Arctic Matters: Sino-Russian Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Matters: Sino-Russian Dynamics CSS Analyses in Security Policy CSS ETH Zurich No. 270, September 2020 Arctic Matters: Sino-Russian Dynamics As the Arctic ice recedes, interest in resource extraction and promising trade routes increases. Two actors in particular will have a strong impact on the region: China and Russia. Both are bound by an intricate dynamic of cooperation and competition, particularly in the energy sphere. As their interests do not always overlap, tensions and asymmetries between them may increase. By Maria Shagina and Benno Zogg The last couple of years have seen unprec- edented attention for the Arctic by media and think tanks, with reports of Arctic wildfires, oil spills, new energy projects, military exercises, or the ubiquitous image of polar bears on melting ice. July 2020 marked another record-low coverage of ice on the Arctic ocean, making resource de- posits and trade routes more accessible. Arctic routes promise shortened shipping lanes between Asia and Europe, creating commercial opportunities. At the same time, climate change is increasingly threat- ening the fragile ecosystem and local popu- lations, and geopolitical rhetoric is becom- ing ever more present in the Arctic. The Christophe de Margerie (R), an ice-class tanker fitted out to transport liquefied natural gas, is docked in the Arctic port of Sabetta, Yamalo-Nenets district, Russia, 30 March 2017. Olesya Astakhova / Reuters. Two actors are particularly central to recent events in the Arctic. Given its enormous landmass and Arctic coastline, Russia has been the most invested. This is underlined stage (see CSS Analysis 250). Their main on China is likely to grow. Russia is espe- by the fact that a large part of Russian nu- area of cooperation in the Arctic is energy cially keen on maintaining its dominant clear forces and its most promising natural exploration, which they have intensified position in the region and aims at diversi- resource reserves are in the Arctic. The re- since Western sanctions following the fying its partnerships. As a result, a com- gion is thus key to its national security and Crimean annexation. Chinese funds and plex pattern of cooperation and competi- its economy. China, meanwhile, has technology are increasingly important for tion between China and Russia has emerged as the most hotly debated actor in Russian extraction projects, for example in emerged, which will have a strong impact the Arctic. It frames itself as a “near-Arctic their flagship cooperation project on lique- on future Arctic matters and is indicative of state” based on its stakes in polar research fied natural gas (LNG) on the Yamal pen- their relationship overall. and commerce in the region. Its role is set insula. However, despite their warm rheto- to increase in a number of spheres. ric, China and Russia’s interests do not Arctic States and Stakes always overlap. The effects of the coronavi- As it is most commonly defined, the Arctic These two actors are connected through a rus pandemic may exacerbate their under- region extends above the Arctic Circle and “strategic partnership” on the international lying asymmetry, as Russia’s dependence comprises five littoral states with an Arctic © 2020 Center for Security Studies (CSS), ETH Zurich 1 CSS Analyses in Security Policy No. 270, September 2020 coastline: Canada, Denmark (through bly through its resource potential, as well as As the Arctic oceans become more navi- Greenland), Norway, Russia, and the US. its vulnerability, as the region is vast and gable in the coming decades, these ship- Furthermore, being located above the Arc- sparsely populated. Climate change poses ping routes – particularly the NSR – prom- tic Circle, Iceland, Finland, and Sweden an opportunity, as it discloses trade routes ise China shorter and cheaper alternatives are also commonly considered Arctic states. and new resources, but also a threat, as it to the current navigation routes. They allow The population of the Arctic regions in endangers the environment and existing Beijing to avoid maritime chokepoints in these countries approximates 4 million infrastructure. Russia re-emphasized the the Straits of Hormuz and Malacca, which people, most of whom live in Russia. importance of the Arctic, particularly the are vulnerable to piracy or interdiction by role of sea lanes and resource extraction for US naval forces or those of their allies. The The Arctic region is considered of vital im- Russian economic growth, in its basic prin- NSR is even cited as part of China’s mari- portance to many countries’ national secu- ciples for 2035, adopted in March 2020. time dimension of the Belt and Road Ini- rity and sovereignty. Arctic littoral states’ Currently, the gap between Russia’s desire tiative – a move based on earlier Russian exclusive economic zones extend 200 nau- to exploit increasing economic potential in calls for such a “Polar Silk Road” in its tical