S13568-021-01252-2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

S13568-021-01252-2.Pdf Chen et al. AMB Expr (2021) 11:93 https://doi.org/10.1186/s13568-021-01252-2 ORIGINAL ARTICLE Open Access Habitat environmental factors infuence intestinal microbial diversity of the short-faced moles (Scaptochirus moschata) Lei Chen*, Di Xu, Jing Zhu, Shen Wang, Mi Liu, Mengyao Sun, Geyang Wang, Lingyu Song, Xiaoyu Liu and Tianyu Xie Abstract The short-faced moles (Scaptochirus moschata) are unique Chinese mammal that live in burrows for life. They have complex ecological adaptation mechanisms to adapt to perennial underground life. Intestinal microbes play an important role in the ecological adaptation of wild animals. The gut microbiota diversity and its function in short- faced moles’ ecological adaptation is a scientifc issue worth exploring. In this study, the Illumina HiSeq sequencing platform was used to sequence the V3-V4 hypervariable regions of the 16S rRNA genes of 22 short-faced moles’ intes- tinal samples to study the composition and functional structure of their intestinal microbiota. The results showed that in the short-faced moles’ intestine, there are four main phyla, Firmicutes, Proteobacteria, Actinobacteria and Bacteroidete. At the family level, Peptostreptococcaceae and Enterobacteriaceae have the highest abundance. At the genus level, Romboutsia is the genus with the highest microbial abundance. According to the KEGG database, the main func- tions of short-faced mole gut microbes are metabolism, genetic information processing, environmental information processing, and cellular processes. The function of short-faced mole intestinal microbiota is suitable for its long-term burrowing life. No gender diference is found in the composition and function of the short-faced mole intestinal microbiota. There are signifcant diferences in the composition and functional structure of the short-faced mole gut microbiota between samples collected from diferent habitats. We conferred that this is related to the diferent envi- ronment factors in which they live, especially to the edaphic factors. Keywords: Short-faced moles, Gut microbiome, Gender, Sampling locations, Edaphic factor Introduction Several studies on Talpidae have focused on the phyloge- Short-faced mole (Scaptochirus moschata) belongs to the netic and morphological evolution, while the ecological Mogera of the Talpidae, is a small mammal that lives in adaptability of Talpidae is less studied. burrows for life, feeds on plant rhizomes and soil insects Intestinal microbes are important symbionts in mam- such as grubs, etc. It has developed morphological and malian gut and occupy important niche (Willey et al. physiological characteristics adapted to burrowing, such 2014; Saxena and Sharma 2016). Tey play an important as eye degeneration, foreclaw valgus, smell and hear- role in maintaining intestinal health and immune func- ing sensitivity, etc. Short-faced mole is Chinese endemic tion, including in the proliferation of intestinal cells, species, mainly distributed in Henan, Shandong, Inner defense against pathogens, metabolism of secondary Mongolia, Ningxia, Shanxi and other provinces in China. products, and digestion of complex compounds (Flint et al. 2012). Intestinal microbes can also afect animal nutrition metabolism and intestinal immunity through *Correspondence: [email protected] College of Life Science, Qufu Normal University, Jingxuan West Street intestinal-brain axis (Schoster et al. 2017; Li et al. 2018; No.57, Qufu, Shandong Province 273165, China Wang et al. 2007), which is of great signifcance to animal © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. Chen et al. AMB Expr (2021) 11:93 Page 2 of 12 survival and environmental adaptation (Wu et al. 2016; samples according to the instructions. Te concentration Zhu et al. 2011; Chen et al. 2017). Tere are many fac- of the DNA was detected by NanoDrop™ OneC (Termo tors that afect gut microbes, including the genetic back- Fisher Scientifc, USA). We used qualifed DNA samples ground of the host, the diet, age, gender, social class of for PCR amplifcation, then diluted the sample to 1 ng/ the host, and the climate of the habitat. Soil, as an essen- μl using sterile water. PCR amplifcation of the V3-V4 tial part of terrestrial mammal habitat, also plays an region of 16S rRNA gene was performed with the prim- important role in the composition and diversity of animal ers 341F (CCT AYG GGRBGCASCAG) and 806R (GGA gut microbes (Zhao et al. 2018; Wang et al. 2019). CTA CNNGGG TAT CTAAT). Te PCR reaction steps Short-faced moles live in an underground hypoxic were as follows: pre-denaturation at 98 °C for 