WO 2012/175518 Al 27 December 2012 (27.12.2012) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/175518 Al 27 December 2012 (27.12.2012) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/175518 Al 27 December 2012 (27.12.2012) P O P C T (51) International Patent Classification: (72) Inventor; and A61K 39/39 (2006.01) A61K 39/205 (2006.01) (75) Inventor/Applicant (for US only): PETROVSKY, A61K 31/715 (2006.01) A61K 39/29 (2006.01) Nikolai [AU/AU]; 11 Walkley Avenue, Warradale, A d A61K 39/145 (2006.01) elaide, South Australia 5046 (AU). (21) International Application Number: (74) Agent: WRIGHT,, Andrew John; POTTER CLARKSON PCT/EP2012/061748 LLP, Park View House, 58 The Ropewalk, Nottingham Nottinghamshire NG1 5DD (GB). (22) International Filing Date: 19 June 2012 (19.06.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) English Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (30) Priority Data: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 61/498,557 19 June 201 1 (19.06.201 1) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (71) Applicant (for all designated States except US): VAXINE MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PTY LTD [AU/AU]; Endocrinology Department, Room OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 6D313, Flinders Medical Centre, Bedford Park, South SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, Australia 5042 (AU). TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for MG only): WRIGHT, Andrew [GB/GB]; (84) Designated States (unless otherwise indicated, for every Potter Clarkson LLP, Parkview House, 58 The Ropewalk, kind of regional protection available): ARIPO (BW, GH, Nottingham NG1 5DD (GB). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, [Continued on nextpage] (54) Title: VACCINE ADJUVANT COMPOSITION COMPRISING INULIN PARTICLES (57) Abstract: The present invention provides a composi tion comprising or consisting of inulin particles for use in the reduction or inhibition of inflammation, and/or for treat ing or preventing inflammatory disease, in a subject. Also provided is a pharmaceutically acceptable composition com prising: particles of inulin; and a substance comprising or consisting of one or more pathogen-associated molecular patterns (PAMPs), or an equivalent kit of parts, and methods and uses of the composition and kit for inducing or modulat ing an immune response in a subject, such as modulating an immune response to an antigen or allergen and/or as a vac a cine. Also provided is a single-dose vaccine composition comprising inulin particles, an antigen and, optionally, an . c <J> » , ? ? antigen-binding carrier material, and methods and uses of the vaccine. < 00 , o o w o 2012/175518 Ai Iinn iiiiiii 1mil i mil il i 1 ill i inn i iurn i mill i i i UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Published: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — with international search report (Art. 21(3)) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — before the expiration of the time limit for amending the SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, claims and to be republished in the event of receipt of GW, ML, MR, NE, SN, TD, TG). amendments (Rule 48.2(h)) Declarations under Rule 4.17: — of inventorship (Rule 4.1 7(iv)) VACCINE ADJUVANT COMPOSITION COMPRISING INULIN PARTICLES FIELD OF THE INVENTION The present invention relates to novel composition suitable for the stimulation, modulation or enhancement of an immune response. INCORPORATION BY REFERENCE The following International Patent Applications are referred to herein: - PCT/AU86/0031 (WO 87/02679) titled "Immunotherapeutic treatment", PCT/AU89/00349 (WO 90/01 949) titled "Gamma inulin compositions", and PCT/AU2005/001328 (WO 2006/024100) titled "New polymorphic form of inulin and uses thereof. PCT/AU201 0/001221 (WO 201 1/032229) titled "A novel epsilon polymorphic form of inulin and compositions comprising same" The entire content of all of these applications is hereby incorporated by reference. BACKGROUND AND OVERVIEW OF THE INVENTION AND PRIOR ART The listing or discussion of an apparently prior-published document in this specification should not necessarily be taken as an acknowledgement that the document is part of the state of the art or is common general knowledge. As known in the art, microbial-derived compounds that trigger innate immune activation also enhance the adaptive immune response to a co-administered vaccine antigen. Such compounds are now known to comprise or mimic pathogen-associated molecular patterns (PAMPs), where a PAMP is a structurally conserved motif derived from a pathogen that is immunologically distinguishable from host molecules, and is recognised by an innate immune receptor (Heine et al., 2005). PAMPs are present in certain types of protein, lipid, lipoprotein, carbohydrate, glycolipid, glycoprotein, and