Modifying Antirheumatic Drugs in Active Rheumatoid Arthritis: a Japan Phase 3 Trial (HARUKA)

Total Page:16

File Type:pdf, Size:1020Kb

Modifying Antirheumatic Drugs in Active Rheumatoid Arthritis: a Japan Phase 3 Trial (HARUKA) MODERN RHEUMATOLOGY 2020, VOL. 30, NO. 2, 239–248 https://doi.org/10.1080/14397595.2019.1639939 ORIGINAL ARTICLE Sarilumab monotherapy or in combination with non-methotrexate disease- modifying antirheumatic drugs in active rheumatoid arthritis: A Japan phase 3 trial (HARUKA) Hideto Kamedaa, Kazuteru Wadab, Yoshinori Takahashib, Owen Haginoc, Hubert van Hoogstratend, Neil Grahame and Yoshiya Tanakaf aDivision of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University (Ohashi Medical Center), Tokyo, Japan; bSanofi K.K., Tokyo, Japan; cSanofi, Bridgewater, NJ, USA; dSanofi-Genzyme, Cambridge, MA, USA; eRegeneron Pharmaceuticals, Inc., Tarrytown, NY, USA; fFirst Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Downloaded from https://academic.oup.com/mr/article/30/2/239/6299750 by guest on 01 October 2021 Japan, Kitakyushu, Japan ABSTRACT ARTICLE HISTORY Objectives: To determine long-term safety and efficacy of sarilumab as monotherapy or with non- Received 13 March 2019 methotrexate (MTX) conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) in Accepted 1 July 2019 Japanese patients with active rheumatoid arthritis (RA). KEYWORDS Methods: In this double-blind, randomized study (NCT02373202), patients received subcutaneous sari- Rheumatoid arthritis; lumab 150 mg q2w (S150) or 200 mg q2w (S200) as monotherapy or with non-MTX csDMARDs for 52 sarilumab; Japan; phase III; weeks. The primary endpoint was safety. anti-IL-6 receptor Results: Sixty-one patients received monotherapy (S150, n ¼ 30; S200, n ¼ 31) and 30 received combin- ation therapy (S150 þ csDMARDs, n ¼ 15; S200 þ csDMARDs, n ¼ 15). Rates of treatment-emergent adverse events (TEAEs) were 83.3%/90.3%/93.3%/86.7% for S150/S200/S150 þ csDMARDs/ S200 þ csDMARDs, respectively. Nasopharyngitis and neutropenia were the most frequently reported TEAEs. One serious infection was reported in each monotherapy group and in the S200 þ csDMARDs group. There were no cases of grade 4 neutropenia; no patients with grade 3 neutropenia experienced associated serious infection. Improvements in ACR20/50/70 response rates were generally similar between the two monotherapy groups and between the two combination groups; improvements in physical function (Health Assessment Questionnaire-Disability Index, HAQ-DI) and DAS28-CRP were observed at weeks 24 and 52 (all groups). Conclusion: The safety profile of sarilumab was consistent with known class effects of interleukin-6 signaling blockade therapeutics. Sarilumab as mono- or combination therapy improved clinical signs/ symptoms and physical function in Japanese RA patients. Introduction intolerance to anti-tumor necrosis factor (TNF) therapy (TARGET) [6]. Sarilumab as monotherapy or combination Interleukin (IL)-6 is a key cytokine in the pathogenesis of therapy improved signs and symptoms and physical func- rheumatoid arthritis (RA) linked to joint inflammation and destruction [1,2]. Inhibition of the IL-6 signaling pathway tion in patients with RA. Safety profiles were consistent through blockade of the IL-6 receptor (IL-6R) is being with previous studies [7,8] and anticipated class effects. explored as a therapeutic option for patients with RA. Known effects of IL-6 signaling blockade include a higher Sarilumab is a human immunoglobulin (Ig)G1 monoclonal incidence of infections, elevations in alanine aminotransfer- antibody against the IL-6R [3]. The efficacy and safety of ase (ALT) and total serum cholesterol, and lower neutrophil sarilumab in patients with active RA has been investigated count [7–10]. in phase 3 global trials: in combination with methotrexate In MOBILITY, treatment with sarilumab 200 mg or (MTX) in patients with inadequate response to MTX (the 150 mg once every 2 weeks (q2w) plus MTX (versus placebo MOBILITY study) [4]; as monotherapy versus adalimumab plus MTX) was associated with significantly higher propor- in patients with intolerance or inadequate response to MTX tions of patients achieving American College of (MONARCH) [5]; and in combination with conventional Rheumatology 20% (ACR20) improvement responses at synthetic disease-modifying antirheumatic drugs week 24, significantly greater improvements from baseline (csDMARDs) in patients with an inadequate response or in the Health Assessment Questionnaire-Disability Index CONTACT Hideto Kameda [email protected] Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University (Ohashi Medical Center), 2-22-36 Ohashi, Meguro-ku, Tokyo 153-8515, Japan Supplemental data for this article can be accessed here. ß 2019 Japan College of Rheumatology. Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. 240 H. KAMEDA ET AL. (HAQ-DI) at week 16, and significantly reduced radio- and all individuals who had contact with patients were to graphic progression of structural damage (modified Sharp/ remain blinded until the end of study. Post-screening visits van der Heijde score (SHS)) at week 52 [4]. Although the took place at baseline and weeks 2, 4, 6, 8, 10, 12, 16, 20, study was not powered to detect differences between the 24, 28, 36, 44, and 52, followed by a post-treatment follow- two doses of sarilumab, the 200 mg q2w dose provided bet- up at week 58. ter inhibition of radiographic progression than 150 mg q2w The study was performed in accordance with applicable (mean SHS change from baseline at week 52, 0.25 and 0.90, laws and guidelines, including the Declaration of Helsinki respectively, versus 2.78 for placebo plus MTX, p<.0001) and the International Council for Harmonisation guidelines [4]. Efficacy results in TARGET for sarilumab 150 mg q2w for Good Clinical Practice. The protocol and amendments and 200 mg q2w versus placebo (all plus csDMARDs) were were approved by the institutional/central review boards for similar to those in MOBILITY; radiographic progression all 40 sites that enrolled patients (a further four sites gained was not assessed [6]. In MONARCH, in patients with inad- approvals but did not enroll any patients). Details of the equate response or intolerance to MTX, sarilumab 200 mg sites involved in the study including Principal Investigator q2w was clinically superior to adalimumab, as assessed by names, site numbers and the name of the institutional/cen- Downloaded from https://academic.oup.com/mr/article/30/2/239/6299750 by guest on 01 October 2021 change from baseline in Disease Activity Score in 28 joints tral review board can be found in Supplemental Table S1. using erythrocyte sedimentation rate (DAS28-ESR) and Written informed consent was obtained from all participants HAQ-DI, with similar safety profiles, including infection (or legally acceptable representative) prior to the conduct of rates, despite a higher incidence of neutropenia in the sari- any study-related procedures. lumab group [5]. In addition to the anti-IL-6R biological DMARD tocilizu- mab, some csDMARDs have been developed and widely Patient population used in Japan [11]. It is therefore important to assess the Included in the study were Japanese patients (aged 20 use of sarilumab in such clinical settings. This manuscript years) with moderate to severe RA, defined as: RA diagnosis reports results from the Phase 3 HARUKA study, performed according to ACR/European League Against Rheumatism to evaluate the long-term safety and efficacy of sarilumab as (EULAR) 2010 criteria with 3 months disease duration; monotherapy or in combination with non-MTX csDMARDs ACR Class I–III functional status (1991 revised criteria [13]); in Japanese patients with active RA. A second study in at least four of 68 tender joints and four of 66 swollen joints Japan evaluated the efficacy and safety of sarilumab plus at screening; and hs-CRP 4 mg/L or erythrocyte sedimenta- MTX in patients with RA with inadequate response to MTX tion rate (ESR) 28 mm/h. Patients in the monotherapy stra- (KAKEHASI) [12]. tum were: inappropriate for MTX treatment per investigator judgment; or intolerant to MTX, with or without other Materials and methods DMARDs, per investigator judgment; or MTX-IR. Up to 12 patients who were MTX-IR (with or without other Study design DMARDs) were allowed; these patients had to have received The