1 min; environment all year round. Te physiological adaptation denaturation at 98 °C for 10 s, annealing at 55 °C for 30 s, mechanisms are important and representative in the eco- extension at 72 °C for 30 s (35 cycles); and fnal extension logical research of burrowing mammals. Te functional at 72 °C for 5 min. contribution of intestinal microbes in the burrowing life Te concentration of PCR amplifed products was of the short-faced moles is an important feld in the study detected by 2% agarose gel electrophoresis. Ten the of the physiological ecology of the burrowing mammals. gel extraction kit (Qiagen, Germany) was used to purify Terefore, this study intends to study the gut microbial the PCR products. Te TruSeq® DNA PCR-Free Sam- diversity of the short-faced moles, and to investigate the ple Preparation Kit was used to construct the library. diferences of intestinal microbes in moles with diferent Te constructed library was quantitatively tested by sex and distribution. Furthermore, through the predic- Qubit. After the library was qualifed, the Illumina HiSeq tion of microbiome function, we also try to explore the sequencing platform was used for sequencing. function of gut microbes and their possible contribution in the adaptation to underground life of the short-faced moles. Tis study will provide data for the understanding Sequencing data preprocessing of the physiological and ecological mechanism of short- According to the quality control process of Qiime faced moles to adapt to burrowing life, and provide data (V1.9.1) (Caporaso et al. 2010), the raw tags obtained for the ecological studies of small burrowing mammals. by sequencing were fltered strictly by quality control to obtain high-quality clean tags. Truncate Raw Tags from Materials and methods the frst low-quality base site where the number of con- Samples collection secutive low-quality values (the default quality threshold In this study, 22 short-faced moles (SM) were collected is < = 19) has reached the set length (the default length is using non-damagingly self-made mouse traps in Sep- 3). Ten flter out the Tags whose continuous high-qual- tember 2020, including 12 males (named M) and 10 ity base length is less than 75% of the Tag length. After females (named F). Te sampling locations were Guanx- detect and remove chimeric sequences, the fnal efective ian (115°E, 36°N; named G; 11) and Huimin (117°E, 37°N; tags were obtained for further analysis. named H; 11). Te short-faced moles were captured and placed in the soil of the original habitat, and transported to the laboratory alive. Subsequently, the gasifed diethyl OTUs classifcation and species abundance analysis ether was put into the transparent sealing device, and To detect the species richness in each sample, the efec- then the collected samples were put into the device, and tive tags in all samples is classifed as operational taxo- the diethyl ether was continued. During this process, nomic units (OTUs) based on 97% sequence similarity. the state of short-faced moles was kept observing. After Ten the OTUs were compared to SILVA’s SSUrRNA euthanasia, short-faced moles were dissected and the database for species annotation (set threshold of 0.8) colon contents were collected aseptically. Te collected by using Mothur software (Version 1.35.1). R software colon contents samples were stored at – 80℃ in the labo- (v2.15.3) was used to generate Rarefaction curve and ratory until DNA extraction. Rank Abundance curve. Te end of the Rarefaction curve Tis study was approved by the Medical Ethics Com- is gradually fattened, which proves the rationality of the mittee of Qufu Normal University (No. 2020018), and sequencing amount, and the results obtained by sequenc- during the approval period, the short-faced moles was ing can efectively refect the abundance of microorgan- captured and dissected as required. isms contained from the sample. We analyzed the OTUs distribution to study the species abundance of the gut DNA extraction, PCR amplifcation and sequencing microbes of each sample, and constructed a histogram of We used QIAamp DNA Stool Genomic DNA Extraction the relative abundance of OTUs at each classifcation lev- Kit (Qiagen, Germany) to extract DNA from intestinal els (phylum, class, order, family, and genus). Chen et al. AMB Expr (2021) 11:93 Page 3 of 12 Diversity analysis and signifcant test Results To analyze the diversity of the microbial community Sequencing data processing and OTU analysis intragroup, we performed alpha diversity analysis by A total of 2,085,117 raw paired-end reads are obtained using Mothur software (Version 1.35.1) to refect the from 22 short-faced moles intestinal samples.