nucleic acids expressed by particular pathogens and include triacyl lipopeptides, porins, glycans, single and double stranded RNA, flagellin, lipotechoic acid, N-formymethionine, and bacterial or viral DNA, amongst others. PAMPs act as innate immune activators by binding to PAMP-specific innate immune receptors such as toll-like receptors (TLR), NOD-like receptors, RIG ligase receptors and C-type lectins. This leads to activation of inflammatory gene pathways in immune cells. What these PAMP compounds have in common is that they all activate the innate immune system and induce inflammatory gene pathways, in particular through activating Nuclear Factor-Kappa B (NFKB), the master transcriptional regulator of inflammatory gene activation. This inflammation in turn may lead to enhancement of an adaptive immune response to a co-administered antigen, as a by-product or downstream effect of the innate immune activation. The enhancement by a separate substance of an adaptive immune response to a co-administered antigen is known as an "adjuvant" effect. Without wishing to be restricted by theory, it is accepted by those skilled in the art that the common factor that links all compounds that possess adjuvant activity is that they induce immune "danger signals" (Matzinger, 2002) leading to activation of innate immune and thereby activation of NFKB and other inflammatory pathways. Danger signals that provide immune adjuvant effects can be generated by local tissue damage, e.g. induced by injection of inflammatory substances such as oil emulsions, or more specifically through binding of PAMPs to innate immune receptors whose role is to detect pathogen invasion and tissue damage. PAMP-associated danger signals thereby alert the innate immune system of the need to mount a defensive inflammatory response against the perceived threat. Following the activation of these danger-sensing PAMP receptors, inflammatory gene signalling pathways including the key NFKB pathway are activated leading to secretion by immune cells such as monocytes of key inflammatory effectors including tumour necrosis factor (TNF)-a, interleukin (IL)-1 , IL-6, IL-8 and IL-1 2 , amongst others. These inflammatory mediators released in response to PAMP activation are believed in the art to be critical to the ability of PAMPs to enhance antigen-specific adaptive immune responses, with high-throughput cell-based screening assays designed to identify new adjuvant compounds reliant upon their ability to induce inflammatory cytokines such as TNF-a, IFN- γ , IL-1 , IL-8 or IL1 2 as the readout of potential adjuvant activity (Buckner et al, 2008). Conceptually, two or more such innate immune activators when combined together induce even stronger danger signals, generate higher levels of inflammatory gene activation, and thereby are predicted to show increased adjuvant potency (Querec et al., 2006; Kasturi et al, 201 1) . However, as known by those skilled in the art, the problem of using PAMPs either singly or, more particularly, combined together as immune modulators or vaccine adjuvants is that the inflammatory effects are highly toxic and hence the ability to achieve enhancement of an adaptive immune response in this way is hindered by severe dose-limiting local and systemic inflammation-associated toxicity which is correspondingly magnified as the dose of the innate immune activator is increased. For example, even the combination of a partially detoxified PAMP analogue, monophosphoryl lipid A (MPL), with aluminium hydroxide ("alum") adjuvant in a hepatitis B surface antigen (HBsAg) vaccine caused significantly more local injection site reactions, fever and other systemic side effects than HBsAg with alum adjuvant alone (Tong et al., 2005). Increased vaccine reactogenicity and toxicity when two or more innate immune activators are combined in a vaccine formulation is a major barrier to regulatory approval of such adjuvant combinations, even where there might be a favourable impact on vaccine immunogenicity (Petrovsky et al, 2008). Furthermore, not all combinations of innate immune activators are favourable from an immunogenicity standpoint, such that some combinations of innate immune activators produce an adaptive immune response to a co-administered antigen that is no better than the individual innate immune activator components alone, and some innate immune activator combinations even result in lower antigen-specific responses than with each individual innate immune activator used alone. For example, humans immunized with C-terminal recombinant malaria circumsporozoite antigen with alum alone achieved higher antigen-specific antibodies than subjects receiving the combination of alum with MPL (Gordon et al., 1995). The vaccine art recognizes the use of certain substances called adjuvants to potentiate an immune response when used in conjunction with an antigen.