HARUKA trial (NCT02373202) was a multicenter, treatment for 12 weeks before randomization and have randomized, double-blind, 52-week study. Patients were been on a stable dose for 6 weeks before screening (current randomized (2:2:1:1) to receive subcutaneous (SC) injections treatment to be discontinued before randomization). Patients of sarilumab in either the monotherapy stratum (sarilumab in the combination stratum had to have received continuous 150 mg or sarilumab 200 mg q2w) or combination stratum treatment with non-MTX csDMARDs (as monotherapy or (sarilumab 150 mg or sarilumab 200 mg q2w, plus current combination) for 12 weeks before randomization and have background non-MTX csDMARDs). been on a stable dose for 6 weeks prior to screening. Randomization was performed centrally via an interactive The main exclusion criteria were: recent treatment – voice or web response
Recommended publications
  • Study Protocol);
    PF-06651600 B7981006 Final Protocol Amendment 1, 26 October 2016 A PHASE 2A, RANDOMIZED, DOUBLE-BLIND, PARALLEL GROUP, PLACEBO-CONTROLLED, MULTI-CENTER STUDY TO ASSESS THE EFFICACY AND SAFETY PROFILE OF PF-06651600 IN SUBJECTS WITH MODERATE TO SEVERE ACTIVE RHEUMATOID ARTHRITIS WITH AN INADEQUATE RESPONSE TO METHOTREXATE Investigational Product Number: PF-06651600 Investigational Product Name: Not Applicable (N/A) United States (US) Investigational New 131274 Drug (IND) Number: European Clinical Trials Database 2016-002862-30 (EudraCT) Number: Protocol Number: B7981006 Phase: 2a Page 1 PF-06651600 B7981006 Final Protocol Amendment 1, 26 October 2016 Document History Document Version Date Summary of Changes and Rationale Amendment 1 26 October 2016 In the Schedule of Activities, and Section 7.2.12, added audiogram testing Rationale: To monitor for potential changes in hearing between baseline [between Visit 1 and Visit 2 (inclusive)] and at the end of the study [between Visit 7 and Visit 9 (inclusive)]. The following exclusion criteria has been added in Section 4.2: Have current or recent history of clinically significant severe or progressive hearing loss or auditory disease. Subjects with hearing aids will be allowed to enter the study provided their hearing impairment is considered controlled/ clinically stable. Rationale: This has been added to ensure that subject hearing for safety is fully evaluated prior to study entry. Several additional minor changes were made to protocol language for the purposes of clarification. Original protocol 31 August 2016 Not applicable (N/A) This amendment incorporates all revisions to date, including amendments made at the request of country health authorities and institutional review boards (IRBs)/ethics committees (ECs).
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • 24/3 Pag 121 Ok X WENDY
    Treatment continuation rate in relation to efficacy and toxicity in long-term therapy with low-dose methotrexate, sulfasalazine, and bucillamine in 1358 Japanese patients with rheumatoid arthritis M. Nagashima, T. Matsuoka, K. Saitoh, T. Koyama, O. Kikuchi, S. Yoshino Department of Joint Disease and Rheumatism, Nippon Medical School, Japan. Abstract Objective To evaluate the effectiveness of disease-modifying antirheumatic drugs, namely, methotrexate (MTX), sulfasalazine (SSZ) and bucillamine (BUC) at low-doses (4, 6 or 8mg MTX, 500 or1000mg SSZ, and 100 or 200 mg BUC) in 1358 patients with a follow-up of at least 12 months and more than 120 months. Methods Clinical assessments were based on the number of painful joints (NPJ) and that of swollen joints (NSJ), CRP level, erythrocyte sedimentation rate, rheumatoid factor level and morning stiffness before and after treatment. Results were evaluated on the basis of the duration of treatment for each drug with inefficacy or inadequate efficacy as one endpoint for discontinuation and adverse drug reactions (ADRs) as the other in single agent and combination ther- apy. The incidence and nature of ADRs in single and combination treatment are described. Results The effects of MTX, SSZ and BUC on clinical parameters were monitored over the first three months, and in partic- ular, NPJs and NSJs were found to decrease significantly during single agent MTX or BUC treatment over 108 months. CRP levels remained significantly improved for more than 120 months with MTX. In the single and combi- nation long-term treatments, continuation rate with inefficacy or inadequate efficacy as the end point achieved for each of the treatments were 83.1% for MTX, 76.0% for BUC, 68.5% for SSZ, and in the case of the combination treatments, these rates were 83.3% for MTX + BUC and 71.0% for MTX+SSZ.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Efficacy and Toxicity of Methotrexate (MTX)