Recommended publications
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Microbiology in Shale: Alternatives for Enhanced Gas Recovery
    Graduate Theses, Dissertations, and Problem Reports 2015 Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Tucker, Yael Tarlovsky, "Microbiology in Shale: Alternatives for Enhanced Gas Recovery" (2015). Graduate Theses, Dissertations, and Problem Reports. 6834. https://researchrepository.wvu.edu/etd/6834 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Jianbo Yao, Ph.D., Chair James Kotcon, Ph.D.
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • Supplementary Fig. S2. Taxonomic Classification of Two Metagenomic Samples of the Gall-Inducing Mite Fragariocoptes Seti- Ger in Kraken2
    Supplementary Fig. S2. Taxonomic classification of two metagenomic samples of the gall-inducing mite Fragariocoptes seti- ger in Kraken2. There was a total of 708,046,814 and 82,009,061 classified reads in samples 1 and 2, respectively. OTUs (genera) were filtered based on a normalized abundance threshold of ≥0.0005% in either sample, resulting in 171 OTUs represented by 670,717,361 and 72,439,919 reads (sample 1 and 2, respectively). Data are given in Supplementary Table S3. Sample1 Sample2 0.000005 0.002990 Bacteria:Proteobacteria:Inhella Read % (log2) 0.000005 0.005342 Bacteria:Actinobacteria:Microbacteriaceae:Microterricola 10.00 0.000006 0.003983 Bacteria:Actinobacteria:Microbacteriaceae:Cryobacterium 5.00 0.000012 0.006576 Eukaryota:Ascomycota:Mycosphaerellaceae:Cercospora 0.00 0.000013 0.002947 Bacteria:Actinobacteria:Bifidobacteriaceae:Gardnerella 0.000017 0.003555 Eukaryota:Ascomycota:Chaetomiaceae:Thielavia -5.00 0.000014 0.004244 Bacteria:Firmicutes:Clostridiaceae:Clostridium -10.00 0.000010 0.001699 Bacteria:Proteobacteria:Caulobacteraceae:Phenylobacterium -15.00 0.000012 0.001183 Bacteria:Actinobacteria:Microbacteriaceae:Leifsonia 0.000009 0.001144 Bacteria:Proteobacteria:Desulfovibrionaceae:Desulfovibrio -20.00 0.000016 0.000777 Bacteria:Firmicutes:Leuconostocaceae:Weissella -25.00 0.000014 0.000761 Bacteria:Cyanobacteria:Oscillatoriaceae:Oscillatoria 0.000013 0.000683 Bacteria:Proteobacteria:Methylobacteriaceae:Microvirga Read % 0.000011 0.000578 Bacteria:Fusobacteria:Leptotrichiaceae:Leptotrichia 0.000009 0.000842 Bacteria:Firmicutes:Paenibacillaceae:Paenibacillus
    [Show full text]
  • DNA from Dust: the First Field-Isolated Genomes of MDV-1, from Virions In