miles (370 kilometers) into the sea. the Arctic and the needs for investments in hopes for investment in this remote region. Most of the vast confirmed and assumed infrastructure is widening. Beijing is further concerned about being Arctic resource deposits lie on land or left behind in the changing governance of within these zones. Offshore reserves, Russia’s threat perception in the Arctic has the resource-rich Arctic. Discussions about meanwhile, are often difficult and costly to shifted from military confrontation that unresolved territorial and maritime dis- access. Apart from oil and gas deposits, the shaped the Cold War era to economic con- putes will have implications for China’s Arctic is rich in minerals. cerns and avoiding strategic vul- nerabilities. Highly important A complex pattern of cooperation Some of these resources lie in disputed ter- for commercial purposes is the and competition between China ritory. Based on extensions of their conti- vast fleet of Russian nuclear- nental shelf, several Arctic states claim en- powered ice-breakers, which and Russia has emerged. larged exclusive economic zones. Impor- Russia aims to modernize to tantly, these demands are submitted within maintain its edge in that sphere. This push commercial and shipping interests, after all. the UN Convention of the Law of the Seas as well as increased deployment of coast With its involvement in regional gover- (UNCLOS), and thus in line with interna- guard and military assets should be read as nance, Beijing seeks to secure its ability to tional law. A fundamental disagreement part of Russia’s aim of maintaining a domi- influence the rules of navigation. exists as to whether certain Arctic sea lanes, nant role in the Arctic and exploiting its namely the Northwest Passage north of economic potential. Its willingness to en- Driven by Energy Cooperation Canada and the Northern Sea Route gage in multilateral cooperation is high- In the Arctic, Russia and China have their (NSR) north of Russia, should be consid- lighted by a number of initiatives with Rus- own ambitions, but their objectives cur- ered these two countries’ internal waters, or sian participation, such as its settlement of rently overlap. Complementary economic rather international sea lanes and thus free territorial issues with Norway in 2010, or interests are the main driver of their coop- for navigation. Currently, only a few dozen the establishment of the Arctic Coast eration. international passages transit either of Guard Forum in 2015. At the same time, these lanes. Russian rhetoric and strategic documents For Russia, the development of unconven- have stressed the importance of the Arctic tional reserves is necessary to maintain its While UNCLOS is guiding the approach for Russia’s national security, the role of the production levels of oil and gas after 2030. to the issues raised above, the Arctic Coun- military for its protection, and reinforced With old oil fields in Western Siberia de- cil is the region’s most important intergov- Russian claims on disputed land. Snap ex- pleting, the Arctic offshore became a key ernmental forum. Switzerland assumed ercises have increased. Other Arctic actors strategic resource, in total estimated to har- observer status in 2017. The Council deals increasingly view these moves with concern. bor 13 and 30 percent of the world’s undis- with issues such as the environment, devel- covered oil and gas respectively. In the fu- opment, search and rescue, and research. China, meanwhile, is an unlikely Arctic ac- ture, the Arctic may account for 20 percent Russia will assume its chairmanship in tor given its geographical distance from the of the Russian GDP. Yet, Russian compa- 2021 and will use the platform to bolster its Arctic. It bases its interest on long-stand- nies lack advanced technology and suffi- Arctic strategy. ing scientific research in the region, and the cient capital to develop the Arctic. implications of climate change in the Arc- However, there is a lack of a suitable forum tic on China itself. In 2018, Beijing un- For China, the diversification of energy to discuss such hard security issues, partic- veiled its first White Paper on the Arctic, sources, suppliers, and transportation ularly since the 2014 annexation of Crimea. marking an “assertive turn” in China’s di- routes is part of its national strategy. China At the same time, military activities, such plomacy. For the first time, China sought has ambitious plans for an energy transi- as manoeuvres and deployments, have in- to legitimize its interests in the region. The tion, which foresees the share of gas to creased in the Arctic. Capabilities remain publication alone is indicative of China’s grow and partially replace coal. By 2050, below Cold-War levels, though, and often growing Arctic ambitions. China’s gas demand is forecast to rise, in- serve both civilian and military purposes. creasing the country’s dependence on im- China’s interests revolve around energy ex- ports.
