Safety at Street Works and Road Works a Code of Practice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Of Texas, Inc. P.O
PATHMARK TRAFFIC PRODUCTS OF TEXAS, INC. P.O. BOX 1066, SAN MARCOS, TX 78667 Call 1-800-547-0874 www.pathmark.net [email protected] Local: (512) 392-2090 Local Fax: (512) 392-2092 Toll Free Fax (800) 352-2092 Custom Sign Shop Call us. We can make it! TRAFFIC PAINT PathMark Traffic Products Latex Traffic Paint: A coating formulated and recommended for marking and striping streets, highways, or other traffic surfaces including, but not limited to, curbs, berms, driveways, parking lots, sidewalks and airports. The maximum V.O.C. allowed is 150 grams per liter, or 1.30 lbs. per gallon. This definition has been used since the beginning of the regulatory debate which industry has argued that the limits are too low to suit all striping applications, i.e.: cold weather, expensive & complicated equipment needed for some compliant products. A small concession made by the EPA in the final regulations is an additional category to help the small user of traffic paints—it is Zone Marking Coating. Meets LATEX ALL LATEX Federal Specifications! TRAFFIC PAINT FAST DRY TRAFFIC PAINT FAA Approved (Standard Dry) PAINTS A more durable, fast-drying, water-reducible A long-lasting, durable, water-reducible traffic paint ideal for asphalt and concrete traffic paint for striping on asphalt or LEAD striping. Apply with or without glass beads. concrete. Apply with or without glass beads. Coverage: Up to 450 ft. of 4” stripe Coverage: Up to 450 ft. of 4” stripe FREE per gallon. per gallon. Drying Time: Dries to “no track” in 15 Drying Time: Dries to “no track” in minutes or in 3 minutes 75 minutes or less. -
Preferential and Managed Lane Signs and General Information Signs
2009 Edition Page 253 CHAPTER 2G. PREFERENTIAL AND MANAGED LANE SIGNS Section 2G.01 Scope Support: 01 Preferential lanes are lanes designated for special traffic uses such as high-occupancy vehicles (HOVs), light rail, buses, taxis, or bicycles. Preferential lane treatments might be as simple as restricting a turning lane to a certain class of vehicles during peak periods, or as sophisticated as providing a separate roadway system within a highway corridor for certain vehicles. 02 Preferential lanes might be barrier-separated (on a separate alignment or physically separated from the other travel lanes by a barrier or median), buffer-separated (separated from the adjacent general-purpose lanes only by a narrow buffer area created with longitudinal pavement markings), or contiguous (separated from the adjacent general-purpose lanes only by a lane line). Preferential lanes might allow continuous access with the adjacent general-purpose lanes or restrict access only to designated locations. Preferential lanes might be operated in a constant direction or operated as reversible lanes. Some reversible preferential lanes on a divided highway might be operated counter-flow to the direction of traffic on the immediately adjacent general-purpose lanes. 03 Preferential lanes might be operated on a 24-hour basis, for extended periods of the day, during peak travel periods only, during special events, or during other activities. 04 Open-road tolling lanes and toll plaza lanes that segregate traffic based on payment method are not considered preferential lanes. Chapter 2F contains information regarding signing of open-road tolling lanes and toll plaza lanes. 05 Managed lanes typically restrict access with the adjacent general-purpose lanes to designated locations only. -
Impact Assessment
