International Conference on Number Theory and Discrete Mathematics (ONLINE) (ICNTDM) 11 - 14, DECEMBER-2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arithmetic Equivalence and Isospectrality
ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK . -
Manjul Bhargava
The Work of Manjul Bhargava Manjul Bhargava's work in number theory has had a profound influence on the field. A mathematician of extraordinary creativity, he has a taste for simple problems of timeless beauty, which he has solved by developing elegant and powerful new methods that offer deep insights. When he was a graduate student, Bhargava read the monumental Disqui- sitiones Arithmeticae, a book about number theory by Carl Friedrich Gauss (1777-1855). All mathematicians know of the Disquisitiones, but few have actually read it, as its notation and computational nature make it difficult for modern readers to follow. Bhargava nevertheless found the book to be a wellspring of inspiration. Gauss was interested in binary quadratic forms, which are polynomials ax2 +bxy +cy2, where a, b, and c are integers. In the Disquisitiones, Gauss developed his ingenious composition law, which gives a method for composing two binary quadratic forms to obtain a third one. This law became, and remains, a central tool in algebraic number theory. After wading through the 20 pages of Gauss's calculations culminating in the composition law, Bhargava knew there had to be a better way. Then one day, while playing with a Rubik's cube, he found it. Bhargava thought about labeling each corner of a cube with a number and then slic- ing the cube to obtain 2 sets of 4 numbers. Each 4-number set naturally forms a matrix. A simple calculation with these matrices resulted in a bi- nary quadratic form. From the three ways of slicing the cube, three binary quadratic forms emerged. -
ICTS POSTER Outside Bangalore
T A T A I N S T I T U T E O F F U N D A M E N T A L R E S E A R C H A HOMI BHABHA BIRTH CENTENARY & ICTS INAUGURAL EVENT International Centre Theoretical Sciences science without bo28 Decemberun 2009d29 -a 31 Decemberri e2009s Satish Dhawan Auditorium Faculty Hall Indian Institute of Science, Bangalore. www.icts.res.in/program/icts-ie INVITED SPEAKERS / PANELISTS INCLUDE FOUNDATION STONE CEREMONY Siva Athreya ISI, Bangalore OF ICTS CAMPUS Naama Barkai Weizmann Institute The foundation stone will be unveiled by Manjul Bhargava Princeton University Prof. C N R Rao, FRS 4:00 pm, 28 December 2009 Édouard Brézin École Normale Supérieure Amol Dighe TIFR Michael Green DAMTP, Cambridge Chandrashekhar Khare UCLA Yamuna Krishnan NCBS-TIFR Lyman Page Princeton University Jaikumar Radhakrishnan TIFR C. S. Rajan TIFR Sriram Ramaswamy IISc G. Rangarajan IISc C. N. R. Rao JNCASR Subir Sachdev Harvard University K. Sandeep CAM-TIFR Sriram Shastry UC Santa Cruz PUBLIC LECTURES Ashoke Sen HRI J. N. Tata Auditorium, IISc (FREE AND OPEN TO ALL) Anirvan Sengupta Rutgers University K. R. Sreenivasan Abdus Salam ICTP Michael Atiyah University of Edinburgh Andrew Strominger Harvard University Truth and Beauty in Mathematics and Physics 5:30 pm, 27 December 2009 Raman Sundrum Johns Hopkins University Ajay Sood IISc David Gross KITP, Santa Barbara The Role of Theory in Science Tarun Souradeep IUCAA 5:30 pm, 28 December 2009 Eitan Tadmor University of Maryland Albert Libchaber Rockefeller University Sandip Trivedi TIFR The Origin of Life: from Geophysics to Biology? Mukund Thattai NCBS-TIFR 5:30 pm, 30 December 2009 S. -
Introduction to L-Functions: the Artin Cliffhanger…