Recommended publications
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • In the Lands of the Romanovs: an Annotated Bibliography of First-Hand English-Language Accounts of the Russian Empire
    ANTHONY CROSS In the Lands of the Romanovs An Annotated Bibliography of First-hand English-language Accounts of The Russian Empire (1613-1917) OpenBook Publishers To access digital resources including: blog posts videos online appendices and to purchase copies of this book in: hardback paperback ebook editions Go to: https://www.openbookpublishers.com/product/268 Open Book Publishers is a non-profit independent initiative. We rely on sales and donations to continue publishing high-quality academic works. In the Lands of the Romanovs An Annotated Bibliography of First-hand English-language Accounts of the Russian Empire (1613-1917) Anthony Cross http://www.openbookpublishers.com © 2014 Anthony Cross The text of this book is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the text; to adapt it and to make commercial use of it providing that attribution is made to the author (but not in any way that suggests that he endorses you or your use of the work). Attribution should include the following information: Cross, Anthony, In the Land of the Romanovs: An Annotated Bibliography of First-hand English-language Accounts of the Russian Empire (1613-1917), Cambridge, UK: Open Book Publishers, 2014. http://dx.doi.org/10.11647/ OBP.0042 Please see the list of illustrations for attribution relating to individual images. Every effort has been made to identify and contact copyright holders and any omissions or errors will be corrected if notification is made to the publisher. As for the rights of the images from Wikimedia Commons, please refer to the Wikimedia website (for each image, the link to the relevant page can be found in the list of illustrations).
    [Show full text]
  • 1 17 Massov, A. Ia. the Flag of St Andrew Under the Southern Cross One of the Most Important and Significant Scientific Results
    17 Massov, A. Ia. The Flag of St Andrew Under the Southern Cross One of the most important and significant scientific results of the presence of Russian seaman in Australia was the collecting of geological, botanical, and zoological collections, all of which found their way into the museums of Russia. The assembling of collections of so-called rarities constituted one of the duties of certain participants of all the round-the-world expeditions, regardless of the objectives of the latter. The collecting process would continue throughout the voyage. It would certainly not be an exaggeration to assert that, within the context of the early 19th century, items from Australia and Oceania made up one of the most interesting and valuable parts of the material in question. The greater part of these and other such collections were assembled by the mariners themselves; only seldom were items bought or received, already prepared, as gifts from others. This was the case, however with the Herbarium, of a specially rare varieties of Australian flora, presented by Governor Maquarrie to M.N. Vasiliev to be transferred subsequently, as a present, to the dowager empress Maria Fyodorovna. In the second and third decades of the 19th century, large quantities of material suitable for biological collections were still to be found in the immediate vicinity of European settlements. Captain M.N. Vasiliev even found himself obliged to issue an order banning the shooting of birds around the tents of the shore station, set up on the north shore of Port Jackson. The activity was not without some risk for the men undertaking repairs to the sloops.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • Lachlan Macquarie in Russia1
    Aleksandr Massov Lachlan Macquarie in Russia1 Despite the abundance of works in Australian and British historiography devoted to the life and career of Lachlan Macquarie, there is as yet no specialist study of the ‘Russian chapter’ in his biography: his journey through Russia from Astrakhan to St Petersburg in 1807.2 At the same time, the story of the future governor’s sojourn in Russia is of interest not only for the light it casts on this little-known phase of his life; there is a sense in which it had a significant impact on the relationship between Britain’s Australian colonies and the Russian Empire in the first years of contact between the two countries. As Macquarie’s Australian biographer Robin Walsh has argued,3 the events which befell him in 1807 require closer investigation. Macquarie, at that time a 45-year-old lieutenant in the British army, undertook his Russian journey on his way home from India. He was in some haste to take up a new appointment, and also to marry his fiancée Elizabeth Campbell as soon as possible. Accompanying him were his servant George Jarvis and two fellow-officers, George William Brande, a lieutenant, and William Thomas of the Medical Corps.4 The journey, it should be said, took place at a time of international crisis: Napoleon was continuing his triumphant advance over the European continent, while the alliance of his enemies (Britain, Prussia, Russia and Sweden) sustained defeat after defeat. In October 1806 the Prussian army had been virtually annihilated at Jena and Auerstadt, while his victory over the Russians at Friedland in June 1807 had allowed Bonaparte to occupy East Prussia 1 This article was completed when the author held the post of Visiting Scholar in the School of Languages and Comparative Cultural Studies at the University of Queensland under the Australian Academy of the Humanities Visiting Scholar Programme.
