED INTRACELLULAR (60) Provisional application No. 60/094.286, filed on Jul. HYPERTHERMA 27, 1998. (75) Inventors: Nicholas Bachynsky, Parkland, FL Publication Classification (US); Woodie Roy, Parkland, FL (US) (51) Int. Cl. A63L/045 (2006.01) Correspondence Address: (52) U.S. Cl. S14/728 FULBRIGHT & JAWORSKI, LLP ' ' " ' " 1301 MCKINNEY, SUITE 5100 HOUSTON, TX 77010-3095 (US) (57) ABSTRACT An invention relating to therapeutic pharmacological agents (73) Assignee: STUDE and methods to chemically induce intracellular hyperthermia PHARMACEUTICALS, INC. and/or free radicals for the diagnosis and treatment of infec tions, malignancy and other medical conditions. The inven (21) Appl. No.: 12/613,189 tion relates to a process and composition for the diagnosis or 1-1. killing of cancer cells and inactivation of Susceptible bacte (22) Filed: Nov. 5, 2009 rial, parasitic, fungal, and viral pathogens by chemically gen O O erating heat, and/or free radicals and/or hyperthermia-induc Related U.S. Application Data ible immunogenic determinants by using mitochondrial (63) Continuation of application No. 09/744,622, filed on uncoupling agents, especially 2,4 dinitrophenol and, their May 7, 2002, now Pat. No. 7,635,722, filed as appli conjugates, either alone or in combination with other drugs, cation No. PCT/US99/16940 on Jul. 27, 1999. hormones, cytokines and radiation. Patent Application Publication Mar. 4, 2010 Sheet 1 of 33 US 2010/0056643 A1 Glucose ATP-> A --> ADP Glucose 6-phosphate Fructose 6-phosphate ATP-O- v A --> ADP Fructose 1,6-phosphate Dihydroxyacetone phosphate 2 (Glyceraldehyde 3-phosphate) A -->4H 2 (1,3-Diphosphoylceric acid) 2ADP-- -> +2ATP 2 (3-Phosphoglyceric acid) 2 (2-Phosphoglyceric acid) A 2 (Phosphoenolpyruvic acid) 2ADP-> v A -> 2ATP 2 (Pyruvic acid) NET REACTION PER MOLECULE OF GLUCOSE: Glucose--2ADP+2PO4- 2 Pyruvic acid+2ATP+4H+HEAT FIG, Patent Application Publication Mar.
    [Show full text]
  • Zopf Extract and Metabolite Physodic Acid on Tumour Microenvironment Modulation in MCF-10A Cells
    biomolecules Article Potential Effect of Pseudevernia furfuracea (L.) Zopf Extract and Metabolite Physodic Acid on Tumour Microenvironment Modulation in MCF-10A Cells Klaudia Petrova 1,†, Martin Kello 1,*,† , Tomas Kuruc 1, Miriam Backorova 2, Eva Petrovova 3 , Maria Vilkova 4, Michal Goga 5,6 , Dajana Rucova 6, Martin Backor 6 and Jan Mojzis 1,* 1 Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; [email protected] (K.P); [email protected] (T.K.) 2 Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; [email protected] 3 Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; [email protected] 4 Department of NMR Spectroscopy, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 11 Košice, Slovakia; [email protected] 5 Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected] 6 Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; [email protected] (D.R.); [email protected] (M.B.) * Correspondence: [email protected] (M.K.); [email protected] (J.M.) † Klaudia Petrova and Martin Kello contributed equally to this work. Abstract: Lichens comprise a number of unique secondary metabolites with remarkable biological activities and have become an interesting research topic for cancer therapy. However, only a few of Citation: Petrova, K.; Kello, M.; these metabolites have been assessed for their effectiveness against various in vitro models.