Introduction to L-functions: The Artin Cliffhanger. Artin L-functions Let K=k be a Galois extension of number fields, V a finite-dimensional C-vector space and (ρ, V ) be a representation of Gal(K=k). (unramified) If p ⊂ k is unramified in K and p ⊂ P ⊂ K, put −1 −s Lp(s; ρ) = det IV − Nk=Q(p) ρ (σP) : Depends only on conjugacy class of σP (i.e., only on p), not on P. (general) If G acts on V and H subgroup of G, then V H = fv 2 V : h(v) = v; 8h 2 Hg : IP With ρjV IP : Gal(K=k) ! GL V . −1 −s Lp(s; ρ) = det I − Nk=Q(p) ρjV IP (σP) : Definition For Re(s) > 1, the Artin L-function belonging to ρ is defined by Y L(s; ρ) = Lp(s; ρ): p⊂k Artin’s Conjecture Conjecture (Artin’s Conjecture) If ρ is a non-trivial irreducible representation, then L(s; ρ) has an analytic continuation to the whole complex plane. We can prove meromorphic. Proof. (1) Use Brauer’s Theorem: X χ = ni Ind (χi ) ; i with χi one-dimensional characters of subgroups and ni 2 Z. (2) Use Properties (4) and (5). (3) L (s; χi ) is meromorphic (Hecke L-function). Introduction to L-functions: Hasse-Weil L-functions Paul Voutier CIMPA-ICTP Research School, Nesin Mathematics Village June 2017 A “formal” zeta function Let Nm, m = 1; 2;::: be a sequence of complex numbers. 1 m ! X Nmu Z(u) = exp m m=1 With some sequences, if we have an Euler product, this does look more like zeta functions we have seen. -
On $ P $-Adic String Amplitudes in the Limit $ P $ Approaches To
On p-adic string amplitudes in the limit p approaches to one M. Bocardo-Gaspara1, H. Garc´ıa-Compe´anb2, W. A. Z´u˜niga-Galindoa3 Centro de Investigaci´on y de Estudios Avanzados del Instituto Polit´ecnico Nacional aDepartamento de Matem´aticas, Unidad Quer´etaro Libramiento Norponiente #2000, Fracc. Real de Juriquilla. Santiago de Quer´etaro, Qro. 76230, M´exico bDepartamento de F´ısica, P.O. Box 14-740, CP. 07000, M´exico D.F., M´exico. Abstract In this article we discuss the limit p approaches to one of tree-level p-adic open string amplitudes and its connections with the topological zeta functions. There is empirical evidence that p-adic strings are related to the ordinary strings in the p → 1 limit. Previously, we established that p-adic Koba-Nielsen string amplitudes are finite sums of multivariate Igusa’s local zeta functions, conse- quently, they are convergent integrals that admit meromorphic continuations as rational functions. The meromorphic continuation of local zeta functions has been used for several authors to regularize parametric Feynman amplitudes in field and string theories. Denef and Loeser established that the limit p → 1 of a Igusa’s local zeta function gives rise to an object called topological zeta func- tion. By using Denef-Loeser’s theory of topological zeta functions, we show that limit p → 1 of tree-level p-adic string amplitudes give rise to certain amplitudes, that we have named Denef-Loeser string amplitudes. Gerasimov and Shatashvili showed that in limit p → 1 the well-known non-local effective Lagrangian (repro- ducing the tree-level p-adic string amplitudes) gives rise to a simple Lagrangian with a logarithmic potential. -
Dear Aspirant with Regard
DEAR ASPIRANT HERE WE ARE PRESENTING YOU A GENRAL AWERNESS MEGA CAPSULE FOR IBPS PO, SBI ASSOT PO , IBPS ASST AND OTHER FORTHCOMING EXAMS WE HAVE UNDERTAKEN ALL THE POSSIBLE CARE TO MAKE IT ERROR FREE SPECIAL THANKS TO THOSE WHO HAS PUT THEIR TIME TO MAKE THIS HAPPEN A IN ON LIMITED RESOURCE 1. NILOFAR 2. SWETA KHARE 3. ANKITA 4. PALLAVI BONIA 5. AMAR DAS 6. SARATH ANNAMETI 7. MAYANK BANSAL WITH REGARD PANKAJ KUMAR ( Glory At Anycost ) WE WISH YOU A BEST OF LUCK CONTENTS 1 CURRENT RATES 1 2 IMPORTANT DAYS 3 CUPS & TROPHIES 4 4 LIST OF WORLD COUNTRIES & THEIR CAPITAL 5 5 IMPORTANT CURRENCIES 9 6 ABBREVIATIONS IN NEWS 7 LISTS OF NEW UNION COUNCIL OF MINISTERS & PORTFOLIOS 13 8 NEW APPOINTMENTS 13 9 BANK PUNCHLINES 15 10 IMPORTANT