    [Show full text]
  • Record Low Surface Air Temperature at Vostok Station, Antarctica
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, D24102, doi:10.1029/2009JD012104, 2009 Record low surface air temperature at Vostok station, Antarctica John Turner,1 Phil Anderson,1 Tom Lachlan-Cope,1 Steve Colwell,1 Tony Phillips,1 Ame´lie Kirchgaessner,1 Gareth J. Marshall,1 John C. King,1 Tom Bracegirdle,1 David G. Vaughan,2 Victor Lagun,3 and Andrew Orr1 Received 20 March 2009; revised 16 July 2009; accepted 11 September 2009; published 16 December 2009. [1] The lowest recorded air temperature at the surface of the Earth was a measurement of À89.2°C made at Vostok station, Antarctica, at 0245 UT on 21 July 1983. Here we present the first detailed analysis of this event using meteorological reanalysis fields, in situ observations and satellite imagery. Surface temperatures at Vostok station in winter are highly variable on daily to interannual timescales as a result of the great sensitivity to intrusions of maritime air masses as Rossby wave activity changes around the continent. The record low temperature was measured following a near-linear cooling of over 30 K over a 10 day period from close to mean July temperatures. The event occurred because of five specific conditions that arose: (1) the temperature at the core of the midtropospheric vortex was at a near-record low value; (2) the center of the vortex moved close to the station; (3) an almost circular flow regime persisted around the station for a week resulting in very little warm air advection from lower latitudes; (4) surface wind speeds were low for the location; and (5) no cloud or diamond dust was reported above the station for a week, promoting the loss of heat to space via the emission of longwave radiation.
    [Show full text]
  • Full Spring 2004 Issue the .SU
    Naval War College Review Volume 57 Article 1 Number 2 Spring 2004 Full Spring 2004 Issue The .SU . Naval War College Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Naval War College, The .SU . (2004) "Full Spring 2004 Issue," Naval War College Review: Vol. 57 : No. 2 , Article 1. Available at: https://digital-commons.usnwc.edu/nwc-review/vol57/iss2/1 This Full Issue is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Naval War College: Full Spring 2004 Issue N A V A L W A R C O L L E G E NAVAL WAR COLLEGE REVIEW R E V I E W Spring 2004 Volume LVII, Number 2 Spring 2004 Spring N ES AV T A A L T W S A D R E C T I O N L L U E E G H E T R I VI IBU OR A S CT MARI VI Published by U.S. Naval War College Digital Commons, 2004 1 Color profile: Disabled Composite Default screen Naval War College Review, Vol. 57 [2004], No. 2, Art. 1 Cover A Landsat-7 image (taken on 27 July 2000) of the Lena Delta on the Russian Arctic coast, where the Lena River emp- ties into the Laptev Sea. The Lena, which flows northward some 2,800 miles through Siberia, is one of the largest rivers in the world; the delta is a pro- tected wilderness area, the largest in Rus- sia.