    [Show full text]
  • Antibacterial Activities of Ramalin, Usnic Acid and Its Three
    Antibacterial Activities of Ramalin, Usnic Acid and its Three Derivatives Isolated from the Antarctic Lichen Ramalina terebrata Babita Paudela,c, Hari Datta Bhattaraia, Hong Kum Leea, Hyuncheol Ohb, Hyun Woung Shinc, and Joung Han Yima,* a Polar BioCenter, Korea Polar Research Institute (KOPRI), Songdo Technopark, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, South Korea. Fax: +82-32-260-6301. E-mail: [email protected] b College of Medical and Life Sciences, Silla University, Busan 617-736, South Korea c Department of Marine Biotechnology, Soonchunhyang University, Asan 336-745, South Korea * Author for correspondence and reprint requests Z. Naturforsch. 65 c, 34 – 38 (2010); received October 5, 2009 The development of new antibacterial compounds is an urgent issue to meet the evolution of resistivity of pathogenic bacteria against the available drugs. The objective of this study was to investigate the antibacterial compounds from the Antarctic lichen species Rama- lina terebrata. A total of fi ve compounds, usnic acid, usimine A, usimine B, usimine C, and ramalin, were isolated by bioactivity guided-fractionation of the methanol extract of R. ter- ebrata after several chromatographic procedures. The qualitative antibacterial activities of the crude extract and isolated compounds were determined by the disk diffusion method while the minimum inhibitory concentration (MIC) determination assay gave the quantita- tive strength of the test samples. All the test samples showed antibacterial activity against Bacillus subtilis. The crude extract and usnic acid showed antibacterial activity against Sta- phylococcus aureus. The MIC values of the isolated compounds against B. subtilis were in the range of 1 to 26 μg/mL.
    [Show full text]
  • Pigments of Higher Fungi: a Review
    Czech J. Food Sci. Vol. 29, 2011, No. 2: 87–102 Pigments of Higher Fungi: A Review Jan VELÍŠEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract Velíšek J., Cejpek K. (2011): Pigments of higher fungi – a review. Czech J. Food Sci., 29: 87–102. This review surveys the literature dealing with the structure of pigments produced by fungi of the phylum Basidiomycota and also covers their significant colourless precursors that are arranged according to their biochemical origin to the shikimate, polyketide and terpenoid derived compounds. The main groups of pigments and their leucoforms include simple benzoquinones, terphenylquinones, pulvinic acids, and derived products, anthraquinones, terpenoid quinones, benzotropolones, compounds of fatty acid origin and nitrogen-containing pigments (betalains and other alkaloids). Out of three orders proposed, the concern is only focused on the orders Agaricales and Boletales and the taxonomic groups (incertae sedis) Cantharellales, Hymenochaetales, Polyporales, Russulales, and Telephorales that cover most of the so called higher fungi often referred to as mushrooms. Included are only the European species that have generated scientific interest due to their attractive colours, taxonomic importance and distinct biological activity. Keywords: higher fungi; Basidiomycota; mushroom pigments; mushroom colour; pigment precursors Mushrooms inspired the cuisines of many cul- carotenoids and other terpenoids are widespread tures (notably Chinese, Japanese and European) only in some species of higher fungi. Many of the for centuries and many species were used in folk pigments of higher fungi are quinones or similar medicine for thousands of years.