POINTS OF UNION BUDGET 2012-14 16 11 BANKING TERMS 19 12 AWARDS 35 13 IMPORTANT BANKING ABBREVIATIONS 42 14 IMPORTANT BANKING TERMINOLOGY 50 15 HIGHLIGHTS OF UNION BUDGET 2014 55 16 FDI LLIMITS 56 17 INDIAS GDP FORCASTS 57 18 INDIAN RANKING IN DIFFERENT INDEXS 57 19 ABOUT : NABARD 58 20 IMPORTANT COMMITTEES IN NEWS 58 21 OSCAR AWARD 2014 59 22 STATES, CAPITAL, GOVERNERS & CHIEF MINISTERS 62 23 IMPORTANT COMMITTEES IN NEWS 62 23 LIST OF IMPORTANT ORGANIZATIONS INDIA & THERE HEAD 65 24 LIST OF INTERNATIONAL ORGANIZATIONS AND HEADS 66 25 FACTS ABOUT CENSUS 2011 66 26 DEFENCE & TECHNOLOGY 67 27 BOOKS & AUTHOURS 69 28 LEADER”S VISITED INIDIA 70 29 OBITUARY 71 30 ORGANISATION AND THERE HEADQUARTERS 72 31 REVOLUTIONS IN AGRICULTURE IN INDIA 72 32 IMPORTANT DAMS IN INDIA 73 33 CLASSICAL DANCES IN INDIA 73 34 NUCLEAR POWER -
E:\Annual Accounts\2017-18\1 P
UNIVERSITY OF KERALA ANNUAL ACCOUNTS 2017 - ’18 CONTENTS 1. I. Receipts and Payments account & II. Grand Summary of Appropriation accounts ............................................................................ 4 2. Annexure I – Receipts Part I Non Plan............................................................................................ 7 3. Annexure II – Receipts Part II Plan ............................................................................................... 12 4. Annexure III to VI – Receipts – Part III Earmarked Funds A to D ............................................. 14 5. Annexure VII – Receipts Part IV Debts & Deposits .................................................................... 43 6. Annexure VIII - Expenditure Part I Non Plan / II Plan ................................................................. 45 7. Summary of Appropriation Accounts & Detailed Account of Appropriation ................................. 50 8. Analysis of the Revenue Position – Analytical Statements ........................................................... 169 9. Investment Accounts ..................................................................................................................... 176 10. Annexure IX – Department Development Fund ........................................................................... 186 Annual Accounts 2017-’18 UNIVERSITY I. RECEIPTS AND PAYMENTS ACCOUNT FOR 2016-2017 RECEIPTS 2017-2018 Amount Rs. Head of Account Amount Rs. 353034187.00 Opening balance as on 01-04-2017 735273590.05 -
Kerala Sustainable Urban Development Project
Government of Kerala Local Self Government Department Kerala Sustainable Urban Development Project (PPTA 4106 – IND) FINAL REPORT VOLUME 7 URBAN MANAGEMENT & INSTITUTIONAL DEVELOPMENT MAY 2005 COPYRIGHT: The concepts and information contained in this document are the property of ADB & Government of Kerala. Use or copying of this document in whole or in part without the written permission of either ADB or Government of Kerala constitutes an infringement of copyright. TA 4106 –IND: Kerala Sustainable Urban Development Project Project Preparation FINAL REPORT VOLUME 7 – URBAN MANAGEMENT AND INSTITUTIONAL DEVELOPMENT Contents 1. Overview 1 1.1 Policy Context 1 1.2 Legislative and Administrative Framework 3 1.3 Institutional Arrangements and Service Delivery 4 1.3.1 Local Self Government Department 6 1.3.2 Service Provision in Project Cities 6 1.3.3 Inter Agency Coordination and Project Implementation 8 2. Urban Management 10 2.1 State Level Initiatives 10 2.1.1 Improving Service Delivery 10 2.1.2 Streamlining Systems and Procedures 10 2.1.3 Training 11 2.2 Municipal Initiatives 12 2.3 Community Development and Poverty Alleviation 12 3. Framework for Institutional Development 14 3.1 Infrastructure Planning 14 3.2 Core Service Delivery and Asset Management 15 3.3 Institutional Development 15 3.4 Financial Management 16 3.5 Community Development and Poverty Alleviation 16 3.6 KSUDP and MGP 17 4. Institutional Development Components 18 4.1 UMID Components 18 4.1.1 Capacity Building – LSGD and DUA 18 4.1.2 Capacity Building – Municipal Corporations 19 4.1.3 Training on Basic Service Delivery 20 4.1.4 Community Development and Poverty Alleviation 21 4.1.5 Community Awareness and Participation Program 22 4.2 Project Sustainability – KSUDP and GoK Actions 23 5. -
