Wo 2007/044693 A2

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2007/044693 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 19 April 2007 (19.04.2007) WO 2007/044693 A2 (51) International Patent Classification: Tuscaloosa, AL 35401 (US). SWATLOSKI, Richard, P. A61K 31/555 (2006.01) A61K 31/28 (2006.01) [US/US]; 1801 Waterford Lane, Tuscaloosa, AL 35405 (21) International Application Number: (US). HOUGH, Whitney, L. [US/US]; 226 Wolf Creek PCT/US2006/039454 Drive, Albertville, AL 35951 (US). DAVIS, James, Hillard [US/US]; 324 Vanderbilt Drive, Mobile, AL (22) 10 October 2006 (10.10.2006) International Filing Date: 36608 (US). SMIGLAK, Marcin [PL/US]; 3302 Sixth (25) Filing Language: English Avenue East, Apt. C, Tuscaloosa, AL 35405 (US). PER- (26) Publication Language: English NAK, Juliusz [PL/PL]; UL. Nalkowskiej, 8A, PL-60-573 Poznan (PL). SPEAR, Scott, K. [US/US]; 302 County (30) Priority Data: Road 49, Bankston, AL 35542 (US). 60/724,604 7 October 2005 (07.10.2005) US 60/724,605 7 October 2005 (07.10.2005) US (74) Agents: KATZ, Mitchell, A. et al.; Needle & Rosenberg, 60/764,850 2 February 2006 (02.02.2006) US PC, Suite 1000, 999 Peachtree Street, Atlanta, GA 30309- (71) Applicant (for all designated States except US): THE 3915 (US). UNIVERSITY OF ALABAMA [US/US]; 222 Rose (81) Designated States (unless otherwise indicated, for every Administration Building, Post Office Box 870106, kind of national protection available): AE, AG, AL, AM, Tuscaloosa, AL 35487-0106 (US). AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, (72) Inventors; and CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (75) Inventors/Applicants (for US only): ROGERS, Robin, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, D. [US/US]; 32 Audubon Place, Tuscaloosa, AL 35401 KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, (US). DALY, Daniel, T. [US/US]; 1518 Mallard Circle, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, [Continued on next page] (54) Title: MULTI-FUNCTIONAL IONIC LIQUID COMPOSITIONS FOR OVERCOMING POLYMORPHISM AND IMPART- ING IMPROVED PROPERTIES FOR ACTIVE PHARMACEUTICAL, BIOLOGICAL, NUTRITIONAL, AND ENERGETIC IN- GREDIENTS (57) Abstract: Disclosed are ionic liquids and [Hex]Sulfacetamide, [Hex]Cl & Na Sulfacetamide Dissolution methods of preparing ionic liquid compositions of active pharmaceutical, biological, nutritional, and energetic ingredients. Also disclosed are methods of using the compositions described herein to overcome polymorphism, overcome solubility and delivery problems, to control release rates, add functionality, enhance efficacy (synergy), and improve ease of use and manufacture. Time (mitt) NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, GN, GQ, GW, ML, MR, NE, SN, TD, TG). TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. Published: (84) Designated States (unless otherwise indicated, for every — without international search report and to be republished kind of regional protection available): ARIPO (BW, GH, upon receipt of that report GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "G uid European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the beg in FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, NL, PL, PT, ning of each regular issue of the PCT Gazette. MULTI-FUNCTIONAL IONIC LIQUID COMPOSITIONS FOR OVERCOMING POLYMORPHISM AND IMPARTING IMPROVED PROPERTIES FORACTIVE PHARMACEUTICAL, BIOLOGICAL, NUTRITIONAL, AND ENERGETIC INGREDIENTS CROSS-REFERENCE TO RELATED APPLICATIONS This patent application claims the benefit of priority to U.S. Provisional Application No. 60/764,850, filed February 2, 2006, U.S. Provisional Application No. 60/724,604, filed October 7, 2005, and U.S. Provisional Application No. 60/724,605, filed October 7, 2005, which are each incorporated by reference herein in their entireties. FIELD The subject matter disclosed herein generally relates to ionic liquids and to methods of preparing ionic liquid compositions of active pharmaceutical, biological, nutritional, and energetic ingredients. Also the subject matter disclosed herein generally relates to methods of using the compositions described herein to overcome