Recommended publications
  • Modifying Antirheumatic Drugs in Active Rheumatoid Arthritis: a Japan Phase 3 Trial (HARUKA)
    MODERN RHEUMATOLOGY 2020, VOL. 30, NO. 2, 239–248 https://doi.org/10.1080/14397595.2019.1639939 ORIGINAL ARTICLE Sarilumab monotherapy or in combination with non-methotrexate disease- modifying antirheumatic drugs in active rheumatoid arthritis: A Japan phase 3 trial (HARUKA) Hideto Kamedaa, Kazuteru Wadab, Yoshinori Takahashib, Owen Haginoc, Hubert van Hoogstratend, Neil Grahame and Yoshiya Tanakaf aDivision of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University (Ohashi Medical Center), Tokyo, Japan; bSanofi K.K., Tokyo, Japan; cSanofi, Bridgewater, NJ, USA; dSanofi-Genzyme, Cambridge, MA, USA; eRegeneron Pharmaceuticals, Inc., Tarrytown, NY, USA; fFirst Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Downloaded from https://academic.oup.com/mr/article/30/2/239/6299750 by guest on 01 October 2021 Japan, Kitakyushu, Japan ABSTRACT ARTICLE HISTORY Objectives: To determine long-term safety and efficacy of sarilumab as monotherapy or with non- Received 13 March 2019 methotrexate (MTX) conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) in Accepted 1 July 2019 Japanese patients with active rheumatoid arthritis (RA). KEYWORDS Methods: In this double-blind, randomized study (NCT02373202), patients received subcutaneous sari- Rheumatoid arthritis; lumab 150 mg q2w (S150) or 200 mg q2w (S200) as monotherapy or with non-MTX csDMARDs for 52 sarilumab; Japan; phase III; weeks. The primary endpoint was safety. anti-IL-6 receptor Results: Sixty-one patients received monotherapy (S150, n ¼ 30; S200, n ¼ 31) and 30 received combin- ation therapy (S150 þ csDMARDs, n ¼ 15; S200 þ csDMARDs, n ¼ 15). Rates of treatment-emergent adverse events (TEAEs) were 83.3%/90.3%/93.3%/86.7% for S150/S200/S150 þ csDMARDs/ S200 þ csDMARDs, respectively.
    [Show full text]
  • Study Protocol);
    PF-06651600 B7981006 Final Protocol Amendment 1, 26 October 2016 A PHASE 2A, RANDOMIZED, DOUBLE-BLIND, PARALLEL GROUP, PLACEBO-CONTROLLED, MULTI-CENTER STUDY TO ASSESS THE EFFICACY AND SAFETY PROFILE OF PF-06651600 IN SUBJECTS WITH MODERATE TO SEVERE ACTIVE RHEUMATOID ARTHRITIS WITH AN INADEQUATE RESPONSE TO METHOTREXATE Investigational Product Number: PF-06651600 Investigational Product Name: Not Applicable (N/A) United States (US) Investigational New 131274 Drug (IND) Number: European Clinical Trials Database 2016-002862-30 (EudraCT) Number: Protocol Number: B7981006 Phase: 2a Page 1 PF-06651600 B7981006 Final Protocol Amendment 1, 26 October 2016 Document History Document Version Date Summary of Changes and Rationale Amendment 1 26 October 2016 In the Schedule of Activities, and Section 7.2.12, added audiogram testing Rationale: To monitor for potential changes in hearing between baseline [between Visit 1 and Visit 2 (inclusive)] and at the end of the study [between Visit 7 and Visit 9 (inclusive)]. The following exclusion criteria has been added in Section 4.2: Have current or recent history of clinically significant severe or progressive hearing loss or auditory disease. Subjects with hearing aids will be allowed to enter the study provided their hearing impairment is considered controlled/ clinically stable. Rationale: This has been added to ensure that subject hearing for safety is fully evaluated prior to study entry. Several additional minor changes were made to protocol language for the purposes of clarification. Original protocol 31 August 2016 Not applicable (N/A) This amendment incorporates all revisions to date, including amendments made at the request of country health authorities and institutional review boards (IRBs)/ethics committees (ECs).