    [Show full text]
  • Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review
    Czech J. Food Sci. Vol. 25, No. 6: 291–315 Biosynthesis of Food Constituents: Natural Pigments. Part 1 – a Review Jan VELÍŠEK, Jiří DAVÍDEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract VELÍŠEK J., DAVÍDEK J., CEJPEK K. (2007): Biosynthesis of food constituents: Natural pigments. Part 1 – a re- view. Czech J. Food Sci., 25: 291–315. This review article gives a survey of the generally accepted biosynthetic pathways that lead to the most important natural pigments in organisms closely related to foods and feeds. The biosynthetic pathways leading to hemes, chlo- rophylls, melanins, betalains, and quinones are described using the enzymes involved and the reaction schemes with detailed mechanisms. Keywords: biosynthesis; tetrapyrroles; hemes; chlorophylls; eumelanins; pheomelanins; allomelanins; betalains; betax- anthins; betacyanins; benzoquinones; naphthoquinones; anthraquinones Natural pigments are coloured substances syn- noids. Despite their varied structures, all of them thesised, accumulated in or excreted from living are synthesised by only a few biochemical path- or dying cells. The pigments occurring in food ways. There are also groups of pigments that defy materials become part of food, some other pig- simple classification and pigments that are rare ments have been widely used in the preparation or limited in occurrence. of foods and beverages as colorants for centuries. Many foods also owe their colours to pigments that 1 TETRAPYRROLES form in food materials and foods during storage and processing as a result of reactions between food Tetrapyrroles (tetrapyrrole pigments) represent a constituents, notably the non-enzymatic browning relatively small group of pigments that contribute reaction and the Maillard reaction.
    [Show full text]
  • Photoprotective Properties of Natural Pulvinic Acid Derivatives Toward Ultraviolet-Induced Damages
    International Journal of Secondary Metabolite 2018, Vol. 5, No. 4, 319-330 DOI: 10.21448/ijsm.457412 Published at http://www.ijate.net http://dergipark.gov.tr/ijsm Research Article Photoprotective Properties of Natural Pulvinic Acid Derivatives toward Ultraviolet-Induced Damages Mehmet Varol *,1 1 Mugla Sitki Kocman University, Department of Molecular Biology and Genetics, Faculty of Science, TR48000, Mugla, Turkey. Abstract: Pulvinic acid derivatives are considered as worthy to be evaluated as ARTICLE HISTORY skin protection factor toward ultraviolet-induced damages because of their colors Received: 05 September 2018 and locations in lichens. Due to the lack of literature about photo-protective features of pulvinic acid derivatives, their cosmetic potentials for skin protection were Revised: 09 November 2018 evaluated in silico, for the first time. Computational chemistry, biology and Accepted: 20 November 2018 pharmacology platforms such as Gaussian, GAMESS, PASS, PaDEL-DDPredictor and VEGA QSAR platforms were employed to determine the activities of pulvinic KEYWORDS acid derivatives. Pulvinic acid derivatives were divided into three groups as the most promising, promising and unpromising compounds according to the Lichen, calculated p-values. Although leprapinic acid, demethylleprapinic acid, pinastric Ultraviolet, acid, leprapinic acid methyl ether, 4-hydroxyvulpinic acid and vulpinic acid were determined as the most promising compounds, epanorin and rhizocarpic acid were Photoprotective, identified as promising compounds. The proposed model seems to be reliable Pulvinic Acid, because the calculated p-value for vulpinic acid was found to be compatible with previously obtained experimental results. The pulvinic acid derivatives that were p-value identified as the most promising ones should be therefore further studied by in vitro and in vivo multiple experiments.
    [Show full text]
  • Staphylococcus Aureus
    RESEARCH ARTICLE For reprint orders, please contact: [email protected] Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus Arianna Pompilio‡,1,2, Antonella Riviello‡,1,2,3, Valentina Crocetta1,2, Fabrizio Di Giuseppe1,2,3, Stefano Pomponio1,2, Marilisa Sulpizio1,2,3, Carmine Di Ilio1,2,3, Stefania Angelucci1,2,3, Luana Barone4, Andrea Di Giulio4 & Giovanni Di Bonaventura*,1,2 Aim: To evaluate the antibacterial and antibiofilm mechanisms of usnic acid (USN) against methicillin-resistant Staphylococcus aureus from cystic fibrosis patients. Materials & methods: The effects exerted by USN at subinhibitory concentrations on S. aureus Sa3 strain was evaluated by proteomic, real-time PCR and electron microscopy analyses. Results & conclusion: Proteomic analysis showed that USN caused damage in peptidoglycan synthesis, as confirmed by microscopy. Real-time PCR analysis showed that antibiofilm activity of USN is mainly due to impaired adhesion to the host matrix binding proteins, and decreasing lipase and thermonuclease expression. Our data show that USN exerts anti-staphylococcal effects through multitarget inhibitory effects, thus confirming the rationale for considering it ‘lead compound’ for the treatment of cystic fibrosis infections. First draft submitted: 9 March 2016; Accepted for publication: 7 July 2016; Published online: 16 September 2016 The most common cause of death in cystic fibrosis (CF) patients is respiratory failure secondary to KEYWORDS pulmonary infection. Pseudomonas aeruginosa and Burkholderia cepacia complex are the pathogens • biofilm most commonly associated with a shortened life span, although there has recently been an increase • Staphylococcus aureus in the prevalence of several potentially pathogenic microorganisms in CF.