    [Show full text]
  • Office of Polar Programs National Science Foundation
    Office of Polar Programs National Science Foundation Overview of Activities Michael Van Woert Executive Officer 1 NSF Roles in Polar Science • Chairs the interagency arctic research policy committee [Arctic Research and Policy Act of 1990], which coordinates federal arctic research. • Manages the U.S. Antarctic program on behalf of the U. S. Government and Support State Dept. on AA Treaty (includes meeting ACA requirements) • Supports fundamental polar research and education and associated infrastructure 2 OPP FY07 Budget Request Arctic Science – $52.5 M Antarctic Science – $52.5 M Arctic Logistics – $37.0 M Antarctic Logistics – $228.6 M Safety and Health – $5.9 M Ice Sheets Center (STC) – $4.5 M USCG Polar Icebreaking – $57.0 M Total – $438.1 M 3 Antarctic Sciences Section • Aeronomy and Astrophysics • Biology and Medicine • Geology and Geophysics • Glaciology • Ocean and Climate Systems • Antarctic Artists and Writers 4 Arctic Sciences Section • Arctic Natural Science disciplinary research • Arctic Social Science humans in the Arctic • Arctic System Science interdisciplinary “systems” research • Research Support and Logistics supports field projects in the Arctic 5 Research Solicitations • Arctic Solicitation Nov/Dec Deadline • Antarctic Solicitation June Deadline • Synthesis of Arctic System Science March Deadline • OPP IPY Solicitation May Deadline • Postdoctoral Fellowships in Polar Regions April Deadline 6 Major Study Sites in the Arctic 7 Toolik Field Station 9 Arctic Warming Affects Marine and Terrestrial Environments Decreasing Sea Ice Extent, km2 Warming Soil Temperature, 0C 10 Summit Camp, Greenland 11 Greenland Ice Core Research 12 13 Arctic-Subarctic Ocean Flux Study (ASOF) Measuring and modeling the variability of fluxes between the Arctic Ocean and the Atlantic Ocean; implementing long-term measurements of critical data for understanding the high-latitude ocean’s steering role in decadal climate variability at mid- lower latitudes.
    [Show full text]
  • SECTION THREE: Historic Sites and Monuments in Antarctica
    SECTION THREE: Historic Sites and Monuments in Antarctica The need to protect historic sites and monuments became apparent as the number of expeditions to the Antarctic increased. At the Seventh Antarctic Treaty Consultative Meeting it was agreed that a list of historic sites and monuments be created. So far 74 sites have been identified. All of them are monuments – human artifacts rather than areas – and many of them are in close proximity to scientific stations. Provision for protection of these sites is contained in Annex V, Article 8. Listed Historic Sites and Monuments may not be damaged, removed, or destroyed. 315 List of Historic Sites and Monuments Identified and Described by the Proposing Government or Governments 1. Flag mast erected in December 1965 at the South Geographical Pole by the First Argentine Overland Polar Expedition. 2. Rock cairn and plaques at Syowa Station (Lat 69°00’S, Long 39°35’E) in memory of Shin Fukushima, a member of the 4th Japanese Antarctic Research Expedition, who died in October 1960 while performing official duties. The cairn was erected on 11 January 1961, by his colleagues. Some of his ashes repose in the cairn. 3. Rock cairn and plaque on Proclamation Island, Enderby Land, erected in January 1930 by Sir Douglas Mawson (Lat 65°51’S, Long 53°41’E) The cairn and plaque commemorate the landing on Proclamation Island of Sir Douglas Mawson with a party from the British, Australian and New Zealand Antarctic Research Expedition of 1929­ 31. 4. Station building to which a bust of V. I. Lenin is fixed, together with a plaque in memory of the conquest of the Pole of Inaccessibility by Soviet Antarctic explorers in 1958 (Lat 83°06’S, Long 54°58’E).