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • 24/3 Pag 121 Ok X WENDY
    Treatment continuation rate in relation to efficacy and toxicity in long-term therapy with low-dose methotrexate, sulfasalazine, and bucillamine in 1358 Japanese patients with rheumatoid arthritis M. Nagashima, T. Matsuoka, K. Saitoh, T. Koyama, O. Kikuchi, S. Yoshino Department of Joint Disease and Rheumatism, Nippon Medical School, Japan. Abstract Objective To evaluate the effectiveness of disease-modifying antirheumatic drugs, namely, methotrexate (MTX), sulfasalazine (SSZ) and bucillamine (BUC) at low-doses (4, 6 or 8mg MTX, 500 or1000mg SSZ, and 100 or 200 mg BUC) in 1358 patients with a follow-up of at least 12 months and more than 120 months. Methods Clinical assessments were based on the number of painful joints (NPJ) and that of swollen joints (NSJ), CRP level, erythrocyte sedimentation rate, rheumatoid factor level and morning stiffness before and after treatment. Results were evaluated on the basis of the duration of treatment for each drug with inefficacy or inadequate efficacy as one endpoint for discontinuation and adverse drug reactions (ADRs) as the other in single agent and combination ther- apy. The incidence and nature of ADRs in single and combination treatment are described. Results The effects of MTX, SSZ and BUC on clinical parameters were monitored over the first three months, and in partic- ular, NPJs and NSJs were found to decrease significantly during single agent MTX or BUC treatment over 108 months. CRP levels remained significantly improved for more than 120 months with MTX. In the single and combi- nation long-term treatments, continuation rate with inefficacy or inadequate efficacy as the end point achieved for each of the treatments were 83.1% for MTX, 76.0% for BUC, 68.5% for SSZ, and in the case of the combination treatments, these rates were 83.3% for MTX + BUC and 71.0% for MTX+SSZ.
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,005,660 B2 Tygesen Et Al
    USOO9005660B2 (12) United States Patent (10) Patent No.: US 9,005,660 B2 Tygesen et al. (45) Date of Patent: Apr. 14, 2015 (54) IMMEDIATE RELEASE COMPOSITION 4,873,080 A 10, 1989 Bricklet al. RESISTANT TO ABUSEBY INTAKE OF 4,892,742 A 1, 1990 Shah 4,898,733. A 2f1990 DePrince et al. ALCOHOL 5,019,396 A 5/1991 Ayer et al. 5,068,112 A 11/1991 Samejima et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 5,082,655 A 1/1992 Snipes et al. Jan Martin Oevergaard, Frederikssund 5,102,668 A 4, 1992 Eichel et al. 5,213,808 A 5/1993 Bar Shalom et al. (DK); Joakim Oestman, Lomma (SE) 5,266,331 A 11/1993 Oshlack et al. 5,281,420 A 1/1994 Kelmet al. (73) Assignee: Egalet Ltd., London (GB) 5,352.455 A 10, 1994 Robertson 5,411,745 A 5/1995 Oshlack et al. (*) Notice: Subject to any disclaimer, the term of this 5,419,917 A 5/1995 Chen et al. patent is extended or adjusted under 35 5,422,123 A 6/1995 Conte et al. U.S.C. 154(b) by 473 days. 5,460,826 A 10, 1995 Merrill et al. 5,478,577 A 12/1995 Sackler et al. 5,508,042 A 4/1996 OShlack et al. (21) Appl. No.: 12/701.248 5,520,931 A 5/1996 Persson et al. 5,529,787 A 6/1996 Merrill et al. (22) Filed: Feb. 5, 2010 5,549,912 A 8, 1996 OShlack et al.