Title: Impact Assessment (IA) Raising the speed limit for HGVs >7.5T on dual carriageway roads IA No: DfT00280 Date: 23/09/2014 Lead department or agency: Stage: Final Department for Transport Source of intervention: Domestic Other departments or agencies: Type of measure: Primary legislation None Contact for enquiries: [email protected] Summary: Intervention and Options RPC Opinion: EANCB Validated Cost of Preferred (or more likely) Option Total Net Present Business Net Net cost to business per In scope of One-In, Measure qualifies as Value Present Value year (EANCB on 2009 prices) Two-Out? £0m £0m £0m Yes Zero net cost What is the problem under consideration? Why is government intervention necessary? On dual carriageways the speed limit for HGVs>7.5T is 50 mph. The average actual speed at which these HGVs travel in free flow conditions (when they are not held up by other traffic or obstructions such as junctions, hills or bends) is about 53 mph (excludes rigid 2 axle HGVs)1. More than 80% of HGVs exceed 50 mph in free-flow conditions. The limit is out of date and systematically ignored by professional HGV drivers. The proposal is to raise the speed limit on dual carriageway roads for these vehicles to 60mph, which would better reflect the capabilities of modern HGVs. Government intervention is necessary because speed is regulated by government, through speed limits, in order to balance the private benefits of speed of travel with the social costs and risks (such as related to safety) of high speeds. What are the policy objectives and the intended effects? The intention is to modernise the speed limit, improve compliance, make the limit more credible and legitimise the behaviour of professional drivers. -
Type 1 Single Carriageway Pavement Detail A
A1 A B C D E F G H I J K L M N O P DESIGN REPORT 1 Notes: 1. This Drawing is only to be used for the Design Element identified in the title box. All other information shown on the drawing is to be considered indicative only. 2. These drawings are to be read in conjunction with all other relevant design drawings. 3. All dimensions are in (m) & are typical dimensions which are subject to requirements for visibility & curve widening. 2 3 3.00(MIN.) VARIES 3.00 2.50 7.30 2.50 3.00 VARIES VARIES 3.00 (MIN) VERGE HARD CARRIAGEWAY HARD VERGE SHOULDER 3.65 3.65 SHOULDER TRAFFIC TRAFFIC 1.00 LANE LANE FENCE LINE ROUNDING 0.50 VERGE LINE CONCRETE CHANNEL 1.00 1.00 CUT LINE IN ACCORDANCE WITH FENCE LINE 4 1.00 RCD/500/22 ROUNDING ROUNDING 0.10 TOPSOIL ROUNDING NORMAL CROSS NORMAL CROSS 0.50 0.50 FALL FALL TOE OF 1 5% VERGE LINE EMBANKMENT FOR FURTHER DETAILS 3 ON EARTHWORKS, 1 1 1 1 SEALED CARRIER DRAIN 5 5 5 5 REFER TO THE A EARTHWORKS SERIES 600 CUT CONDITION FILL CONDITION 1 0.10 TOPSOIL 0.75 3 VARIES FIN OR NARROW FOR FURTHER DETAILS FILTER DRAIN ON ROAD EDGE DRAINAGE TYPES, (WHERE REQUIRED) FOR FURTHER DETAILS REFER TO THE DRAINAGE SERIES 500 5 ON EARTHWORKS, REFER TO THE VARIES EARTHWORKS SERIES 600 UNLINED INTERCEPTOR DRAIN WHERE REQUIRED TYPE 1 SINGLE CARRIAGEWAY SCALE 1:100 (A1) 6 7 PAVEMENT DETAIL A Type A: N6 Type Single Carriageway. -
User Manual for the Highways Agency's Routine Maintenance Management System
RMMS MANUAL __________________________________________________ User Manual for the Highways Agency's Routine Maintenance Management System Copies available from:- Highways Agency Operations Support Division St Christopher House Southwark Street LONDON SE1 OTE Tel: 0171-921-3971 Fax: 0171-921-3878 Price £50.00 per copy © Crown Copyright 1996 HIGHWAYS AGENCY RMMS MANUAL CONTENTS INTRODUCTION Part 1: SURVEY 1.1 Introduction 1.2 Network Referencing 1.3 Survey Procedure Part 2: INVENTORY 2.1 Introduction 2.2 Surface Options 2.3 Carriageway 2.4 Footways and Cycle Tracks 2.5 Covers, Gratings, Frames and Boxes 2.6 Kerbs, Edgings and Pre-formed Channels 2.7 Highway Drainage 2.8 Communication Installations 2.9 Embankments and Cuttings 2.10 Grassed Areas 2.11 Hedges and Trees 2.12 Sweeping and Cleaning 2.13 Safety Fences and Barriers 2.14 Fences, Walls, Screens and Environmental Barriers 2.15 Road Studs 2.16 Road Markings 2.17 Road Traffic Signs 2.18 Road Traffic Signals 2.19 Road Lighting 2.20 Highway Structures Version 1 Amend.No 0 Issue Date May '96 HIGHWAYS AGENCY RMMS MANUAL CONTENTS (Continued) Part 3: INSPECTION 3.1 Introduction 3.2 RMMS Intervals and Frequencies 3.3 Carriageway 3.4 Footways and Cycle Tracks 3.5 Covers, Gratings, Frames and Boxes 3.6 Kerbs, Edgings and Pre-formed Channels 3.7 Highway Drainage 3.8 Communication Installations 3.9 Embankments and Cuttings 3.10 Grassed Areas 3.11 Hedges and Trees 3.12 Sweeping and Cleaning 3.13 Safety Fences and Barriers 3.14 Fences, Walls, Screens and Environmental Barriers 3.15 Road Studs 3.16 -