Manjul Bhargava** Princeton University on Sums of Squares and the "290 Theorem"
[POSTER] University of Florida, Mathematics Department FIRST RAMANUJAN* COLLOQUIUM by Professor Manjul Bhargava** Princeton University on Sums of squares and the "290 theorem" Date and Time: 4:00 - 5:00pm, Monday, March 19, 2007 Room: FAB 103 Refreshments: After the lecture in the Atrium (LIT 339) OPENING REMARKS by George E. Andrews*** Evan Pugh Professor - Penn. State Univ. Distinguished Visiting Professor - UF Abstract: The famous "Four Squares Theorem" of Lagrange asserts that any positive integer can be expressed as the sum of four square numbers. That is, the quadratic form a2 + b2 + c2 + d2 represents all (positive) integers. When does a general quadratic form represent all integers? When does it represent all odd integers? When does it represent all primes? We show how all these questions turn out to have very simple and surprising answers. In particular, we describe the recent work (joint with Jonathan Hanke, Duke University) in proving Conway's "290-Conjecture". This solves a problem of Ramanujan on quadratic forms. THREE MATHEMATICS SEMINAR TALKS Following the Colloquium, Professor Bhargava will give three seminar talks. The three seminars will work towards a precise statement and proof of Ramanujan's quaternary problem and Conway's 290- Conjecture. JOINT NUMBER THEORY & COMBINATORICS SEMINARS on 1. The arithmetic of quadratic forms: an overview Tue, Mar 20, at 12:50 pm in LIT 339 2. Ramanujan's quaternary problem and finiteness theorems for quadratic forms Tue, Mar 20, at 1:55 pm in LIT 339 3. Effective finiteness theorems and the proof of Conway's 290- conjecture Wed, Mar 21, at 3:00 pm in LIT 339 * ABOUT RAMANUJAN: Srinivasa Ramanujan (1887-1920), a self-taught genius from South India, dazzled mathematicians at Cambridge University by communicating bewildering formulae in a series of letters. -
The Riemann Hypothesis for Varieties Over Finite Fields
The Riemann Hypothesis for Varieties over Finite Fields Sander Mack-Crane 16 July 2015 Abstract We discuss the Weil conjectures, especially the Riemann hypothesis, for varieties over finite fields. Particular detail is devoted to the proof of the Riemann hypothesis for cubic threefolds in projective 4-space, as given by Bombieri and Swinnerton-Dyer. The main idea is to relate the number of points on a cubic threefold to the trace of Frobenius on an associated abelian variety, and we develop the necessary machinery of abelian varieties. 1 Introduction The Weil conjectures are a set of conjectures (now proven) describing the number of points of varieties over finite fields, as encoded in the zeta function of the variety. They give an analog in finite fields of both the Riemann hypothesis of analytic number theory and the cohomology theory of complex varieties. We will introduce both of these perspectives in turn, partly following [2]. But first, we review an element of algebraic geometry that is essential for our discussion. 1.1 Fields of Definition In the classical setting, let n Ak = f(a1,..., an) j ai 2 kg be n-dimensional affine space over a field k, f fig ⊂ k[x1,..., xn] some set of polynomials, and n n V = V( fi) = f(a1,..., an) 2 Ak j fi(a1,..., an) = 0 for all ig ⊂ Ak the variety defined by the polynomials f fig. For any extension K of k, we have k[x0,..., xn] ⊂ K[x0,..., xn], and in particular our polynomials fi defining X are in K[x0,..., xn]. -