    [Show full text]
  • Exploring the Antibacterial, Antioxidant, and Anticancerproperties of Lichen Metabolites
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2015-03-01 Exploring the Antibacterial, Antioxidant, and AnticancerProperties of Lichen Metabolites Gajendra Shrestha Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Shrestha, Gajendra, "Exploring the Antibacterial, Antioxidant, and AnticancerProperties of Lichen Metabolites" (2015). Theses and Dissertations. 4393. https://scholarsarchive.byu.edu/etd/4393 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Exploring the Antibacterial, Antioxidant, and Anticancer Properties of Lichen Metabolites Gajendra Shrestha A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Larry L. St. Clair, Chair Kim L. O’Neill Richard A. Robison Steven G. Wood Clinton J. Whipple Department of Biology Brigham Young University February 2015 Copyright © 2015 Gajendra Shrestha All Rights Reserved ABSTRACT Exploring the Antibacterial, Antioxidant, and Anticancer Properties of Lichen Metabolites Gajendra Shrestha Department of Biology, BYU Doctor of Philosophy Natural products have been a significant source of new drugs, especially in treating cancer, infectious diseases, hypertension, and neurological disorders. Although many natural metabolites have been screened and yielded pharmaceutically important drugs, many potential sources of natural product drug therapies still need to be investigated, including lichens. Lichens are symbiotic systems consisting of a filamentous fungus and a photosynthetic partner (an eukaryotic alga and/or cyanobacterium).
    [Show full text]
  • Dihydrokaempferol, and Isoflavone Biosynthesis, 73, 74 3,10
    INDEX 365 Dihydrokaempferol, and isoflavone Electrocyclic addition, in nonadride biosynthesis, 73, 74 biosynthesis, 188 3,10 - Dihydroperylene - 4,9 - quinone, Electronic spectra of annulenes, and biosynthesis of, 119 conjugation in cyclo-octatetra­ 3,4-Dihydroxybenzoic acid, inac­ ene,297,298 tivity of, in vitamin K2 biosyn­ Franck-Condon effect in, 307 thesis, 164 influence of bond-alternation, 2,4 -Dihydroxy - 5,6 -dimethylbenzoic 305-9 acid, in aurantiogliocladin bio­ Eleodes longicollis, benzoquinone bio­ synthesis, II 0 synthesis in, 112 in flavipin biosynthesis, 91 Emodin, 180 incorporation into, 84 lloc,15 - Dihydroxy - 9 -ketoprost - 5- Enamines, in synthesis of bicyclic enoic acid, biosynthesis of, 179 compounds, 203-5,238 1,8-Dihydroxynaphthalene, in phenol Enol-lactones, in synthesis of bicyclic coupling reactions, 119 compounds,209-10 1,3-Dihydroxy-2-propanone phos- Ergochrome AB, biosynthesis of, 97 phate, in shikimic acid biosyn­ Ergosterol, biosynthesis of, 170 thesis, 132 Ergot, ergo chrome biosynthesis in, 97, 3,6 -Dihydroxy -2,5 -toluquinone, bio­ 198a synthesis of, III D-Erythrose 4-phosphate, in shikimic Dimethylacetothetin, methylations acid biosynthesis, 132 by,85 Escherichia coli, mutants of, in studies 3,3-Dimethylallyl diphenyl phos­ of amino acid biosynthesis, 128 ff phate, alkylation of phenols, by vitamin K2 biosynthesis in, 164 161 Ethionine, suppression of tropolone Dimethylallyl pyrophosphate, in ter­ biosynthesis by, 105 pene and steroid biosynthesis, 2-Ethylbenzoquinone, biosynthesis of, 158,159 112 in
    [Show full text]
  • Recent Advances in the Field of Bioactive Tetronates