TA 79/99 Amendment No 1 3
Chapter 3 Volume 5 Section 1 Determination of Urban Road Capacity Part 3 TA 79/99 Amendment No 1 3. DETERMINATION OF URBAN ROAD CAPACITY 3.1 Table 1 sets out the types of Urban Roads and the features that distinguish between them and affect their traffic capacity. Tables 2 & 3 give the flow capacity for each road type described in Table 1. 3.2 Table 4 gives the adjustments when the proportion of heavy vehicles in a one way flow exceeds 15%. A heavy vehicle is defined in this context as OGV1, OGV2 or Buses and Coaches as given in the COBA Manual (DMRB 13.1 Part 4, Chapter 8). 3.3 The flows for road type UM in Table 2 apply to urban motorways where junctions are closely spaced giving weaving lengths of less than 1 kilometre. Urban motorways with layout and junction spacing similar to rural motorways can carry higher flows and TA46/97 “Traffic Flow Ranges for Use in the Assessment of New Rural Roads” will be more applicable. 3.4 Flows for single carriageways are based upon a 60/40 directional split in the flow. The one-way flows shown in Table 2 represent the busiest flow 60% figure. 3.5 The capacities shown apply to gradients of up to 5-6%. Special consideration should be made for steeper gradients, which would reduce capacity. 3.6 On-road parking reduces the effective road width and disrupts flow, e.g. where parking restrictions are not applied on road type UAP2 the flows are likely to be similar to UAP3 where unrestricted parking applies, see Table 1, Similarly effective parking restrictions can lead to higher flows. -
The A19 Trunk Road
THE CHARTERED INSTITUTION OF HIGHWAYS & TRANSPORTATION The A19 Trunk Road The A19 tends to live in the shadow of the more well known A1 it runs more or less parallel with. However, it is no less important to the region, serving the heavy industry and associated ports of Teesside, Wearside and Tyneside. Its journey from a single carriageway road linking coastal towns to modern day dual carriageway has been a painstaking process of over 45 years but has brought both economic and visual transformation to the North East. 1 A Broad History Today the A19 trunk road is a modern all-purpose dual carriageway running from the junction with the A1 at Seaton Burn, north of Newcastle, until it leaves the region south of Middlesbrough. It continues through North Yorkshire to Thirsk and, via a short link (A168), rejoins the A1 at Dishforth. The A19 itself continues as a non-trunk road to Doncaster. In 1952, the A19 was very different. It existed only south of the River Tyne and was a coastal route of single carriageway and relatively poor standard. Starting at South Shields it passed through Whitburn, Sunderland and Seaham, heading inland through Easington and then back out to the coast via Horden and onto Hartlepool. It then snaked its way through Billingham, Stockton, Eaglescliffe and Yarm. The improvements in our region towards the route we know today began at the Tyne Tunnel in 1967/8. The tunnel (£13.4m) was built with approach roads from the A1058 Newcastle to Tynemouth Coast Road (£6.5m) in the north and the A184 Gateshead to Sunderland Trunk Road (£3.5m) in the south. -
Dual Carriageways Dual Carriageways – Know the Dangers