    [Show full text]
  • Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica
    articles Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica J. R. Petit*, J. Jouzel†, D. Raynaud*, N. I. Barkov‡, J.-M. Barnola*, I. Basile*, M. Bender§, J. Chappellaz*, M. Davisk, G. Delaygue†, M. Delmotte*, V. M. Kotlyakov¶, M. Legrand*, V. Y. Lipenkov‡, C. Lorius*,L.Pe´ pin*, C. Ritz*, E. Saltzmank & M. Stievenard† * Laboratoire de Glaciologie et Ge´ophysique de l’Environnement, CNRS, BP96, 38402, Saint Martin d’He`res Cedex, France † Laboratoire des Sciences du Climat et de l’Environnement (UMR CEA/CNRS 1572), L’Orme des Merisiers, Baˆt. 709, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France ‡ Arctic and Antarctic Research Institute, Beringa Street 38, 199397, St Petersburg, Russia § Department of Geosciences, Princeton University, Princeton, New Jersey 08544-1003, USA k Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA ¶ Institute of Geography, Staromonetny, per 29, 109017, Moscow, Russia ........................................................................................................................................................................................................................................................ The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years. The late Quaternary period (the past one million years) is punc- core ever recovered, reaching a depth of 3,623 m (ref.
    [Show full text]
  • Climate History from the Vostok Ice Core, Antarctica
    articles Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica J. R. Petit*, J. Jouzel†, D. Raynaud*, N. I. Barkov‡, J.-M. Barnola*, I. Basile*, M. Bender§, J. Chappellaz*, M. Davisk, G. Delaygue†, M. Delmotte*, V. M. Kotlyakov¶, M. Legrand*, V. Y. Lipenkov‡, C. Lorius*,L.Pe´ pin*, C. Ritz*, E. Saltzmank & M. Stievenard† * Laboratoire de Glaciologie et Ge´ophysique de l’Environnement, CNRS, BP96, 38402, Saint Martin d’He`res Cedex, France † Laboratoire des Sciences du Climat et de l’Environnement (UMR CEA/CNRS 1572), L’Orme des Merisiers, Baˆt. 709, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France ‡ Arctic and Antarctic Research Institute, Beringa Street 38, 199397, St Petersburg, Russia § Department of Geosciences, Princeton University, Princeton, New Jersey 08544-1003, USA k Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA ¶ Institute of Geography, Staromonetny, per 29, 109017, Moscow, Russia ........................................................................................................................................................................................................................................................ The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years. The late Quaternary period (the past one million years) is punc- core ever recovered, reaching a depth of 3,623 m (ref.
    [Show full text]
  • Appendix 1 – Crew Lists of HIMS Vostok and Mirnyi
    Appendix 1 – Crew Lists of HIMS Vostok and Mirnyi The crew lists were translated from (CL) but without the pay rates. Five names added from Two Seasons or the post-voyage report on crew status (Moller, 1821) are marked with asterisks. The lists do not give patro- nymics and do not identify any cooks. The statement that Nikita Il’in was of ‘officer rank’ (TS, 1: 9) may simply mean that he was a gentleman but not yet a commissioned officer. The crew status report confirms the presence of a third, unidentified servant on Vostok and so corroborates Bellingshausen’s tally of 189 people without the chaplain (TS, 1: 7–9), in short 190 people. Crew of HIMS Vostok Commanding officer: Junior Captain Bellingshausen Captain Lieutenant: Ivan Zavodovskii Lieutenants: Ivan Ignat’ev; Konstantin Torson; Arkadii Leskov Midshipman: Dmitrii Demidov Astronomer: Ivan Simonov* Artist: Pavel Mikhailov* Clerk: Ivan Rezanov Gardemarine: Roman Adams* Navigator: Yakov Paryadin Warrant officers: Andrei Sherkunov; Pëtr Kryukov Master’s mate: Fëdor Vasil’ev Staff surgeon: Yakov Berkh Surgeon’s mate: Ivan Stepanov Quartermasters: Sandash Aneyev; Aleksei Aldygin; Martyn Stepanov; Aleksei Stepanov Butcher: Grigorii Diyakov Drummer: Leontii Churkin Seamen, 1st Class: Semën Trofimov (helmsman); Gubei Abdulov; Stepan Sazanov; Pëtr Maksimov; Kondratii Petrov; Olav Rangoil’; Paul Yakobson; Leon Dubovskii; Semën 214 Crew Lists 215 Gulyayev; Grigorii Anan’in; Grigorii Yelsukov; Stepan Filipov; Sidor Lukin; Matvei Khandukov; Kondratii Borisov; Yeremei Andreyev; Danil Kornev; Sidor
    [Show full text]