    [Show full text]
  • NONSTEROIDAL ANTI-INFLAMMATORY DRUGS (Nsaids)
    NONSTEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) A. Description Interfere with prostaglandin synthesis Alleviate inflammation and subsequent discomfort of rheumatoid conditions (GA) Available in oral and parenteral (IM) preparations CYCLOOXYGENASE INHIBITORS : are preferred because it does not decrease the cytoprotective lining of the stomach. Celebrex (Celecoxib) Vioxx (Rofecoxib)(No longer on market as of September 2004) Bextra (Valdecoxib)(No longer on market as of April 2005) There are also other COX-2 Inhibitors being developed, including: Prexige Lumiracoxib) Arcoxia (Etoricoxib) B. Examples Diclofenac (Voltaren) Etodolac (Lodine) Ibuprofen (Motrin) Naproxen (Naprosyn) Salicylates (ASA) COX-2 SELECTIVE INHIBITORS are the newest of the NSAIDs KETOROLAC is the only NSAID that can be administered by injection (intramuscularly or intravenously) and is indicated for the short-term use of severe to moderate pain. C. Major Side Effects GI irritation (local effect) Skin rash (hypersensitivity) Blood dyscrasias (decreased RBCs, WBCs, platelet synthesis) CNS and GU disturbances D. Nursing Care Administer with meals to reduce GI irritation Monitor blood work Assess vital signs Instruct client to report the occurrence of any side effects to the physician Encourage diet rich in nutrient-dense foods such as fruits, vegetables, whole grains, and legumes to improve and maintain nutritional status and prevent possible drug-induced nutrient deficiencies ANTIGOUT AGENTS (Uricosuric agent) A. Description Act by decreasing uric acid
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Efficacy and Toxicity of Methotrexate (MTX)
    Extended report Ann Rheum Dis: first published as 10.1136/ard.2008.099861 on 3 December 2008. Downloaded from Efficacy and toxicity of methotrexate (MTX) monotherapy versus MTX combination therapy with non-biological disease-modifying antirheumatic drugs in rheumatoid arthritis: a systematic review and meta-analysis W Katchamart,1,2 J Trudeau,3 V Phumethum,1 C Bombardier4,5 c Additional figures and ABSTRACT combination DMARD therapy be used: initially or appendixes are published online Objective: To evaluate the efficacy and toxicity of only after a trial of MTX monotherapy? Finally, only at http://ard.bmj.com/ which is the preferred combination DMARD content/vol68/issue7 methotrexate (MTX) monotherapy compared with MTX combination with non-biological disease-modifying anti- strategy? These questions are particularly salient 1 Rheumatology Division, rheumatic drugs (DMARDs) in adults with rheumatoid as formularies in many countries require the use of Department of Medicine, University of Toronto, Toronto, arthritis. MTX mono and MTX combo therapies before Ontario, Canada; Method: A systematic review of randomised trials reimbursing for the more expensive biological 2 Rheumatology Division, comparing MTX alone and in combination with other non- drugs. The objective of this paper was to system- Department of Medicine, Siriraj biological DMARDs was carried out. Trials were identified atically review randomised trials that compared Hospital, Mahidol University, MTX monotherapy with MTX in combination Bangkok, Thailand; 3 Hoˆspital in Medline, EMBASE, the Cochrane Library and ACR/ Notre-Dame, Department of EULAR meeting abstracts. Primary outcomes were with other non-biological DMARDs. This manu- Rheumatology, Montreal, withdrawals for adverse events or lack of efficacy.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • 3258 N:O 1179
    3258 N:o 1179 LIITE 1 BILAGA 1 LÄÄKELUETTELON AINEET ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN Latinankielinen nimi Suomenkielinen nimi Ruotsinkielinen nimi Englanninkielinen nimi Latinskt namn Finskt namn Svenskt namn Engelskt namn Abacavirum Abakaviiri Abakavir Abacavir Abciximabum Absiksimabi Absiximab Abciximab Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoninatrium Acediasulfonnatrium Acediasulfone sodium Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini Acetfenolisatin Acetphenolisatin Acetylcholini chloridum Asetyylikoliinikloridi Acetylkolinklorid Acetylcholine chloride Acetylcholinum Asetyylikoliini Acetylkolin Acetylcholini Acetylcysteinum Asetyylikysteiini Acetylcystein Acetylcysteine Acetyldigitoxinum Asetyylidigitoksiini Acetyldigitoxin Acetyldigitoxin Acetyldigoxinum Asetyylidigoksiini Acetyldigoxin Acetyldigoxin Acetylisovaleryltylosini Asetyyli-isovaleryyli- Acetylisovaleryl- Acetylisovaleryltylosine tartras tylosiinitartraatti tylosintartrat tartrate Aciclovirum Asikloviiri Aciklovir Aciclovir Acidum acetylsalicylicum Asetyylisalisyylihappo Acetylsalicylsyra Acetylsalicylic acid Acidum alendronicum
    [Show full text]