ROAD SAFETY EDUCATION Dual Carriageways Dual carriageways – know the dangers Never confuse a dual carriageway with a motorway. Both may have 2 or 3 lanes, a central reservation and a national speed limit of 70 mph, but that’s as far as the similarity goes. When driving on a dual carriageway there are many dangers you need to be aware of. Know the difference between dual carriageways and motorways Unlike motorways… • Dual carriageways may have variable speed limits; • Dual carriageways usually permit right turns; • Dual carriageways allow traffic to join from the left and cross from left to right; • Cyclists, mopeds, farm vehicles and pedestrians are allowed to use dual carriageways; • Dual carriageways may have Pelican Crossings, traffic lights, roundabouts and Zebra Crossings. 2 Know the speed limits Dual carriageways often have lower or variable speed limits shown by red circular signs. Rule 124 of The Highway Code NI says you MUST NOT exceed the maximum speed limits for the road and for your vehicle. The presence of street lights generally means that there is a 30 mph (48 km/h) speed limit unless otherwise specified. 3 Know your stopping distances (Rule 126) Always drive at a speed that will allow you to stop well within the distance you can see to be clear. Leave enough space between you and the vehicle in front so that you can pull up safely if it suddenly slows down or stops. Remember - • Never get closer than the overall stopping distance (see typical stopping distances table); • Always allow at least a two-second gap between you and the vehicle Know how to join a in front on roads carrying dual carriageway fast-moving traffic and in tunnels where visibility is reduced; When joining a dual carriageway • The two-second gap rule should obey signs and road markings. -
Click Here for Technical Note
DESIGN MANUAL FOR ROADS AND BRIDGES VOLUME 6 ROAD GEOMETRY SECTION 1 LINKS PART 4 TD 70/XX DESIGN OF WIDE SINGLE 2+1 ROADS SUMMARY This Standard sets out the design requirements for Wide Single 2+1 roads. INSTRUCTIONS FOR USE DESIGN MANUAL FOR ROADS AND BRIDGES VOLUME 6 ROAD GEOMETRY SECTION 1 LINKS PART 4 TD 70/XX DESIGN OF WIDE SINGLE 2+1 ROADS Contents Chapter 1. Introduction 2. Design Principles 3. Geometric Standards 4. Junctions 5. Traffic Signs and Road Markings 6. Road Users’ Specific Requirements 7. Economics 8. References 9. Enquiries Appendix A: Traffic Signs and Road Markings (Sample layouts) Volume 6 Section 1 Chapter 1 Part 4 TD 70/XX Introduction 1. INTRODUCTION General Changeover: A carriageway layout which effects 1.1 A Wide Single 2+1 (WS2+1) road consists a change in the designated use of the middle lane of two lanes of travel in one direction and a single of a WS2+1 road from one direction of traffic to lane in the opposite direction. This provides the opposite direction. overtaking opportunities in the two lane direction, while overtaking in the single lane direction is Climbing Lane: An additional lane added to a prohibited. single or dual carriageway in order to improve capacity and/or safety because of the presence of a steep gradient. Scope Conflicting Changeover: A changeover where 1.2 This Standard applies to single carriageway the vehicles using the middle lane are travelling trunk roads in rural areas. TD 9 (DMRB 6.1.1) is towards each other. -
Handbook: Time 4 Safety
Background The Traffi c Incident Management Handbook was funded by North Florida Transportation Planning Organization (North Florida TPO) and developed by HNTB Corporation in Jacksonville, Florida. Time for Safety (TIM4Safety) is a comprehensive multi-agency, multi-discipline program, dedicated to improving responders’ safety, coordination, and enhancement of the Traffi c Incident Management within the northeast Florida region. This effort is in support of the ITS coalition whose membership includes North Florida TPO, Jacksonville Transportation Authority, Florida Department of Transportation, City of Jacksonville, and other members of the northeast Florida Intelligent Transportation Systems Coalition. The study area encompassed four counties within the North Florida TPO boundary - Clay, Duval, Nassau, and St. Johns, as well as, neighboring counties - Alachua, Baker, Bradford, Flagler, Putnam and Union. On October 14, 2008, North Florida TPO in association with Florida Highway Patrol hosted a northeast Florida Traffi c