    Extended report Ann Rheum Dis: first published as 10.1136/ard.2008.099861 on 3 December 2008. Downloaded from Efficacy and toxicity of methotrexate (MTX) monotherapy versus MTX combination therapy with non-biological disease-modifying antirheumatic drugs in rheumatoid arthritis: a systematic review and meta-analysis W Katchamart,1,2 J Trudeau,3 V Phumethum,1 C Bombardier4,5 c Additional figures and ABSTRACT combination DMARD therapy be used: initially or appendixes are published online Objective: To evaluate the efficacy and toxicity of only after a trial of MTX monotherapy? Finally, only at http://ard.bmj.com/ which is the preferred combination DMARD content/vol68/issue7 methotrexate (MTX) monotherapy compared with MTX combination with non-biological disease-modifying anti- strategy? These questions are particularly salient 1 Rheumatology Division, rheumatic drugs (DMARDs) in adults with rheumatoid as formularies in many countries require the use of Department of Medicine, University of Toronto, Toronto, arthritis. MTX mono and MTX combo therapies before Ontario, Canada; Method: A systematic review of randomised trials reimbursing for the more expensive biological 2 Rheumatology Division, comparing MTX alone and in combination with other non- drugs. The objective of this paper was to system- Department of Medicine, Siriraj biological DMARDs was carried out. Trials were identified atically review randomised trials that compared Hospital, Mahidol University, MTX monotherapy with MTX in combination Bangkok, Thailand; 3 Hoˆspital in Medline, EMBASE, the Cochrane Library and ACR/ Notre-Dame, Department of EULAR meeting abstracts. Primary outcomes were with other non-biological DMARDs. This manu- Rheumatology, Montreal, withdrawals for adverse events or lack of efficacy.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Small Molecule DMARD Therapy and Its Position in RA Treatment
    Chapter 8 Small Molecule DMARD Therapy and Its Position in RA Treatment Hiroaki Matsuno Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53320 1. Introduction Small molecule disease-modifying antirheumatic drugs (DMARDs) played a central role in drug therapy for rheumatoid arthritis (RA) before biological preparations (biologics) came into extensive use for the treatment of this disease. Unlike non-steroidal anti-inflammatory drugs (NSAIDs) and steroids, which primarily alleviate the symptoms of RA such as pain and inflammation, DMARDs are known to suppress the progression of RA through their ac‐ tion against immunological abnormalities. To review the history of the clinical positioning of DMARD therapy, until the beginning of the 1990s, DMARDs were used only in patients showing signs of disease progression (e.g., bone erosion) after NSAIDs or steroid treatment within the framework of pyramid therapy [1]. During the 1990s through the 2000s, the strategy and goals of RA therapy have under‐ gone marked changes following the introduction of methotrexate (MTX) as another treat‐ ment option, the expansion of MTX as an anchor drug [2,3,4], endorsement of the usefulness of combined drug therapy involving DMARDs [5], the introduction of biologics into RA treatment [6,7,8], and other advances. In 2002, the American College of Rheumatology (ACR) released its Guidelines on RA Management, clearly indicating DMARDs as first-line drugs for the treatment of RA. As a result, NSAIDs and steroids came to be positioned as auxiliary means of treating RA [9]. The small molecule DMARDs that have been used frequently in Western countries are MTX, sulphasalazine (SASP), hydroxychloroquine (HCQ), leflunomide (LFN), and minocycline (MIN).