    NPR REVIEW View Article Online View Journal | View Issue Recent advances in the field of bioactive tetronates Laura Vieweg,†a Sebastian Reichau,†a Rainer Schobert,b Peter F. Leadlayc Cite this: Nat. Prod. Rep.,2014,31, a 1554 and Roderich D. Sussmuth¨ * Covering: up to mid-2014 Over the last several decades, the number of pharmacologically active natural products has significantly increased and several natural product families have taken shape. This review highlights the family of tetronate and spirotetronate compounds, which show a vast structural and functional diversity. The rapid growth of this group has created the need for a comprehensive overview and classification system, which we have devised based on structural characteristics. An updated overview is provided based on known tetronates, intended to spur further research in this field by identifying common structural features and general principles of their biosynthesis. We also compare a selection of chemical syntheses Creative Commons Attribution 3.0 Unported Licence. of representative compounds belonging to individual subtypes, both in terms of their efficiency as well Received 7th February 2014 as the extent to which they are biomimetic. This review also summarizes progress in unraveling some of DOI: 10.1039/c4np00015c the principles underlying the potent and varied bioactivities of natural tetronate antibiotics, and in www.rsc.org/npr identifying and better understanding their structure–activity relationships and modes of action. Introduction evidence supporting this proposition. If an enzyme involved in spirotetronate biosynthesis were indeed capable of catalyzing a Nature is still the world's biggest pharmacy and natural product Diels–Alder reaction step, it would be one of very few examples of This article is licensed under a chemists continue to isolate compounds with novel structural enzymes with this activity.
    [Show full text]
  • 1 Tetronic Acids Dimitris Georgiadis
    1 1 Tetronic Acids Dimitris Georgiadis 1.1 Introduction Tetronic acids belong to the class of 4-hydroxybutenolides that are characterized by a 4-hydroxy-2(5H)-furanone ring, as it can be seen in the generic structure of Scheme 1.1 [1]. This type of five-membered vinylogous acids can be met in two main tautomeric forms (1 and 2)withenolstructure1 being the one that predominates. Tetronic acid is a substructural element of many natural products of various classes such as alkaloids, terpenes, macrolides, and tannins. Two well-known natural products of this class are ascorbic acid (3) and penicillic acid (4). In many cases, its presence in natural products is connected with a wide range of significant biological properties and, therefore, the synthesis of these compounds has attracted synthetic interest for more than a century. In the following section, a synopsis of the natural occurrence, biological activities, and biosynthetic considerations of tetronic acid natural products will be attempted and a more thorough analysis of the synthetic strategies toward such compounds will be presented. Categorization of tetronic structures is based on 5-position’s substitution and discussion on synthetic routes toward these compounds will be limited on total syntheses with main focus to the construction of tetronic ring. 1.2 Natural Occurrence, Biological Activities, and Biosynthesis A large group of tetronic natural products isolated from numerous fungi, molds, and lichens are pulvinic acids (16) and their decarboxylated analogs, pulvinones (14) [2]. The first pulvinic derivative was isolated by Berbet in 1831 from the lichen Cetraria vulpina, whereas the first pulvinone was isolated by Gill in 1973 by the mushroom Boletus elegans [3].
    [Show full text]