polymorphism, overcome solubility and delivery problems, to control release rates, add functionality, enhance efficacy (synergy), and improve ease of use and manufacture. BACKGROUND Polymorphism is the ability of a substance to exist in two or more crystalline forms that have a different arrangement and/or conformation of molecules in a crystalline lattice (see e.g., Chawla and Bansal, CRIPS 2004, 5(1):9-12; Bernstein, "Polymorphism in Molecular Crystals," IUCR Monographs on Crystallography 14 Oxford Science Publications, 2002, pp. 1-28, 240-256). It has been estimated that a large number of pharmaceuticals exhibit polymorphism. For example, 70% of barbiturates, 60% of sulfonamides, and 23% of steroids are believed to exist in different polymorphic forms or "polymorphs" (Haleblian et al, JPharm Sd 1975, 64:1269-1288). In some cases, when crystals of a compound are forming (e.g., crystallizing from a solution), solvent molecules may become entrapped or bound within the crystal lattice. The presence of the entrapped solvent molecules may affect the three-dimensional crystal lattice that eventually crystallizes. The occurrence of a compound (target molecule) crystallizing in different three-dimensional lattices based upon the presence of solvent molecules has been termed "pseudo-polymorphism." Akin to polymorphs, such "pseudo-polymorphs," also known as "solvates" (or "hydrates" when the solvent is water), are crystalline solids containing either stoichiometric (i.e., whole number ratios of target molecules to solvent molecules) or non-stoichiometric (i.e., non-whole number ratios of target molecules to solvent molecules) amounts of a solvent incorporated within the crystal structure. In general, different crystalline forms of molecules (e.g., pharmaceutical compounds) can exist in the same or different hydrated or solvated states. The Cambridge Structural Database (Allen, "The Cambridge Structural Database: a quarter of a million crystal structures and rising," Acta Crystallographica, 2002, B58, 380- 388) is a database of over 300,000 organic crystal structures and is a widely used reference source in crystallography. One survey of the Cambridge Structural Database shows that pharmaceutical compounds have been reported to exist as hemi-hydrates (0.5 water molecules) through decahydrates (10 water molecules). (Morris, "Structural Aspect of Hydrates and Solvates," Ch. 4 in- Polymorphism in Pharmaceutical Solids, inBrittain, H.G., Ed., Vol. 95 of Drugs and the Pharmaceutical Sciences, Marcel Dekker, Inc., New York, NY, 1999, 125-181.) The possibility of polymorphism or pseudo-polymorphism may exist for any particular compound, but the conditions required to prepare as yet unknown polymorphs or pseudo-polymorphs are not easily determined (see e.g., Bernstein, "Crystal Structure Prediction and Polymorphism," Am Crystallographic Assoc Trans, 2004, 39: 14-23). The knowledge that one type of polymorph or pseudo-polymorph of a crystalline form of a compound exists, or that a given set of crystallization conditions leads to the production of one type of polymorph or pseudo-polymorph, does not typically allow researchers to predict what other types of polymorph or pseudo-polymorph might exist, or what type of polymorph or pseudo-polymorph would be produced by other crystallization conditions (Guillory, "Generation of Polymorphs, Hydrates, Solvates, and Amorphous Solids," Ch. 5 in Polymorphism in Pharmaceutical Solids, Brittain, H. G., Ed., Vol. 95 of Drugs and the Pharmaceutical Sciences, Marcel Dekker, Inc., New York, NY, 1999, pp. 183-226). The existence of various polymorphs or pseudo-polymorphs can greatly affect a pharmaceutical' s performance since each form can have different physical and chemical properties. For example, one particular polymorph pseudo-polymorph may be more bioavailable, more stable (e.g., longer shelf life), or more easily formulated or tableted than another polymorph. Similarly, one polymorph pseudo-polymorph may be more active or less toxic than another. Some specific examples of the dramatic difference that can exist between various pharmaceutical polymorphs are described in, e.g., Brittain et al, JPharm Sci 2002, 