    [Show full text]
  • Mechanisms of Action of Second-Line Agents and Choice of Drugs in Combination Therapy
    Mechanisms of action of second-line agents and choice of drugs in combination therapy E. Choy, G. Panayi Department of Rheumatology, Division ABSTRACT stimulation of IL-2 receptor (IL-2R) of Medicine, GKT School of Medicine, Second-line agents are used commonly positive lymphocytes and monocytes. King’s College, London. for the treatment of rheumatoid arthritis The latter release monokines, including Dr. Ernest Choy, MD, MRCP, Consultant (RA). They suppress inflammation and IL-1, IL-6, and tumour necrosis factor a and Senior Lecturer in Rheumatology; ameliorate symptoms but often fail to (TNFa ) that stimulate mesenchymal Professor Gabriel Panayi, MD, DSc, substantially improve long-term disease cells such as fibroblasts, as well as en- FRCP, Arthritis Research Campaign outcome. Their use in RA was discov- dothelial cells. Activated fibroblasts, mo- Professor of Rheumatology. ered serendipitously and their modes of nocytes, and macrophages release ma- Please address correspondence and action were largely unknown. Recent re- trix metalloproteinases, such as collagen- reprint requests to: Dr. E. Choy, searches have identified some of their ases and stromelysin, that degrade con- Department of Rheumatology, GKT mechanisms of action. Most of them have nective tissues and result in tissue dam- School of Medicine, King’s College antiinflammatory properties and some age. Stimulated endothelial cells up-re- Hospital (Dulwich), East Dulwich are immunomodulators. Traditionally, gulate surface vascular adhesion mole- Grove, London SE22 8PT, U.K. second-line agents are used as mono- cule expression. These include selectins Clin Exp Rheumatol 1999; 17 (Suppl. 18): therapy, but recent evidence suggests and integrins such as intercellular adhe- S20 - S28.
    [Show full text]
  • Assessment Report
    26 January 2017 EMA/CHMP/853224/2016 Committee for Medicinal Products for Human Use (CHMP) Assessment report Xeljanz International non-proprietary name: tofacitinib Procedure No. EMEA/H/C/004214/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5520 Send a question via our website www.ema.europa.eu/contact An agency of the European Union Table of contents 1. Background information on the procedure .............................................. 9 1.1. Submission of the dossier ..................................................................................... 9 1.2. Steps taken for the assessment of the product ...................................................... 10 2. Scientific discussion .............................................................................. 11 2.1. Problem statement ............................................................................................. 11 2.2. Quality aspects .................................................................................................. 16 2.3. Non-clinical aspects ............................................................................................ 24 2.4. Clinical aspects .................................................................................................. 36 2.5. Clinical efficacy .................................................................................................
    [Show full text]
  • Serum Matrix Metalloproteinase-3 As Predictor of Joint Destruction in Rheumatoid Arthritis, Treated with Non-Biological Disease Modifying Anti-Rheumatic Drugs
    Kobe J. Med. Sci., Vol. 56, No. 3, pp. E98-E107, 2010 Serum Matrix Metalloproteinase-3 as Predictor of Joint Destruction in Rheumatoid Arthritis, Treated with Non-biological Disease Modifying Anti-Rheumatic Drugs AKIRA MAMEHARA1,2, TAKESHI SUGIMOTO1, DAISUKE SUGIYAMA1, SAHOKO MORINOBU1, GOH TSUJI1, SEIJI KAWANO1, AKIO MORINOBU1, and SHUNICHI KUMAGAI1,* 1 Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; 2 Department of Medicine, Kasai Civic Hospital, Hyogo, Japan; Received 20 January 2010/ Accepted 22 January 2010 Key Words: Matrix metalloproteinase-3; Rheumatoid arthritis; Radiographic progression; Disease modifying anti-rheumatic drugs, Background: Rheumatoid factor (RF), anti-citrullinated peptide antibody (ACPA), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) have been studied extensively as prognostic markers of rheumatoid arthritis (RA). However, despite the fact that matrix metalloproteinase-3 (MMP-3) is linked to RA activity, few studies have evaluated MMP-3 as prognostic marker. Objective: To evaluate the performance of MMP-3 as predictor of joint destruction in RA treated with non-biological disease modifying anti-rheumatic drugs. Methods: In a retrospective study of 58 early to moderate stage RA patients who consulted the Department of Clinical Pathology and Immunology, Kobe University Hospital between May 2002 and April 2009, we evaluated the performance of MMP-3 and other biomarkers as predictors of joint destruction, by comparing them between radiographically progressive and non-progressive group. Results: Serum levels of RF at entry and ACPA, but not MMP-3 at entry, were significantly higher for the progressive group. Ratios of patients with MMP-3 levels higher than healthy control were not significantly different for the two groups.