    bioRxiv preprint doi: https://doi.org/10.1101/039479; this version posted February 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pandey et al., DNA from dust: first field genomes of MDV-1 BioRxiv preprint, 2016 1 DNA from dust: the first field-isolated genomes of MDV-1, from virions in 2 poultry dust and chicken feather follicles 3 4 Utsav Pandey1, Andrew S. Bell2, Daniel Renner1, David Kennedy2, Jacob Shreve1, Chris Cairns2, 5 Matthew Jones2, Patricia Dunn3, Andrew Read2, Moriah L. Szpara1* 6 7 1Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life 8 Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA 9 2 Center for Infectious Disease Dynamics, Department of Biology and Entomology, Pennsylvania 10 State University, University Park, Pennsylvania 16802, USA 11 3 Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University 12 Park, Pennsylvania, 16802, USA 13 *Corresponding Author 14 Moriah L. Szpara 15 Dept. of Biochemistry & Molecular Biology 16 The Huck Institutes of the Life Sciences 17 W-208 Millennium Science Complex (MSC) 18 Pennsylvania State University 19 University Park, PA 16802 USA 20 Phone: 814-867-0008 21 Email: [email protected] 22 23 Author emails: 24 Utsav Pandey: [email protected] 25 Andrew S. Bell: [email protected] 26 Daniel W. Renner: [email protected] 27 David Kennedy: [email protected] 28 Jacob T. Shreve: [email protected] 29 Chris Cairns: [email protected] 30 Matthew Jones: [email protected] 31 Patricia Dunn: [email protected] 32 Andrew Read: [email protected] 33 Moriah L.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Bacillus Subtilis 29784 As a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid
    animals Article Bacillus Subtilis 29784 as a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid Pearl Choi 1, Lamya Rhayat 2, Eric Pinloche 2 , Estelle Devillard 2, Ellen De Paepe 3, Lynn Vanhaecke 3 , Freddy Haesebrouck 4 , Richard Ducatelle 1, Filip Van Immerseel 1,* and Evy Goossens 1,* 1 Livestock Gut Health Team, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; [email protected] (P.C.); [email protected] (R.D.) 2 Adisseo France SAS, Center of Expertise and Research in Nutrition (CERN), 6 Route Noire, 03600 Commentry, France; [email protected] (L.R.); [email protected] (E.P.); [email protected] (E.D.) 3 Laboratory of Chemical Analysis, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; [email protected] (E.D.P.); [email protected] (L.V.) 4 Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; [email protected] * Correspondence: [email protected] (F.V.I.); [email protected] (E.G.) Simple Summary: Bacterial strains that are consumed by humans or by animals to promote health are called probiotics. In poultry, Bacillus strains are widely used as feed additives for this purpose. Citation: Choi, P.; Rhayat, L.; Although different modes of action have been proposed, studies showing effects on what metabolites Pinloche, E.; Devillard, E.; De Paepe, E.; Vanhaecke, L.; Haesebrouck, F.; the bacteria produce in a test tube, and whether these can also be found in the intestine of animals Ducatelle, R.; Van Immerseel, F.; that were given these strains as feed additives, are lacking.