Math Student 2007
ISSN: 0025-5742 THE MATHEMATICS STUDENT Volume 76, Numbers 1 - 4, (2007) copy- Edited by J. R. PATADIA circulation (Issued: October, 2008) Member'sfor not PUBLISHED BY THE INDIAN MATHEMATICAL SOCIETY (In the memory of late Professor M. K. Singal) THE MATHEMATICS STUDENT Edited by J. R. PATADIA In keeping with the current periodical policy, THE MATHEMATICS STUDENT (STUDENT) will seek to publish material of interest not just to mathematicians with specialized interest but to undergraduate and postgraduate students and teachers of mathematics in India. With this in view, it will publish material of the following type: 1. Expository articles and popular (not highly technical) articles. 2. Classroom notes (this can include hints on teaching certain topics or filling vital gaps in the usual treatments of topics to be found in text-books or how some execises can and should be made an integral part of teaching, etc.) 3. Problems and solutions, News and Views. 4. Information on articles of common interest published in other periodicals, 5. Proceedings of IMS Conferences. Expository articles, classroom notes, news and announcements and research papers are invited for publication in THE MATHEMATICS STUDENT. Manuscripts intended for publication should preferably be submitted online in the LaTeX .pdf file or in the standard word processing format (Word or Word Perfect) including figures and tables. In case of hard copy submission, three copies of the manuscripts along with the Compact Disc (CD) copy should be submitted to the Editor Dr. J. R. Patadia, Department of Mathematics, faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (Gujarat),copy- India. -
An Introduction to the Theory of Local Zeta Functions from Scratch
Revista Integración, temas de matemáticas Escuela de Matemáticas Universidad Industrial de Santander H ◦ Vol. 37, N 1, 2019, pág. 45–76 DOI: http://dx.doi.org/10.18273/revint.v37n1-2019004 An Introduction to the Theory of Local Zeta Functions from Scratch Edwin León-Cardenal a, W. A. Zúñiga-Galindo b∗ a Centro de Investigación en Matemáticas, Unidad Zacatecas, Quantum, Ciudad del Conocimiento, Zacatecas, México. b Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Departamento de Matemáticas, Libramiento Norponiente #2000, Fracc. Real de Juriquilla. Santiago de Querétaro, Qro. 76230, México. Abstract. This survey article aims to provide an introduction to the theory of local zeta functions in the p-adic framework for beginners. We also give an extensive guide to the current literature on local zeta functions and its connections with other fields in mathematics and physics. Keywords: Local zeta functions, p-adic analysis, local fields, stationary phase formula. MSC2010: 11S40, 11S80, 11M41, 14G10. Una Introducción a la Teoría de las Funciones Zeta Locales para principiantes Resumen. En este artículo panorámico brindamos una introducción a la teoría de las funciones zeta locales p-ádicas para principiantes. También se presenta una revisión extensiva a la literatura especializada sobre funciones zeta locales y sus conexiones con otros campos de las matemáticas y la física. Palabras clave: Funciones zeta locales, análisis p-ádico, cuerpos locales, fór- mula de la fase estacionaria. 1. Introduction In these notes we provide an introduction to the theory of local zeta functions from scratch. We assume essentially a basic knowledge of algebra, metric spaces and basic analysis, mainly measure theory.