91:1573-1580 and Morissette et al, Proc Natl Acad Sd USA 2003, 100:2180- 2184. The effects of polymorphism and pseudo-polymorphism on quality and performance of a drug is widely recognized. The exact solid state polymorph (or pseudo-polymorph) of a compound determines its physical properties such as dissolution rate, solubility, bioavailability, crystal habit, mechanical strength, etc. (Datta et al, Nature Reviews-Drug Discovery, 2004, 3:42-57). The delivery of an exact dosage in manufacture and the manufacturing process itself often depend on which of several possible polymorphs or pseudo-polymorphs are present. The variation in properties among different polymorphs (or pseudo-polymorphs) usually means that one crystalline form is desired or preferred over other forms. Obtaining a particular form can be difficult, however. Typically, researchers have to experiment with a multitude of variables in
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • Lifestyle Drugs” for Men and Women
    Development of “Lifestyle Drugs” for Men and Women Armin Schultz CRS - Clinical Research Services Mannheim GmbH AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle drugs Smart drugs, Quality-of-life drugs, Vanity drugs etc. Lifestyle? Lifestyle-Drugs? Active development? Discovery by chance? AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle A lifestyle is a characteristic bundle of behaviors that makes sense to both others and oneself in a given time and place, including social relations, consumption, entertainment, and dress. The behaviors and practices within lifestyles are a mixture of habits, conventional ways of doing things, and reasoned actions „Ein Lebensstil ist [...] der regelmäßig wiederkehrende Gesamtzusammenhang der Verhaltensweisen, Interaktionen, Meinungen, Wissensbestände und bewertenden Einstellungen eines Menschen“ (Hradil 2005: 46) Different definitions in social sciences, philosophy, psychology or medicine AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle Many “subdivisions” LOHAS: “Lifestyles of Health and Sustainability“ LOVOS: “Lifestyles of Voluntary Simplicity“ SLOHAS: “Slow Lifestyles of Happiness and Sustainability” PARKOS: “Partizipative Konsumenten“ ……. ……. ……. AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle drugs Lifestyle drug is an imprecise term commonly applied to medications which treat non-life threatening and non-painful conditions such as baldness, impotence, wrinkles, or acne, without any medical relevance at all or only minor medical relevance relative to others. Desire for increase of personal well-being and quality of life It is sometimes intended as a pejorative, bearing the implication that the scarce medical research resources allocated to develop such drugs were spent frivolously when they could have been better spent researching cures for more serious medical conditions.
    [Show full text]
  • Guaiana, G., Barbui, C., Caldwell, DM, Davies, SJC, Furukawa, TA
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Explore Bristol Research Guaiana, G., Barbui, C., Caldwell, D. M., Davies, S. J. C., Furukawa, T. A., Imai, H., ... Cipriani, A. (2017). Antidepressants, benzodiazepines and azapirones for panic disorder in adults: a network meta-analysis. Cochrane Database of Systematic Reviews, 2017(7), [CD012729]. https://doi.org/10.1002/14651858.CD012729 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1002/14651858.CD012729 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Cochrane Library at https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012729/full . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms Cochrane Database of Systematic Reviews Antidepressants, benzodiazepines and azapirones for panic disorder in adults: a network meta-analysis (Protocol) Guaiana G, Barbui C, Caldwell DM, Davies SJC, Furukawa TA, Imai H, Koesters M, Tajika A, Bighelli I, Pompoli A, Cipriani A Guaiana G, Barbui C, Caldwell DM, Davies SJC, Furukawa TA, Imai H, Koesters M, Tajika A, Bighelli I, Pompoli A, Cipriani A. Antidepressants, benzodiazepines and azapirones for panic disorder in adults: a network meta-analysis. Cochrane Database of Systematic Reviews 2017, Issue 7.