    [Show full text]
  • Supplementary Information
    K-mer similarity, networks of microbial genomes and taxonomic rank Guillaume Bernard, Paul Greenfield, Mark A. Ragan, Cheong Xin Chan. Supplementary Figures Legends # Supplementary Figure S1: P- network of prokaryote phyla using !" with k=25, based on rRNAs. Edges represent connections between isolates of two phyla. The node size is proportional to the number of isolates in a phylum. Distance threshold = 6. Supplementary Figure S2: PCA analysis performed on the raw data of the COG categories profile for each genus. Each phylum is color-coded. Supplementary Figure S3: PCA analysis performed on the raw data of the COG categories profile for each genus. Each genus is color-coded according to the number of isolates. Supplementary Figure S4: PCA analysis performed on the normalised counts of center-scaled COG categories. Each phylum is color-coded. Supplementary Tables Legends Supplementary Table S1: List of the 2785 isolates used in this analysis. Supplementary Table S2: Network analysis of the I-network for 2705 complete genomes of bacteria and archaea. Supplementary Table S3: Network analysis of the I-network for 2616 genomes of bacteria and archaea, with rRNA genes removed. Supplementary Table S4: Network analysis of the rRNA gene sequences I-network of 2616 bacterial and archaeal isolates. Supplementary Table S5: Network analysis of the plasmid genomes I-network of 921 bacterial and plasmid genomes. Supplementary Table S6: Statistics of core k-mers for 151 genera. Supplementary Table S7: COG category profiles for 16 phyla. 1 Figure S1
    [Show full text]
  • Literature Review
    ABSTRACT DEVINE, ANTHONY ANDREW. Examining Complex Microbial Communities Using the Terminal Restriction Fragment Length Polymorphism Method and Dedicated TRFLP Analysis Software. (Under the direction of Amy Michele Grunden). The purpose of this research was to develop a robust methodology that could be used to determine the composition of complex microbial communities found in a variety of environments. In an effort to profile these communities, a 16S rDNA directed, sequencing independent method, Terminal Restriction Fragment Length Polymorphism (TRFLP) was used to generate fragment profiles from genomic DNA isolated from each sample. A custom designed software package, In Silico©, was then used to match these terminal restriction fragments in the sample to patterns of 16S rDNA fragments in a custom database of reference patterns. Identifying these patterns allowed for inferences to be made about the structure of the microbial populations in the environments sampled. TRFLP was chosen as the method of identification since it is a high throughput, cost effective method for community profiling. A combination of this method and the In Silico© software was used to examine microbial communities associated with open air swine waste lagoon systems, the large intestine of the Trichechus manatus latirostrus, Florida manatee, and the microbial populations found in rumen fed fermentors. The community analysis methodology we developed and employed was able to not only detect large and diverse microbial populations within each sample, but was also
    [Show full text]
  • Enrichment of Novel Actinomycetales and the Detection of Monooxygenases During 2 Aerobic 1,4-Dioxane Biodegradation with Uncontaminated and Contaminated Inocula
    1 Enrichment of Novel Actinomycetales and the Detection of Monooxygenases during 2 Aerobic 1,4-Dioxane Biodegradation with Uncontaminated and Contaminated Inocula 3 4 5 6 Vidhya Ramalingam and Alison M. Cupples* 7 8 9 Department of Civil and Environmental Engineering, Michigan State University, East Lansing, 10 Michigan, USA 11 12 13 14 *Corresponding Author: 15 Alison M. Cupples 16 A135, 1449 Engineering Research Court, Michigan State University, East Lansing, MI 48824, 17 [email protected] 18 19 20 21 KEYWORDS: 1,4-dioxane, soluble di-iron monooxygenases, Nocardioides, Gordonia, 22 Kribbella, prmA, tomA3 23 Page 1 of 22 24 Abstract 25 1,4-dioxane, a co-contaminant at many chlorinated solvent sites, is a problematic groundwater 26 pollutant because of risks to human health and characteristics which make remediation 27 challenging. In situ 1,4-dioxane bioremediation has recently been shown to be an effective 28 remediation strategy. However, the presence/abundance of 1,4-dioxane degrading species across 29 different environmental samples is generally unknown. Here, the objectives were to identify 30 which 1,4-dioxane degrading functional genes are present and which genera may be using 1,4- 31 dioxane and/or metabolites to support growth across different microbial communities. For this, 32 laboratory sample microcosms and abiotic control microcosms (containing media) were 33 inoculated with four uncontaminated soils and sediments from two contaminated sites. Live 34 control microcosms were treated in the same manner, except 1,4-dioxane was not added. 1,4- 35 dioxane decreased in live microcosms with all six inocula, but not in the abiotic controls, 36 suggesting biodegradation occurred.
    [Show full text]