    [Show full text]
  • WO 2012/175518 Al 27 December 2012 (27.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/175518 Al 27 December 2012 (27.12.2012) P O P C T (51) International Patent Classification: (72) Inventor; and A61K 39/39 (2006.01) A61K 39/205 (2006.01) (75) Inventor/Applicant (for US only): PETROVSKY, A61K 31/715 (2006.01) A61K 39/29 (2006.01) Nikolai [AU/AU]; 11 Walkley Avenue, Warradale, A d A61K 39/145 (2006.01) elaide, South Australia 5046 (AU). (21) International Application Number: (74) Agent: WRIGHT,, Andrew John; POTTER CLARKSON PCT/EP2012/061748 LLP, Park View House, 58 The Ropewalk, Nottingham Nottinghamshire NG1 5DD (GB). (22) International Filing Date: 19 June 2012 (19.06.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) English Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 61/498,557 19 June 201 1 (19.06.201 1) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (71) Applicant (for all designated States except US): VAXINE MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PTY LTD [AU/AU]; Endocrinology Department, Room OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 6D313, Flinders Medical Centre, Bedford Park, South SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, Australia 5042 (AU).
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of - Medicines belonging to the ATC group M01 (Antiinflammatory and antirheumatic products) Table of Contents Page INTRODUCTION 6 DISCLAIMER 8 GLOSSARY OF TERMS USED IN THIS DOCUMENT 9 ACTIVE SUBSTANCES Phenylbutazone (ATC: M01AA01) 11 Mofebutazone (ATC: M01AA02) 17 Oxyphenbutazone (ATC: M01AA03) 18 Clofezone (ATC: M01AA05) 19 Kebuzone (ATC: M01AA06) 20 Indometacin (ATC: M01AB01) 21 Sulindac (ATC: M01AB02) 25 Tolmetin (ATC: M01AB03) 30 Zomepirac (ATC: M01AB04) 33 Diclofenac (ATC: M01AB05) 34 Alclofenac (ATC: M01AB06) 39 Bumadizone (ATC: M01AB07) 40 Etodolac (ATC: M01AB08) 41 Lonazolac (ATC: M01AB09) 45 Fentiazac (ATC: M01AB10) 46 Acemetacin (ATC: M01AB11) 48 Difenpiramide (ATC: M01AB12) 53 Oxametacin (ATC: M01AB13) 54 Proglumetacin (ATC: M01AB14) 55 Ketorolac (ATC: M01AB15) 57 Aceclofenac (ATC: M01AB16) 63 Bufexamac (ATC: M01AB17) 67 2 Indometacin, Combinations (ATC: M01AB51) 68 Diclofenac, Combinations (ATC: M01AB55) 69 Piroxicam (ATC: M01AC01) 73 Tenoxicam (ATC: M01AC02) 77 Droxicam (ATC: M01AC04) 82 Lornoxicam (ATC: M01AC05) 83 Meloxicam (ATC: M01AC06) 87 Meloxicam, Combinations (ATC: M01AC56) 91 Ibuprofen (ATC: M01AE01) 92 Naproxen (ATC: M01AE02) 98 Ketoprofen (ATC: M01AE03) 104 Fenoprofen (ATC: M01AE04) 109 Fenbufen (ATC: M01AE05) 112 Benoxaprofen (ATC: M01AE06) 113 Suprofen (ATC: M01AE07) 114 Pirprofen (ATC: M01AE08) 115 Flurbiprofen (ATC: M01AE09) 116 Indoprofen (ATC: M01AE10) 120 Tiaprofenic Acid (ATC:
    [Show full text]