    [Show full text]
  • Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease
    International Journal of Molecular Sciences Review Novel Approaches for the Treatment of Alzheimer’s and Parkinson’s Disease Michiel Van Bulck 1,2 , Ana Sierra-Magro 1,2, Jesus Alarcon-Gil 1, Ana Perez-Castillo 1,2 and Jose A. Morales-Garcia 1,2,3,* 1 Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4. 28029 Madrid, Spain; [email protected] (M.V.B.); [email protected] (A.S.-M.); [email protected] (J.A.-G.); [email protected] (A.P.-C.) 2 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031 Madrid, Spain 3 Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain * Correspondence: [email protected] Received: 31 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Neurobiological and Neurobehavioral Mechanisms of Chronic Alcohol Drinking
    Neurobiological and Neurobehavioral Mechanisms of Chronic Alcohol Drinking Neurobiological and Neurobehavioral Mechanisms of Chronic Alcohol Drinking Alcoholism comprises a set of complex behaviors seeking behaviors, have been developed. These in which an individual becomes increasingly models, which remain an integral part of the preoccupied with obtaining alcohol. These study of alcoholism, include animals that pref- behaviors ultimately lead to a loss of control over erentially drink solutions containing alcohol, consumption of the drug and to the development animals that self-administer alcohol during of tolerance, dependence, and impaired social and withdrawal, animals with a history of dependence occupational functioning. that self-administer alcohol, and animals that self- administer alcohol after a period of abstinence Although valuable information regarding toler- from the drug. Genetic models for alcoholism ance and dependence has been, and continues to also exist and include animals that have been bred be, gathered through human studies, much of the selectively for high alcohol consumption. Studies detailed understanding of the impact of exposure using such models are uncovering the systemic, to alcohol on behavior and on the biological cellular, and molecular neurobiological mech- mechanisms underlying those behaviors has been anisms that appear to contribute to chronic obtained through the use of animal models for alcohol consumption. The challenge of current alcoholism and a variety of in vitro, or cellular, and future studies is to understand which specific systems. Through the use of cellular systems and cellular and subcellular systems undergo mole- animal models, researchers can control the genetic cular changes to influence tolerance and depen- background and experimental conditions under dence in motivational systems that lead to which a specific alcohol-related behavior or chronic drinking.
    [Show full text]
  • Modafinil and Modafinil Analogues: Free Radical Mechanism of the Eugeroic and Cognitive Enhancment Effect Clifford Fong
    Modafinil and modafinil analogues: free radical mechanism of the eugeroic and cognitive enhancment effect Clifford Fong To cite this version: Clifford Fong. Modafinil and modafinil analogues: free radical mechanism of the eugeroic and cognitive enhancment effect. [Research Report] Eigenenergy. 2018. hal-01933737 HAL Id: hal-01933737 https://hal.archives-ouvertes.fr/hal-01933737 Submitted on 24 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modafinil and modafinil analogues: free radical mechanism of the eugeroic and cognitive enhancment effect Clifford W. Fong Eigenenergy, Adelaide, South Australia. Keywords: Modafinil, modafinil-like analogues, eugeroic effect, cognitive enhancement, free radicals, quantum mechanics Abbreviations Dopamine DA, dopamine transporter DAT, Dissociative electron transfer or attachment DET, Linear free energy relationship LFER, free energy of water desolvation ΔG desolv,CDS , lipophilicity free energy ΔG lipo,CDS, cavity dispersion solvent structure of the first solvation shell CDS, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, multiple correlation coefficient R 2, the F test of significance, standards errors for the estimate (SEE) and standard errors of the variables SE(ΔG desolCDS ), SE(ΔG lipoCDS ), SE(Dipole Moment), SE (Molecular Volume), transition state TS, reactive oxygen species ROS.
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2020 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin Et Al
    US 201201.15729A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin et al. (43) Pub. Date: May 10, 2012 (54) PROCESS FOR FORMING FILMS, FIBERS, Publication Classification AND BEADS FROM CHITNOUS BOMASS (51) Int. Cl (75) Inventors: Ying Qin, Tuscaloosa, AL (US); AOIN 25/00 (2006.01) Robin D. Rogers, Tuscaloosa, AL A6II 47/36 (2006.01) AL(US); (US) Daniel T. Daly, Tuscaloosa, tish 9.8 (2006.01)C (52) U.S. Cl. ............ 504/358:536/20: 514/777; 426/658 (73) Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF 57 ABSTRACT ALABAMA, Tuscaloosa, AL (US) (57) Disclosed is a process for forming films, fibers, and beads (21) Appl. No.: 13/375,245 comprising a chitinous mass, for example, chitin, chitosan obtained from one or more biomasses. The disclosed process (22) PCT Filed: Jun. 1, 2010 can be used to prepare films, fibers, and beads comprising only polymers, i.e., chitin, obtained from a suitable biomass, (86). PCT No.: PCT/US 10/36904 or the films, fibers, and beads can comprise a mixture of polymers obtained from a suitable biomass and a naturally S3712). (4) (c)(1), Date: Jan. 26, 2012 occurring and/or synthetic polymer. Disclosed herein are the (2), (4) Date: an. AO. films, fibers, and beads obtained from the disclosed process. O O This Abstract is presented solely to aid in searching the sub Related U.S. Application Data ject matter disclosed herein and is not intended to define, (60)60) Provisional applicationpp No. 61/182,833,sy- - - s filed on Jun.
    [Show full text]