Incident Management stakeholders’ workshop in Jacksonville, Florida. This workshop attracted multi-disciplinary representatives from law enforcement, fi re and rescue, road ranger, towing and recovery, and transportation agencies within northeast Florida. Through discussions and hands on activities during this four hour workshop, all attendees were encouraged to comment on previously submitted standard operating guidelines, which were also briefl y presented during the session. Based on comments received during and after the workshop, as well as after reviewing other nationwide initiatives, this Traffi c Incident Management (TIM) Handbook was created. The handbook can be downloaded from the North Florida TPO website at www.northfl oridatpo.com. In addition to the handbook, fi ve training modules were produced in the form of eight to ten minute videos. -
Developing a Device to Place Traffic Cones
Developing a Device to Place Traffic Cones A Major Qualifying Project submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Mechanical Engineering By Christopher Ferreira Holly Gagnon Zachary Whitmore Submitted to: WPI Advisor, Eben C. Cobb April 17, 2019 0 Abstract The goal of this project was to create a device to place traffic cones. Conventional methods of traffic cone placement are dangerous and inefficient, so this design aims to improve road workers’ safety and use of time. The design uses a fourbar linkage, pulley system, and specially designed gripper, which work together in a cyclical motion to remove cones from a stack and place them alongside a moving vehicle. Our team fabricated this device using stock metal and robotic parts. After testing, we created recommendations for further development. i Acknowledgements Our team would like to thank the following for their support: Eben Cobb The WPI Mechanical Engineering Department The staff of Washburn Shops Jim Kempton of the Worcester Department of Public Works The George C. Gordon Library Our Friends and Families ii Table of Contents Abstract i Acknowledgements ii Table of Contents iii Table of Figures iv Table of Tables vi 1. Introduction 1 2. Background 2 3. Functional Requirements 7 4. Conceptual Designs 8 Part 1: The Fourbar 8 Part 2: The Skid Frame 11 Part 3: The Gripper 13 Part 4: The Pulley 15 Part 5: The Main Gearbox 16 5. Decision Matrix 17 6. Concept Selection and Design Description 18 Part 1: The Fourbar 18 Part 2: The Skid Frame 20 Part 3: The Gripper 22 Part 4: The Pulley 24 Part 5: The Main Gearbox 27 Part 6: The Complete Assembly 29 Part 7: Cycle of Device Motion 31 7. -
Signs & Traffic Con T Rol Signs & Labels
Signs Signs w/Your Legend Signs Signs w/Your Legend SIGNSOSHA Approved & Safety LABELS Signs OSOSHAHA A ApprovedPPROVED Safety SAFE SignsTY S IGNS • Keep your your workers workers informed informed and safe and safe. All Header Signs available with YOUR CHOICE of wording at no extra charge. .040 aluminum • withKeepAll Header baked your Signs workers enamel available informedfinish with YOUR & 4 CHOICE andcorner safe. of holeswording All Header for at nomounting. extra Signs available with YOUR CHOICE of wording at no extra charge. .040 aluminum ROL charge • with.040 Aluminum baked enamel with baked finish enamel & finish4 corner & 4 corner holes holes for formounting. T Size/Typemounting Danger Notice Caution Price 7” x 10” Aluminum 1007-AD 1007-AN 1007-AC $10.95 Size/Type Danger Notice Caution Price 7” X 10” Vinyl 1007-DV 1007-NV 1007-CV $10.95 7” x 10” Aluminum 1007-AD 1007-AN 1007-AC $10.95 10” X 14” Aluminum 1014-AD 1014-AN 1014-AC $15.95 7” X 10” Vinyl 1007-DV 1007-NV 1007-CV $10.95 10” X 14” Vinyl 1014-DV 1014-NV 1014-CV $15.95 10” X 14” Aluminum 1014-AD 1014-AN 1014-AC $15.95 14” X 20” Aluminum 1420-AD 1420-AN 1420-AC $19.95 10” X 14” Vinyl 1014-DV 1014-NV 1014-CV $15.95 14” X 20” Aluminum 1420-AD 1420-AN 1420-AC $19.95 Made To Order Safety Signs We can make signs for all your needs. All signs are .040 aluminum – white with 4 corner holes for mounting.